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Massors are objects which describe the internal energy (mass) of the fields (particles) 
in a way which is similar to the deseription of the spin by spinors, vectors, etc. After a brief 
survey of the mathematical tbeory of the massors the general relativistie and quantized free 
unitary massor field model is treated. The test mass of the field appears spontaneously in the 
Lagrangian as well as in the equations of motion of the system. The field has charge, whieh 
is a scalar, and energy, which is ah invariant implet. The energy is copletisab]e by the eharge. 
The quantized values of the charge ate Q = n, and those of the energy T = un, where ~ is 
the test mass of a quantum, and n equals 0, 1, 2, . . .  in the case of the Bose--Einstein statis- 
tics, of n equals 0,1 in the case of the Fermi--Dirae one. 

26. I n t r o d u c t i o n  

I n  p r e c e d i n g  p a r t s  o f  th i s  ser ies  o f  p a p e r s  [1] we  h a v e  d e a h  w i t h  t h e  

f u n d a m e n t a l  o n e - c o m p o n e n t  eop le t  f ie lds  in t h e  space  X 1, t h e  t i m e .  I n  t h e  

p r e s e n t  p u b l i c a t i o n  we cons ide r  t h e  r e m a i n i n g  o n e - c o m p o n e n t  cople t s ,  t he  

massors .  

(D.28) Massors  are t hose  ob j ec t s  o f  t h e  B r a n d t  s e m i g r u p o i d s  of  t he  co- 

o r d i n a t e  t r a n s f o r m a t i o n s  whose  t r a n s f o r m a t o r s  c o n t a i n  e x p l i c i t l y  t he  eo- 

o rd ina t e s ,  i .e.,  

~A(x) = TA[ ~s(x(~))'~'x(~)' 820x-x . . . . .  1 (165) 

I n  C h a p t e r  V I  t he  p h y s i c a l  a p p l i c a b i l i t y  of  t he se  ob j ec t s  is t r e a t e d ,  in  

C h a p t e r  V I I  t h e i r  m a t h e m a t i c a l  t h e o r y  is s u r v e y e d  a n d  in C h a p t e r  V I I I  a 

u n i t a r y  m a s s o r  m o d e l  is p r e s e n t e d .  

C h a p t e r  V I  is t r e a t e d  on t h e  spec ia l  r e l a t i v i s t i c  l eve l ,  b u t  C h a p t e r s  V I I  a n d  

V I I I  on t h e  gene ra l  r e l a t i v i s t i c  one.  
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VI. The physical applicabiHty of massors 

27. The diseontinuous spaees 

The solution of the problem of the structure of the subnuclear particles, 
and that  of the collapsing objects of the Universe, is far from being solved. 
Therefore one cannot be sure that  physical space-time is continuous in the 
interior of these objects. We think of the possibility that  in the interior of the 
physical objects with ah extraordinary high density of mass space-time may 
have bubbles, or isolated points, or isolated regions, or any other kind of 
discontinuity. 

In the discontinuous spaces the derivatives of the coordinates, i.e., 

OX i ~2xi  
(166) 

are meaningless. The transformators 

~A(X) = TA [ ~B(x)' 0~0x . . . .  ] (167) 

whieh eontain derivatives, and the objeets belonging to them, are also meaning- 
less. Therefore the eoneepts of veetor, tensor (and that  of the spinor) are 
meaningless in the exotie regions of these general spaees. 

I f  so, the differential geometrie objeets eannot deseribe all properties 
of Nature and they eannot express all its laws. The only objects, whieh remain 
meaningful in these (at least partly) diseontinuous spaees are the massors of 
elass zero, whose transformator reads 

~A(~C) = T A [~v(x/~)), ~, x(~)]. (168) 

The circumstance that  only the massors remain meaningful at all points of 
any space-time shows that  the massors have a much greater domain of appli- 
cability than the nonmassors (pure differential geometric objects), which are 
mostly applied in theoretical physics and in differential geometry. 

