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Massors are objects which deseribe the internal energy (mass) of the fields (particles)
in a way which is similar to the description of the spin by spinors, vectors, etc. After a brief
survey of the mathematical theory of the massors the general relativistic and quantized free
unitary massor field model is treated. The rest mass of the field appears spontaneously in the
Lagrangian as well as in the equations of motion of the system. The field has charge, which
is a scalar, and energy, which is an invariant implet. The energy is copletisable by the charge.
The quantized values of the charge are Q = n, and those of the energy T = xn, where x is
the rest mass of a quantum, and n equals 0, 1, 2, ... in the case of the Bose—Einstein statis-
tics, or n equals 0,1 in the case of the Fermi—Dirac one.

26. Introduction

In preceding parts of this series of papers [1] we have dealt with the
fundamental one-component coplet fields in the space X, the time. In the
present publication we consider the re‘maining one-component coplets, the
massors.

(D.28) Massors are those objects of the Brandt semigrupoids of the co-
ordinate transformations whose transformators contain explicitly the co-
ordinates, i.e.,

(%) = T, [wa(x(x»,&, ), o ] . (165)

In Chapter VI the physical applicability of these objects is treated, in
Chapter VII their mathematical theory is surveyed and in Chapter VIII a
unitary massor model is presented.

Chapter VIis treated on the special relativistic level, but Chapters VII and
VIII on the general relativistic one.
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404 G. KNAPECZ

VI. The physical applicability of massors

27. The discontinuous spaces

The solution of the problem of the structure of the subnuclear particles,
and that of the collapsing objects of the Universe, is far from being solved.
Therefore one cannot be sure that physical space-time is continuous in the
interior of these objects. We think of the possibility that in the interior of the
physical objects with an extraordinary high density of mass space-time may
have bubbles, or isolated points, or isolated regions, or any other kind of
discontinuity.

In the discontinuous spaces the derivatives of the coordinates, i.e.,

dx! 2x!

Lo (166)
oxk = ox*ox!
are meaningless. The transformators
o Ox
pa(x) =T, [Ws(x)e E 5 - ] (167)

which eontain derivatives, and the objects belonging to them, are also meaning-
less. Therefore the concepts of vector, tensor (and that of the spiner) are
meaningless in the exotic regions of these general spaces.

If so, the differential geometric objects cannot describe all properties
of Nature and they cannot express all its laws. The only objects, which remain
meaningful in these (at least partly) discontinuous spaces are the massors of
class zero, whose transformator reads

va(x) = T, [v(x'x)) , % x(x)]. (168)

The circumstance that only the massors remain meaningful at all points of
any space-time shows that the massors have a much greater domain of appli-
cability than the nonmassors (pure differential geometric objects), which are
mostly applied in theoretical physics and in differential geometry.

28. The charges

It is a known fact that the subnuclear particles possess charges (baryonic,
electric, leptonic, etc.), and that these charges are connected with the gauge
groups. The descriptors p(x) of the particles which possess charges are massors
of class zero with respect to these gauge groups. E.g., the electric gauge trans-
formation of the proton field reads

Pu(x) = Oy (), (169)
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GENERAL RELATIVISTIC THEORY OF LAGRANGIAN FUNCTIONS 405

where ¢(x) is the local parameter of the electric group. Since g(x) is explicitly
present in (169), y, is a gauge nullor, i.e., a gauge massor of class zero. Thus
the massors are already applied in physics.

In the present paper we show that the massors of the coordinate Brandt
semigroupoid, which contains the Poincaré group, are very suitable to describe
the fields (particles) whose rest mass is different from zero.

The massors are those objects which describe fields which have internal
energy. As will be seen in subsequent paragraphs this quantity is similar to the
different charges and to the spin of the particles.

29. The internal properties of the particles

In order to explain the above statements, we will consider more precisely
the internal properties of the fields.