28. The eharges 

I t  is a known fact that  the subnuelear partieles possess eharges (baryonic, 
electric, leptonic, etc.), and that  these charges ate connected with the gauge 
groups. The descriptors ~pA(x) of the particles which possess charges are massors  

o f  class zero with respect to these gauge groups. E.g., the electrie gauge trans- 
formation of the proton field reads 

(169) 
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where ~(x) is the local parameter of the electric group. Since ~v(x) is explicitly 
present in (169), ~v~ is a gauge nullor, i.e., a gauge massor of class zero. Thus 
the massors are already applied in physics. 

In the present paper we show tha t  the massors of the coordinate Brandt 
semigroupoid, which contains the Poincar› group, ate very suitable to describe 
the fields (particles) whose rest mass is different from zero. 

The massors are those objects which describe fields which have internal 
energy. As will be seen in subsequent paragraphs this quanti ty is similar to the 
different charges and to the spin of the particles. 

29. The internal properties of the particles 

In order to explain the above statements, we will consider more precisely 
the internal properties of the fields. 

In the special relativistic Lagrangian theory of fields different properties 
of the systems are expressed as different concomitants of descriptors ~v(x), 
of its transformators T~ under some symmetry bioperatives and of the 
Lagrangian L of the system under consideration. E.g., the expression of the 
charge-current density jk is 

j k  = OL ~~A , (170) 

where 

@A ~~- iev' A (171) 

where the Lagrangian L i s  invariant under the electric gauge group 

(172) 

Since, according to (170), the variation of ~~A is 

(173) 

it is seen from the comparison of (172) and (174) that  expression (170) contains 
the derivatives of the transformator (172) too. Taking this into account one 
sees from (170) that  jk depends on ~A, TA and L,  i.e., it is a concomitant of 
them. 

Similar rule is valid for all properties of the physical systems. 
According to this general rule the internal mass (internal energy) of 

fields should also be concomitant Of~A, TA and L. The form of this concomitant 
is given in the subsequent paragraph. 
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30. The  concomi tant  o f  the internal  energy  

In  the recent  special  relativist ic field t heo ry  of subnuclear  particles the  
canonical  ene rgy-momentum concomitant  has the  form [3] [4] 

Tt k = 0 L  ~~v A 0L ~~ + �91 L ,  (174) 
O~)A, k 6 X l O~A,k 

where �91 is the isolocal var ia t ion  of VA under  the infinitesimal Poincar›  
t r ans format ion  5x I of coordinates .  The th i rd  t e rm  of  (174), �91 is a pressure.  
The  pressure is a result  of  the  in teract ion (of selfinteraction),  therefore  i t  is no t  

8L 
par t  of  the  internal  energy.  The second term,  V?A,l, is the four  dimen- 

O~OA,k 
sional pa th  energy. I t  does not  belong to the in ternal  mass either.  Thus  the 
dens i ty  of the internal  encrgy is ei ther identical  with, or conta ined in the 
first  t e r m  

ToO(1) - OL 6yJ A (175) 
O~A, o 6x  ~ 

I f  we compare this expression with the expression of the electric charge 
(170), and  with the expression of  the spin 

SO ~ _ 0 L  (~~v A (176) 
0tVA, 0 6re kt ' 

where k l  are the paramete rs  of the ro ta t ion  group,  we see tha t  all in ternal  
propert ies  of the ma t t e r  have similar concomitants  

o 9L @A I(p) -- - -  (177) 
0~A,0 5p 

Now the quest ion arises: is it  na tura l  t h a t  the  subnuclear  particles 
possess a number  of charges, t ha t  they  possess in ternal  angular  m o m en tu m ,  
and t h a t  t hey  do not  possess even internal  mass? 

31. The  role o f  the transformators  

I r  is a known fact  t h a t  the descriptor  fields of  the particles with different  
spin have  different t r ans format ion  charac ter  under  the ro ta t ion  subgroup of 
the Poincar›  group. In  the present  nomencla ture :  t hey  have different  t rans-  
formators .  E.g.,  the  scalar fields describe 0-spin particles,  the spinor fields 
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~--spin ones, etc. The spin is thus "determined" by the transformator T of 

~A(~) = TA ~,~(x(~)), ~,x, Ox'  "" (178) 

under the rotation (of Lorentz) group of the coordinate transformations. 
Similarly the electrie (baryonic, etc.) charge of a field VA i8 determined 

by the transformator T of 

[ 0~ ] (179) ~A(X) = TA W~(x), ~(~), *x ' 

under the electric (baryonic, etc.) gauge group. For example, the electromag- 
netie field Ai has no charge, because its transformator under the electrie gauge 
group 

Ak(x) = Ak(x) q- ~,,,(x) (180) 

does not contain ~ explicitly. Ai is a gauge eonnector. 
These facts mean that  the dependence of the internal quantities lO(p) (177) 

0L 
on - - i s  either universal, of apparent one. In any case the values of the 

internal quatities l~p) are determin~d by the tralasfcrmators T vŸ the variaticns 
�91 

According to this rule the internal energy should be also determined by 
the transformator T of V2A. Partieles of different internal mass should have 
different transformation properties in the case of coordinate transformations. 

In this context we mention a theorem: 
(T.35) Those objects of the Poincar› group whose transformators do not 

contain the coordinates explicitly, describe particles of zero internal mass 
(energy). 

(Proof. The transformators in question are of the forro 

_ a x  i 

(181) 

The infinitesimal isolocal variation of ~OA is therefore 

O~A = 0 $TAo~ k $xi x=~ ~ OEk 8x~-~-~ (182) 

Oac i 
Since in the case of the Poincar› group the variations ~ O~Ck-are infinitesimal 
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~x i 
eonstants ,  whieh do not  depend on 5x 0 at  all, 5 -0~- / /~x0is  zero. I f s o ,  �91 is also 

zero. Thus  

TO(1 ) _ 0L 6~VA -- 0 (183) 
O~OA,o ~x~ 

and the  theorem is proved).  
This  theorem means t ha t  scalars, spinors, vectors ,  tensors,  etc. can 

describe part icles with zero internal  mass only. T h e y  ate no t  able to describe 
part icles whose in ternal  mass is different f rom zero. 

Thus  in the deseript ion of  the particles of nonzero  internal  mass we 
should take  into considerat ion~the massors, whose t r a n s f o r m a t o r  uilder the 
Poincar›  group, as well as under  the Brand t  semigroupoid  of  coordinate  t rans-  
format ions ,  contains expl ici t ly  the coordinates,  i.e., 

[ ~x ] (184) ~A(.~) = T A ,p,(x(~)),},x(~),  3 ~ - '  " ' "  " 

32. The massors  and the res tmass  

The theory  of fields wi th  internal  energy does not  lead to difficulties as, 
for  example ,  the appearance  of  the internal  l inear m o m e n t u m ,  of the possi- 
bi l i ty  of  

E 2 < c2p 2 (1/85) 

as in the  case of the " t a c h i o n s "  [2], because in the general relativistic theory  
of  fields the value of  the canr r  dr is id~ntically 
z e r o .  

On the con t ra ry  the massor  fields have an advantageous  proper ty .  In the 
cases we have s tudied the rest mass of  the massor f ields appears spontaneously in 
the Lagrangian and in the equationa of  motion o f  the fields. In Section V I I I  we 
present  a model of  this kind.  

Sinee this c i rcumstance  is a remarkable  p r o p e r t y  of  the massors, the  s tudy  
of  the massors has physical  interest .  