In the special relativistic Lagrangian theory of fields different properties
of the systems are expressed as different concomitants of descriptors y(x),
of its transformators T, under some symmetry bioperatives and of the
Lagrangian L of the system under consideration. E.g., the expression of the

charge-current density j* is

3 !
j = L 6& R (170)

G'PA,k op

where
5'!’A

=iey, (171)

where the Lagrangian L is invariant under the electric gauge group

Ya(x) = €@ y,(x) = T, [yp(x), 9(x), P (), - . -] (172)
Since, according to (170), the variation of y 4 is

9 3
Oy, =Tey, 0p= —aT’i Ta

P

dp

=0 Ay

8t .. (173)

=0

it is seen from the comparison of (172) and (174) that expression (170) contains
the derivatives of the transformator (172) too. Taking this into account one
sees from (170) that j, depends on pa, T4 and L, i.e., it is a concomitant of
them.

Similar rule is valid for all properties of the physical systems.

According to this general rule the internal mass (internal enmergy) of
fields should also be concomitant of y 4, T 4 and L. The form of this concomitant
is given in the subsequent paragraph.
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30. The concomitant of the internal energy
In the recent special relativistic field theory of subnuclear particles the
canonical energy-momentum concomitant has the form [3] [4]

g 8L Sy, oL

7= A

T ox! YA i

Va1 -+ 5{‘ L, (174)

where dyp4 is the isolocal variation of y, under the infinitesimal Poincaré
transformation 6x' of coordinates. The third term of (174), oL, is a pressure.
The pressure is a result of the interaction (or selfinteraction), therefore it is not

part of the internal energy. The second term, — Ya,i» is the four dimen-
YAk

sional path energy. It does not belong to the internal mass either. Thus the
density of the internal energy is either identical with, or contained in the
first term

oL  dy,

Ya0 dx0

T9(1) = (175)

If we compare this expression with the expression of the electric charge
{170}, and with the expression of the spin

AL  Jdy
S = By 67;‘\’ ’ (179)
A0

where 7 are the parameters of the rotation group, we see that all internal
properties of the matter have similar concomitants

o 8L dy,
Ipy——— (177)

ap op

Now the question arises: is it natural that the subnuclear particles
possess a number of charges, that they possess internal angular momentum,
and that they do not possess even internal mass?

31. The role of the transformators

It is a known fact that the descriptor fields of the particles with different
spin have different transformation character under the rotation subgroup of
the Poincaré group. In the present nomenclature: they have different trans-
formators. E.g., the scalar fields describe 0-spin particles, the spinor fields
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h

Py -spin ones, etc. The spin is thus “determined” by the transformator T of ¢
— _\ —  Ox
va (%) = Ta | wp(x(x)), x—a (178)

under the rotation (or Lorentz) group of the coordinate transformations.
Similarly the electric (baryonic, etc.) charge of a field p,4 is determined
by the transformator T of y

Talx) =T, [%m, w(x»Z—f . ] (179)

under the electric (baryonic, etc.) gauge group. For example, the electromag-
netic field 4; has no charge, because its transformator under the electric gauge
group

Ak(x) = Ak(x) + (P’]{(x) (180)

does not contain ¢ explicitly. 4; is a gauge connector.
These facts mean that the dependence of the internal quantities I, (177)

on is either universal, or apparent one. In any case the values of the

O i
internal quatities I(; are determined by the transformators T via the variations

dyp,.

" According to this rule the internal energy should be also determined by
the transformator T of p4. Particles of different internal mass should have
different transformation properties in the case of coordinate transformations.

In this context we mention a theorem:
(T.35) Those objects of the Poincaré group whose transformators do not
contain the coordinates explicitly, describe particles of zero internal mass

(energy).
(Proof. The transformators in question are of the form

Ta®) = T, [wg(xa)), —2—3—} . (181)

The infinitesimal isolocal variation of y, is therefore

8T, Bt
=t 0——.
oy, i p— (182)
8§k x=X
3 1 - - 8xi - .
Since in the case of the Poincaré group the vanatlonsaﬁ- are infinitesimal
x
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ax'
constants, which do not depend on dx,at all, d F/éxo is zero. If so, {y is also
2k

zero. Thus

To1y = 2L %¥a (183)

e Ox°
and the theorem is proved).

This theorem means that scalars, spinors, vectors, tensors, ete. can
describe particles with zero internal mass only. They are not able to describe
particles whose internal mass is different from zero.