VIL The o n e - c o m p o n e n t  massors  of Bd (1) 

33. The spectrum of  the coplets  

The one-component  coplets of the Bran d t  semigroupoid  Bd (1) of eo- 
ordinate  t ransformat ions  in the  space X 1 cons t i tu te  a " b u n d l e " ,  which consists 
of  eight " r a y s " .  E v e r y  r ay  contains one of the fundamenta l  coplets and infi- 
n i te ly  m a n y  other  coplets.  The fundamenta l  object  characterises the r ay  and 
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eonversely the later  belongs to it. The coplets of the ray,  with the exception of 
the basic one, are the massors which belong to the basic eoplet. 

Since the fundamenta l  one-component  coplets const i tute  a discrete 
spectrum of objects ,  the different rays  are also disconnected.  Bu t  the massors 
belonging to a single ray  const i tute  a nondiscrete spectrum, whieh eonsists of 
funct ional ly infinite coplets. 

These assumptions follow from the following fundamenta l  spectral  theo- 
rem of the one-component  massors. 

34. The spectral theorem 

(T.36) The t ransformators  of the one-component  massors ~p(v) of  the 
Bd (1) have the forro 

~(r)=f{T[ f-~(~~ dr~d~ ' d2rd~ 2 ' ""  ] ~}'  ' (186) 

where T is any of the eight t ransformators  of  the fundamenta l  one-component  
coplets of  Bd (1), f(~o, 3) is an a rb i t ra ry  invertible function with respeet  to its 
first a rgument  to(r), a n d f  -1 is the inverse o f f .  

(Proof:  [5] p. 22, [6] theor. 13.) 
The fundamenta l  spectral  theorem of the rnassors is equivalent  to the 

following assumption.  
(T.37) Eve ry  massor  may  be expressed as a b icomi tan t  of  one of  the  

eight fundamenta l  coplets to(r) and of  the parat ime 3, whieh is the  p r imary  
object  of Bd (1), in the forro 

~(r) = f (a , ( r ) , r )  (187) 

where f(to, r) is the function given above.  
(Proof: [7] p. 2O) 
Theorem (T.37) does not mean tha t  ~(r) and to(r) are equivalent .  Namely  

the densities D(r) ,  which belong to the fundamenta l  coplets, m a y  also be ex- 
pressed as b icomitants  of  a scalar S(r) ,  and of  the der ivat ive of  t ime in the  
form 

where p is a sealar parameter .  In this case the t ransformator  reads 

~) =f{f-l[D(r(~)), d~], 
I f  we take 

f s, ~ s - -  (190) 
dp 
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then  (189) reads 

/9(~) = D(r) ~-p , (19]) 

i.e., we get the t ransformat ion  formula of the densities 

/ ~ _  d~ 
D .  (192) 

d~ 

The massors are to the same degree non-equivalent  with the basic coplets 
as the latest  ate non-equivalent  among themselves.  

In Tables 3 and 4 we give some massors and some objects which belong 
to them.  Since the number  of the massors is funct ional ly  infinite there is no 
possibility to give any exhaust ive table of them.  

Table 3 

Some massors of class zero 

Num- 
ber Name Transformator 

19 

20 

21 

22 

multiplicative nullor 

un i ta ry  nullor 

addit ive nullor 

special addit ive nullor 

N(~)= eY(O-(ON(T) 
~ ( ~ ) =  eik(T-r)~(~) 

N(u = f(T) - -  f(u + N(r)  

N ( ~ ) =  K ( z - -  u + N(T) 

Table 4 

Some objects belonging to the massors 

Num- 
ber Name Class Transformator ]Note 

connector of No. 
23 20, or gradient 1 U(u = - ~ -  U(z)  + I, d r  - -  1 

of No. 22. 

24 

25 

connector of 
co = ND~v 

pronector 

d-c 
~ ( ~ )  = ~ ~ -  F ( O  - 

a2 ~ / a r  ( d~ ) 

t" "~dT 2 

2 ~~l~~/d~) + 

d3r  / dr  [ (  dr  ] 2 _ 1  ] 

D is a density of 
weight w, N is a 
multiplicative nul- 
lor 
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VIII. The free unitary massor field model  

Now, turning back to physics, we consider in full the free unitary massor 
field model in the space X 1. Despite its simplicity, produced by the dimension- 
ality 1, many features of general relativistic field theories clearly appear, 
among others the role of the energy within general relativity theory. 

35. The unitary massor 

(D.29) The transformator of the unitary massor ~(~) reads as follows 

~(~-) = r . - . ~  ,p(~), (193) 

where x is ah arbitrary constant, which is equal to the restmass of the system 
to be considered. 

(T.38) The transformator of the "velocity" d~/d~ is 

~~(~)= dz (dz ) d-~e'~('-OVJ,(z) + Ÿ ~ -  --1 ei~('-r)~(v~. (194) 

As is seen from (194) the velocity ~~ is an implet only. But  it is not the 
only implet of the system under consideration. The transformators of the 
conjugate complex fields ~* and ~* are 

and 

respectively. 

~*({) = e - i ' o - o  ~* (z ) ,  (195) 

~'(~) = e-/~('-r)[ d~-_ ~~* (v) -- i .  [~-_ -- 1) ~*(~)] , (196) 

36. The Lagrangian 

L * (T.39) The most general Lagrangian (~,V ,V,, Y~*) 
field ~v, its velocity ~~ and their complex conj. fields is 

depending on the 

L = (~~v*~v -- iv* ~vO'I (~v* V, • + i~v~v* ) 
~V* ~ -- i~o* ~~ ' 

(197) 

where I i s  a scalar concomitant  of its scalar arguments.  
(Proof. The Lagrangian (197) is the general solution of the functional 

equation 
dv L(~, ~*, ~~, ~*) = L(V, , vi*, ~~, ~o*), (198) 
d~ 
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i.e., of 

L{e~i(~-~) ~v,e-;~ (~-~)~~*,ei~(~-~)I~~v ~ ~- in (d~- - 1 ) V / I ,  

[ d~ [ d r  ,, ( d v )  ]} d V d . c  e-i*< ~-~) i ~ ~ ~  -- in ~: - - -  1 V/* = LOf, v/*,v/,,~p*), 
d~ 

(199) 

where ~, u and dT/du as well as V/, ~v*, V/~ and V/* are the  free variables.  Denot ing  

and  

eq. (199) reads 

d~ 
~--- b (200) 

d~ 

e i~(~-~) ~ t (201) 

{ V/* , t  [bv2~ ~- iy.(b 1) V/I, 1 [bv/* i~(b 1) ~J*]} = L t~v,---  
t t 

= bL(V/, V'*, YJ~, v/i). 

(202) 

This homogeneous  funct ional  equat ion  should  be satisfied for every  value of 
the  a rgumen t s  t, b, ~, ~v*, ~~ and V/*. I f  so, (202) should  be valid also in the  case 
whell 

Then  

and (202) reduces to 

tv /=  1. (203) 

t =  l/~v, (204) 

L {1, ~ * ~Ÿ b v/~ -f- in ( b --1)  t'v , ~v [ b i n ( b 1)V/*]}=bL(V/,V/*,~p~,V/*). (205) 

This equat ion  should be satisfied also if 

b~~ + in(b -- 1)V: = 0. (206) 

Inser t ing  b from equ. (206), (208) into (205) we get 

L(W, ~*, ~v~, ~v~*) -- v/~-q-i~~vH[ ~ p * ~ v ' i x v / v / * - k t ~ v /  ~~ in~�91 iY.w (~~~ - iuv/V/*)], (207) 

thereaf te r  
L * , ~o*V/, + intp*v/ [ V/V/* -- inv/*V/-I (~v,W ,V/~,V/~)= j V/* V/, - -  -- - - -  , (208) 

inv/*v/ [ V/*~'~ q- i~V/*V/J 
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and at  last  

L = (~v*% + i~F*,p) I i~* % ~~o* ~_ i:~FW* ] 
~*~V~ q- i~~v*~ J ' t 

(209) 

where H, J and I are i nva r i an t  funct ions  of  their  a rguments .  QED.  
I t  is to be not iced t h a t  the dens i ty  