Thus in the description of the particles of nonzero internal mass we
should take into consideration-the massors, whose transformator under the
Poincaré group, as well as under the Brandt semigroupoid of coordinate trans-
formations, contains explicitly the coordinates, i.e.,

S _N — ,—. O
pa(x) = T, [wB(x(x)), x, x{x), —a%, oo (184)

32. The massors and the restmass

The theory of fields with internal energy does not lead to difficulties as,
for example, the appearance of the internal linear momentum, or the possi-
bility of

E* < 2p? (185)

as in the case of the “tachions™ [2], because in the general relativistic theory
of fields the value of the canonical energy-momentum density is identically
zero.

On the contrary the massor fields have an advantageous property. In the
cases we have studied the rest mass of the massor fields appears spontaneously in
the Lagrangian and in the equations of motion of the fields. In Section VIII we
present a model of this kind.

Since this circumstance is a remarkable property of the massors, the study
of the massors has physical interest.

VIL. The one-component massors of Bd (1)

33. The spectrum of the coplets

The one-component coplets of the Brandt semigroupoid Bd (1) of co-
ordinate transformations in the space X constitute a “bundle”, which consists
of eight “rays”. Every ray contains one of the fundamental coplets and infi-
nitely many other coplets. The fundamental object characterises the ray and
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conversely the later belongs to it. The coplets of the ray, with the exception of
the basic one, are the massors which belong to the basic coplet,

Since the fundamental one-component coplets constitute a discrete
spectrum of objects, the different rays are also disconnected. But the massors
belonging to a single ray constitute a nondiscrete spectrum, which consists of
functionally infinite coplets.

These assumptions follow from the following fundamental spectral theo-
rem of the one-component massors.

34. The spectral theorem

(T.36) The transformators of the one-component massors y(z) of the
Bd (1) have the form

P(T) = f{T [f—l(w(z(%)), (7)), %, ‘f;: .. ]

%} s (186)
where T is any of the eight transformators of the fundamental one-component
coplets of Bd (1), f(w, 7) is an arbitrary invertible function with respect to its
first argument w(t), and f~'is the inverse of f.

{Proof: [5] p. 22, [6] theor. 13.)

The fundamental spectral theorem of the massors is equivalent to the
following assumption.

(T.37) Every massor may be expressed as a bicomitant of one of the
eight fundamental coplets w(7) and of the paratime 7, which is the primary
object of Bd (1), in the form

»(@) = flo() 7) (187)
where f(w, 7) is the function given above.

(Proof: [7] p. 20)

Theorem (T.37) does not mean that y(7) and w(r) are equivalent. Namely
the densities D(t), which belong to the fundamental coplets, may also be ex-
pressed as bicomitants of a scalar S{r), and of the derivative of time in the
form

D(zr) = f (S(r), —df—] (188)
dp
where p is a scalar parameter. In this case the transformator reads

D7) = f{f-l [D(r(’i)) df] df_}. (189)

“dp) dp
If we take
5 (s, i’_} =9 (190)
dp dp
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then (189) reads
= _ dv (dt )|
D7) = D(r) == (25} 191
(7) = D(z) dp (dpJ (191)

i.e., we get the transformation formula of the densities

D——D. (192)

The massors are to the same degree non-equivalent with the basic coplets
as the latest are non-equivalent among themselves.
In Tables 3 and 4 we give some massors and some objects which belong
to them. Since the number of the massors is functionally infinite there is no
possibility to give any exhaustive table of them.

Table 3
Some massors of class zero
N}‘:eurl- Name Transformator
19 multiplicative nullor NF@) = ef(®)-(3) N(z)
20 unitary nullor P(7) = ek(*-Dy(7)
21 additive nullor N®@) = f(z) — {(T) + N(7)
22 special additive nullor NFE) = K(r — 7) 4+ N(7)
Table 4
Some objects belonging to the massors
Num-
ber Name Class Transformator Note
connector of No. dr dr
23 20, or gradient 1 U@ = ——=U@ k (—, — 1)
of No. 22. AR e
S dt . .
T@) =—-=I'(x)— D is a density of
94 connector of 2 dz weight w, N is a
o = ND,, &2t /dr dv multiplicative nul-
— S ——
prNir (d-? 1) lor
- dr 2
= — (Y 7o) —
@ - () 1o
3w (d*r /dv )2 i
25 pronector 3 5 (d-?2 pr=
v /dr dr \?
R T T [(F) _1]
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VIIL. The free unitary massor field model

Now, turning back to physics, we consider in full the free unitary massor
field model in the space X,. Despite its simplicity, produced by the dimension-
ality 1, many features of general relativistic field theories clearly appear,
among others the role of the energy within general relativity theory.