L O ~ ~ ~ * ~ , -  i~~*~, (210) 

is not  a sum of two densities, i.e. i t  is in this sense irreducible.  This  is an advan -  
tageous  p r o p e r t y  of  L, because in general  r e la t iv i ty  t heo ry  eve ry  dens i tan t  
leads to s t rong conserva t ion  rules. I f  the  Lagrang ian  consists of  m a n y  densities, 
then  the n u m b e r  of  the  s t rongly  eonserved quant i t ies  becomes enormous  and 
this c i rcumstance  leads to more  difficulties [8]. 

37. The equations of motion 

For  the sake of s impl ic i ty  we consider here the free field (212). We t ake  

L - -  xV'*~' - -  i~*~f,~ �9 (211) 

This model  is the  one-dimensional  vers ion of  the  free Dirac  field. 
The Eule r -equa t ions  of  this Lagrang ian  (211) are 

and 

L~<, ~ z~) - -  i~,~ = 0 

L~ ~ x~v* + i~0*.~ = 0 .  

(212) 

(213) 

I t  is clearly seen f rom (211), (212) and  (213) t h a t  the  rest mass x appeared 
spontaneously, because  it  was bui l t  into the t r a n s f o r m a t o r  of  ~v. This me thod  
of the in t roduc t ion  of  the rest  mass  into the theo ry  is more  advan tageous  t h a n  
the  old one, where the rest  mass  is bui l t  into the  Lagrangian .  The  me thod  of  
in t roducing expe r imen ta l  da ta  into the  t r ans fo rma to r s  means  therefore  a s tep 

forward.  
The solutions of  (212) and (213) are 

and  

~p(z) : Ae  -i~~ (214) 

Vj*(z) ~- A*e  i~', (215) 

where the ampl i tude  A is a scalar  cons tan t .  
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38. The conserved comitants 

The Euler equations yield two "old" conserved quantities a n d a  "new" 
o I l e .  

1. The charge 
The first old coneomitant  is the charge 

whose value is 

Q = A * A .  (217) 

The charge is conserved because 

dQ _ o (z18) 
dz 

The proof  of this s ta tement  is known from the theory of the Dirac equation. 
The expression of the charge Q[V] is an invariant.  Its value Q is a sealar. 
2. The energy 
The second old conserved concomitant  is the energy 

whose vatue is 

i (~ * ~~ - ~~~.), 
T [~ ]  = ~ (219) 

T = ~A*A.  (220) 

The energy is also conserved 
dT 

= 0. (221) 
dz 

The proof of this s ta tement  is also known from the Dirac equation. 
Now we derive the transformator of T[~v]. A s a  first step we have 

i.e. 