35. The unitary massor

(D.29) The transformator of the unitary massor y(t) reads as follows
P(7) = e y(7), (193)

where x is an arbitrary constant, which is equal to the restmass of the system
to be considered.
(T.38) The transformator of the “velocity” dy/dz is

A7) = d—-fe""“—*) (7)) + % i‘i— — 1| e =D y(7). (194)
dr dt

As is seen from (194) the velocity y, is an implet only. But it is not the
only implet of the system under consideration. The transformators of the
conjugate complex fields p* and u} are

P*(T) = e O p*(7), (195)
and

g0 = e[y i [T @] . 99)
dr dr
respectively.
36. The Lagrangian
(T.39) The most general Lagrangian L(y, y*, v,, »¥) depending on the

field y, its velocity v, and their complex conj. fields is

. xypyp* - ipy?
L— (ey*y — ip*p) I [pry, PP (197)
XUy —wpr Y,

where I is a scalar concomitant of its scalar arguments.
(Proof. The Lagrangian (197) is the general solution of the functional
equation

e — — dr N
L(’/}a 1/)*9 Yz, 1/)1) = ;_’E" L(% p*, Yoo 1101) » (198)
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i.e., of

L {em’(t—?) v, e—ix (1—7%) w*’ eix (t—7)

dt dr
i [ 1y,
=T [d% Jw]

(199)

e | Sy iy d—t_)——l p* =d—fL(w, V¥, Y Y1),
dT dr

where 7, 7 and d7/d7, as well as p, p*, p, and ) are the free variables. Denoting

dr

e (200)
and
eirr—D) =1 (201)
eq. (199) reads
L {w,_’fi s tfoy, + in(b — 1) ], 1 [byy — ix(b—1) 1/)*]} =
t t (202)

= bL(*f’, ?1)*, Yes Qf":) .

This homogeneous functional equation should be satisfied for every value of
the arguments t, b, v, p*, v, and ;. If so, (202) should be valid also in the case
when

tp=1. (203)
Then

=1y, (204)
and (202) reduces to

by b= 1)y
Y

This equation should be satisfied also if

Lth ,wwzmwlwﬁ=MWW%M-@m

by, + ix(b — 1)p = 0. (206)

Inserting b from equ. (206), (208) into (205) we get

. . T . K .
Ly, p*, v, 9) = E’_if_‘f’ H [w* W, py* ol (- mw*)], (207)

Wy Y, + ixy
thereafter
*p. - dep* * — taep*y |
Lip.y* poy) =220 Y g [w* ) E—’)——*—J ) (208)
p*y Yry, + ety
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and at last

%t *
L= (p*y, + bep*y) I [pry, o WP (209)
Yy, + iepty
where H, J and I are invariant functions of their arguments. QED.
It is to be noticed that the density

Lo = »yp*y — ip*y, (210)

is not a sum of two densities, i.e. it is in this sense irreducible. This is an advan-
tageous property of L, because in general relativity theory every densitant
leads to strong conservation rules. If the Lagrangian consists of many densities,
then the number of the strongly conserved guantities becomes enormous and
this circumstance leads to more difficulties [8].

37. The equations of motion

For the sake of simplicity we consider here the free field (212). We take
L=ep*p —ip*y_. (211)

This model is the one-dimensional version of the free Dirac field.
The Euler-equations of this Lagrangian (211) are

Lyp=2xyp—iy =0 (212)
and
L,=xyp* + ip* =0. (213)

It is clearly seen from (211), (212) and (213) that the rest mass x appeared
spontaneously, because it was built into the transformator of . This method
of the introduction of the rest mass into the theory is more advantageous than
the old one, where the rest mass is built into the Lagrangian. The method of
introducing experimental data into the transformators means therefore a step
forward.

The solutions of (212) and (213) are

Y(t) = Ae " (214)
and

p*(1) = A*e™, (215)
where the amplitude A is a scalar constant.
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38. The conserved comitants

The Euler equations yield two “old” conserved quantities and a “new”
one.

1. The charge
The first old concomitant is the charge

0 [yl = v*v, (216)

whose value is

Q= A*A. (217)
The charge is conserved because

0 _ 0. (218)
dr
The proof of this statement is known from the theory of the Dirac equation.
The expression of the charge Q[y] is an invariant. Its value Q is a scalar.
2. The energy
The second old conserved concomitant is the energy

i
Tly] =— "y, — v¥¥), (219)
whose value is
T=xA*A. (220)
The energy is also conserved
daT
— =0. 221
dr (221)

The proof of this statement is also known from the Dirac equation.
Now we derive the transformator of T[y]. As a first step we have

i oo £y __ l — (T —1) gy * pin(z—7) T _ ) T
—(p*p Yy;) = e p*e 13 Hy+ —w,
2 ( : ) 2 { dv ) dz

222)
o . dt dx (
— @iHa—T) gy g —IX(T=T) | _ {5 1] w* 4+ — ; .
Y [ dv ) g P ]}
1.e.
U — — dr © , . dr
—_ e PYPs) = — —— e — YPr) — |— — 1|xp*y. 223
2(w¢ Pz df2(ww Yyr) (df )uw (223)

Inserting (219) and (216) into (223) we get that

Acta Physice Academiae Scientiarum Hungaricae 24, 1968



G. KNAPECZ 415

(T.40) the transformator of T[y] under general time transformations
reads

T[] = %T[w] + (1 _ ijl—) Q] (224)

(D.30) If some concomitant transforms as a coplet, it is a copletant.

(D.31) If some concomitant transforms as an implet, it is an impletant.

It is seen from (224) that the expression of the energy T[] is an impletant.
Briefly, energy is an implet (and not a coplet as in the case of special relativistic
theories !). Its catalisator [for its definition see (Def. 18)] is the charge Q[y].
Therefore

(T.41) the unified object (Q[y], T[y]) is a coplet, whose transformator
reads

0lv] = Qv (225)

T3] = - Tlvl+ [1 - %) #Qly]. (226)

The implet character of the (four dimensional) general relativistic energy
expressions was found by MgLLER [9], MickEvicH [10] and PELLEGRINI—PLE-
BANSKI [11].

The transformators (225) and (226) mean that the energy is subordinate
to the charge. It seems that in general relativistic theories the energy-moment
is a quantity of second order only.

Inserting the value (220) into (226) one gets

T=T. (227)

This last equation means that the energy value of the system is an invariant
implet (but not a scalar). The concept of the invariant implet is similar to
that of the invariant Kronecker tensor 0}, the totally antisymmetric invariant
ikim " etec. The facts that T does not vary, do net
reduce it to a scalar ! For example, ™M™ Joes not vary nevertheless it is not a

Levi—Civita tensor density ¢

scalar.
The implet character explains all ““difficulties” connected with the energy
in general relativistic theories.
Lastly it should be noticed that the canonical energy identically vanishes,
i.e.
* (5]
oL oy 8L,  OL % OL ..p_o. (228)
By, 6t By, By* Ot oy*

3. The specific energy

One of the interesting problems of the theory of implets is their copleti-
sation. This task may be achieved in different ways. One of them is to join
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the implet {or implets) with some coplet (or coplets). Examples of this kind are
represented by equations (97), as well as (225) and (226). Another way of the
completisation is the following.

Dividing eq. (226) by eq. (225) one gets

Tlw dt T

Tlyl _dr Thvl | (1 -d—f]u. (229)
Oly] dr Oyl dt

This equation is the transformator of an inhomogeneous coplet. The copleti-

sation of T[y] is achieved.
(D.32) The new coplet

Tly)
tly] = (230)

Qv

will be called specific energy (energy/charge).
The specific energy is also conserved
dt

— =0, 231
dr (231)

because both T and ( are conserved. t is identical with the rest mass of the
model.

Tt seems that the specific energy is a useful quantity.