i (~,~~ v~~~)= i { [ {dz ) dz ] -~- e-i~~~-~) ~* e i~~~ ~) t~ ~ - 1 ~v ~- ~ -  ~~ -- 

~~~<~ ~)v, e -~~~~-" i~ ~ 1 ,~* + -~~ ~~ , 

i ( ~ * ~ ~ - - ~ 2 ~ ~ ) - -  d~ i (~v*~v~ ~~p*~)-- ( d~ ) 
2 d~ 2 - ~  - 1 x~,*~. (223) 

Inserting (219) and (216) into (223) we get that  
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reads 
(T.40) the transformator of T[9 ] under general time transformations 

TIC] = d~T[9] -}- 1 - - ~ -  ~Q[9]- (224) 

(D.30) If  some concomitant transforms as a coplet, it is a copletant. 
(D.31) I f  some eoncomitant transforms as an implet, ir is an impletant. 
h is seen from (224) that  the expression of the energy T[9 ]is an impletant. 

Briefly, energy is an implet (and n o t a  coplet as in the case of special relativistic 
theories !). Its catalisator [for its definition see (DeL 18)] is the charge Q[9]" 
Therefore 

(T.41) the unified object (Q[9], T M )  is a coplet, whose transformator 
reads 

()[~] = Q[9],  (225) 

T[~] -- d~-T[9] + 1 -- d T  zQ[9]- (226) 

The implet character of the (four dimensional) general relativistic energy 
expressions was found by  MgLI~ER [9], MZCKEVIC~ [10] and PELI~EGRZNz--PLE- 
BANSKI [11]. 

The transformators (225)and (226) mean that the energy is snbordinate 
to the charge. I t  seems that in general relativistic theories the energy-moment 
is a quanti ty of second order only. 

Inserting the value (220) into (226) one gets 

= T. (227) 

This last equation means that  the energy value of the system is ah invariant 
implet (but n o t a  scalar). The concept of the invariant implet is similar to 
that  of the invariant Kronecker tensor b~, the totally antisymmetric invariant 
Levi--Civita tensor density d kzm, etc. The facts that T does not vary,  do not 
reduce ir to a scalar ! For example, ~iklm does not vary nevertheless i t i s  n o t a  
scalar. 

The implet character explains all "difficulties" connected with the energy 
in general relativistic theories. 

Lastly ir should be noticed that  the canonical energy identically vanishes, 
i , e .  

aL ~9 aL aL ~~* aL 
% -}- - -  9" + L ~ O. (228) 

3. The specific energy 

One of the interesting problems of the theory of implets is their copleti- 
sation. This task may be achieved in different ways. One of them is to join 
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the implet  (or implets) with some coplet (or coplets).  Examples  of  this kind are 
represea ted  by  equations (97), as wel! as (225) and (226). Another  way  of  the 
complet isat ion is the foltowing. 

Dividing eq. (226) by  eq. (225) one gets 

T[~] dr T[~v] + ( 1 - - d T )  
0[~1 - d~ Q[w] ~ -  • (229) 

This equat ion is the t ransformator  of an inhomogeneous coplet. The eopleti- 
sat ion of T[~] is achieved. 

(D.32) The new coplet 

t[~2] ~- T [ ~ ]  (230) 
P[~] 

will be called specific energy (energy/charge). 
The specific energy is also conserved 

d t  
--  0, (231) 

dr 

because both  T and Q ate conserved, t is identical w~th the rest  mass of  the  
mode]. 

I t  seems tha t  the specific energy is a useful quant i ty .  
4. Some other quantities 
We note tha t  

dr  
T[~]  --  ~Q[~] = ~ -  (T[vJ] --  y.Q[~v]) (232) 

is a densi ty  of weight one. Similarly 

dT  
i[t~] --  ~. : - - ( t [~v]  --  y.) (233) 

d~ 
is also a density.  

The real par t  of iV*~,~ is the energy implet,  the imaginary one is the 
der ivat ive  of the charge. 

39. Quant izat ion  