4. Some other quantities

We note that

T{p] — »Q[y] = T[’P] — 2Q[v]) (232)
is a density of weight one. Similarly

i3] — % =2 (v — (233)

is also a density.
The real part of iy*y, is the energy implet, the imaginary one is the
derivative of the charge.

39. Quantization

The procedure of the quantization consists of supplementing the equa-
tions of motion by some algebraic constraints, which also should be obeyed by
the descriptors of the physical system in question. Of course, the constraint
cannot be in contradiction with the equations of motion.
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Two kinds of quantization methods have been successful in the quantum
theory of fields. The first one is based on Heisenberg’s relation, the second one
on Pauli’s exclusion principle.

The model under consideration may be quantized in both forms.

1. Heisenberg quantization

The basic constraint of this quantization method is given by the com-
mutator. It reads

[p*(),p(D)]_=yp*p —ypp* =1, (234)

A*A — AA* =1. (235)

i.e.

Since A is constant, (235) does not contradict the equations of motion (212)
and (213).
The solution of (235) is the matrix

o 0 0 ——— 01 0 0 —— —
1 0 0 0 0)yz 0 —— —
A=[0})2 0 ,» A*=10 0 03 . (236)
0 03 0 0 0 0
According to this solution the values of the charge Q are
Q=A4*4=n, n=1,2,3,..., (237)
but there is another charge @’ too
Q =AA*=n —1. (238)
The values of the energy are
T =xA4* A = xn, (239)
but there are other energies too. The value of the specific energy is
P =20 (240)
n

2. Pauli quantization

The constraint in this case is the anticommutator of Jordan. It reads

_ [p* vl =9y +yp* =1, pp =0, p*yp* =0, (241)
1.€.

A* A+ AA* =1, AA=0, A*A*=0. (242)

7 Acta Physica Academiae Scientiarum Hungaricae 24, 1968



418 GENERAL RELATIVISTIC THEORY OF LAGRANGIAN FUNCTIONS

The solution of this constraint is

A:OI,A*ZOO. (243)
00 10
Accordingly the charge of the system is
Q=4*4=n, n=0, or 1. (244)
The energy is
T=ux*A4=un. (245)

The specific energy is
. {indefinite, if n= O}

* n=1

40. Conclusion

(246)

The free unitary model discussed is both generally relativistic and
quantized. This example shows that quantum theory and general relativity

theory are not in contradiction.
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Kucaarzewskr and M. Kuczma, Rozprawy Matematiczne XLIIT, Panstwowe Wydaw-

Maccope! ABJIsIIOTCS 00bEKTAMM, KOTODble OITMCHIBAIOT BHYTDEHHIOK 3Heprui (maccy)
Pusnueckux nonedi (JacTull), HMEHHO TaK, KaK CHHUHOPHI, BEKTOPH H T. X. OMUCHIBAIOT CHUH.
[ocne Koporkoro 0630pa mMaTeMaTH4eCKOH TeOPUH MacCOPOB TPAKTYeETCSl 0GLIEPENSITUBHCTCK I
KBAHTOBAHHLIA CBOOOAHBIH yHMTAPHBIH MACCOpPHBLIA Modesb. Macca noKosi 1oJist HOSIBJSIETCS
CIIOHTAHHO KAK B JlarpaHyKuaHe, TaK U B YPaBHEHUSIX JBIKeHUs1 cucrembl. [Tosie umeer aapsia,
KOTOPBIi SIBJISIETCS! CKAJISIDOM, U 3HEPIuio, KOTOpasl sIBJSIeTCS! HHBAPDUAHTHLIM HMILIETOM.
Ho sueprusi mo)keT GbiTh KOMIUIETH30BaHa 3apsiioM. KBaHTOBaHHble BeJMYMHBI 3apsiia CyTh
Q = n, a BeJIMYUHBI 3HePI'MU CyThb T = Kn, rje K sIBJISIETCSI MAcCOii NIOKOsSI KBAHTA MOJIsI, an
paBusietcs 0, 1, 2, ... B cnyuyae Bose— JHnureiinopckoif cratucruky, win 0, wid 1 B cinyyae

depmu— JIMpaKOBCKOH CTATHCTHUKH.
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