The procedure of  the quant izat ion consists of supp |ement ing the equa- 
t ions of  motion by  some algebraic constraints,  which also shouId be obeyed by  
the descriptors of  the physical  system in question.  Of course, the constra int  
cannot  be in contradict ion with the equat ions of  motion.  
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Two kinds of  quant iza t ion  me thods  have  been successful in the  q u a n t u m  
theory  of fields. The f irst  one is based  on Heisenberg ' s  relat ion,  the  second one 
on Paul i ' s  exclusion principle.  

The model  unde r  considerat ion m a y  be quant ized  in bo th  forms.  

1. Heisenberg quantizat ion 

The basic cons t ra in t  of  this quan t i za t ion  me thod  is given b y  the  com- 
mu ta to r .  I t  reads 

[~*(~), ~(~)]_ ~ v/* ~v - -  ~~* = 1,  (234) 
i . e .  

A*  A A A *  = 1. (235) 

Since A is cons tan t ,  (235) does no t  con t rad ic t  the equat ions  of  mot ion  (212) 
and (213). 

The solut ion of  (235) is the m a t r i x  ii00 I i0100 1 1 0 0 0 0 V2 0 . . . .  
A - -  V2 o , A * - =  o o V3 . (236) 

0 V3- o o o 

According to this  solution the values  of  the eharge Q ate 

Q ~ A * A = n ,  n = 1 , 2 , 3  . . . .  , (237) 

bu t  there  is ano the r  charge Q' too 

Q" = A A *  = n - -  1. (238) 

The values of  the  energy  are 

T = nA* A = ~n ,  (239) 

bu t  there  ate  o ther  energies too.  The value of  the specific energy  is 

i . e .  

X/t 
t - -  - -  ~ . (240) 

n 

2. Pau l i  quantizat ion 

The cons t ra in t  in this case is the  a n t i c o m m u t a t o r  of  Jo rdan .  I t  reads 

[v/*,~v]+-~=~*~-t- ~~v* = 1, ~~ = 0, v/*v/* = 0, (241) 

A *  A -f- A A *  = I,  A A  = O, A *  A*  = O. (242) 
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418 GENERAL RELATIVISTIC THEORY OF LAGRANGIAN FUNCTIONS 

The solution of this cons t ra in t  is 

A =  (00 101' A * =  {01 00t. (243) 

Aceordingly  the charge of the  sys t em is 

Q = A * A  = n ,  n = 0 ,  of 1. (244) 
The energy  is 

T = z * A = ~ n .  (245)  
The  specific energy  is 

{ ~ d e f i n i t e ,  i f  n = ~ }  (246) 
t = 

n =  

40. Conclusion 

The  free un i t a ry  model  discussed is b o t h  general ly  re la t ivis t ic  and  
quant ized .  This example  shows t h a t  q u a n t u m  t h e o r y  and general  r e l a t iv i ty  
t h e o r y  are not  in contradic t ion .  
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OI3LHE PEYI~ITHBHCTCKA~ TEOPH~I O~HOMEPHbIX J-[AFPAH>KHAHOB 

LlaCTb III.  

O}lHOKOMnOHeHTHble MacopHb~e noa~ 

F. F(HAFI EL1 

Maccopb~ ~BanmTC~ O£ KOTOpbJe OnHCbma~OT aHyTpeHnm~0 aHeprH~o (Maccy) 
~H3HqeCKHX none.~ (qacTrlII), rtMeHRO TaK, Kar< Clil,IH0pbl, BeKTopbl VI T. }][. OrlrdCbIBalOT cnl4n. 
[loc3ie KOpOTKOF0 o6sopa MaTe/VlaTHqeCK0,q TeopHH Macc0p0B TpaKTyeTcH O‰ 
KBaHTOBaHHblI~ CB060,~HbI~ yHHTflpHbII4 MaCC0pHbI.~ M0~eJIb. Macca rlOKO~ n o a a  IIOHB.II~IeTC~I 
CIIOHTaHHO KflK B ~arpaH~<HaHe, TaK H B ypaBVIeHH~IX ~BH)I<eHH2ff CHCTeMbl. l-IoJ1e HMeeT 3apfl~, 
KOTOpbll~ ~B2]~IeTC~I cKaJl~Ip0M, H 3HepFHrO, KOT0pa~l HBJI~IeTC~I HHBapHaHTHbIM HMIIJIeTOM. 
HO 9HepFHYl M0~eT ~bITb KOMIIJIeTH30BaHa 3ap~AOM. I'~BaHTOBaHHble Be.qHqHHbI 3 a p a ¡  cyTb 
Q = n, a BeYlHqHHbI 3HepFHH CyTb T = Kn, r ae  K flBJIgeTC~t Macc0~ n0KOa KBaHTa lI02I~l, a n 
paBH~eTC~ 0, 1, 2 , . . .  B c~yqae B03e--3~HmTe~HOBCK0~ CTaTHCTH~H, HJIH 0, H~Vl 1 B c~yuae 
r ~(~paKoBC~O¡ CTaT~CTH~U. 

Acta Physica Academiae Scientiarum Hungaricae 24, 1968 




