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In the first part of this paper ir was emphasized that in the framework of line-element 
geometry - -  vŸ the dependence of the dynamic quantities on directions in space-time internal 
dynamic relations of the considered system can be geometrized. For the sake of simplicity 
this idea of hyper-geometrization was discussed in the case of a pseudo-Euclidean space-time 
continuum. In this part, the internal dynamic degrees of freedom, their symmetries and phase- 
space picture will be treated generally and reformulated for inhomogeneous and anisotropic 
dynamic systems, not only in terms of the tetrad formalism of Riemannian geometry but 
also on the basis of the direct generalization of the suggested triad formalista. Finally, a new 
general definition of the relativistic phase-space volume and its relation to previous sugges- 
tions will be discussed, with some applications in the theory of fermion gases. 

In  Par t  I [28] we dealt in detail with the formulat ion of the general 

idea of our suggested geometrizat ion of  the relativistic phase-space formalista 

in the pseudo-Eucl idean space-time cont inuum.  To make it possible to obtain 
a deeper insight into the real geometrical  s t ructure of the relativistic phase- 

space it seems to be worth while to generalize the suggested method  in spite 

of the fact t ha t  from the points of view of several applications of the theory  

the suggested formalista would be general enough. In fact,  having in mind 
the framework of line-element geomet ry  and the definition of inhomogeneous 

direction co-ordinates,  respectively,  the development  of the general for- 

malism does not  mean any considerable trouble,  and based on the general 
theory,  the various applications can be obtained by fairly simple specialization. 

I n  order to reformulate  the idea of  hyper-geometr iza t ion quite generally 

ir seems to be worth-while to keep in mind a general method for the geometri- 
zation of  external  fields suggested previously [31]* and the te t rad-formal ism 

of Riemannian geometry .  Ir  will be shown tha t  in terms of the suggested 

method a na tura l  general d~fŸ of  the phase-space volume can be proposed 
which is a direct gen~ralization of the well-known non-relativist ic formalism. 

As ah application, the calculation of the zcro point kin~tic r  of perfect 
fermion gases in Riemannian space-time cont inuum will be reviewed. 

* Numeration of paragraphs, formulae and references will be continued in this Part 
and, of course, our notations are co-ordinated with those of Part I [28]. 
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w 3. Relat ivis t ie  phase-space  in general spaces 

The  def in i t ion  of  the  local  m o m e n t u m  space  in general  (mos t  of ten  
R i e m a n n i a n )  spaces  does n o t  need  a ny  essent ia l ly  new  idea.  Of  course ,  one 

has  to  t a k e  in to  a c c o u n t  t h a t  the  n o r m a l i z a t i o n  cond i t ion  of  the  f o u r - m o m e n t a ,  

(i.e., t he  e q u a t i o n  o f  the  mass  shell) ins tead  o f  eq. (2.2.1) is, in the  case o f  gas 

par t i e les  wi th  res t -mass  mo, 

g,~(x) p~p" = mg,  (3.0.1) 

where  g.~(x) denotes  the  met r i e  f u n d a m e n t a l  t en so r  o f  the  space cons ide red .  

This  means ,  however ,  t h a t ,  e.g., for  the  t ime e o m p o n e n t  of  the  m o m e n t a  the  

express ion  
Po = ~ {m~ogoo + ( g 0 , g 0 k -  googik) p ipk}  ~ (3.0.2) 

can  be ob ta ined .  
I n  pa r t i cu la r ,  bea r ing  in mind  the  special  case o f  zero res t -mass  par t ic les  

(m o = 0), i.e., l ight-l ike f o u r - m o m e n t a ,  we have  

a n d  

g~,~(x) p~ p" = 0 

p o  = + { ( g 0 , g o ~  - goog,.).'pk}l'2. 

(3.0.3) 

(3.0.4) 

respee t ive ly .  We shall  m e e t  such  special  cases w h e n  the  ca lcu la t ion  o f  the  zero-  

po in t  k ine t ic  ene rgy  of  n e u t r i n o  gas will be t r e a t e d  in Sect ion 4.6. I t  will be 
shown  t h a t  those  p rob l ems  connec t ed  wi th  the  zero res t -mass  o f  t he  gas 

par t ic les  b y  the  l imi t ing  process  m o --+ 0 can be m a s t e r e d .  A s a  m a t t e r  o f  fac t ,  

w i t h o u t  loss of  genera l i ty  ir can be supposed  in the  fo l lowing t h a t  m o =~- 0. 
I n  o rde r  to  ca r ry  ou t  the  genera l iza t ion  o f  the  sugges ted  h y p e r - g e o m e t r i -  

za t ion  the  mean  p rob lems  to  be solved a te  the  o r i en t a t i on  o f  the  2- t r iads  and  
the  def in i t ions  o f  the  g r o u p  of  in te rna l  t r a n s f o r m a t i o n s ,  respee t ive ly ,  wh ich  

will be discussed af te r  some  p r e pa ra t i on .  

3.1. General methodfor the geometrization ofexternalfields. In the framework of Einstein's 
theory of gravitation the equations of motion of test partieles ate given by the equations of 
the geodetic lines of the suitable Riemannian space: 

d'~ x~' ~ --  0 (3.1.1) 
da 2 2 da da " 

/ _ _  "1 
where ~ ~.A}x ~ = x~(o)and o denote the Chri8toffel's symbols, the equations of the world- 

r t . - -  j 

line of the partictes considered and the Riemannian length of arc, respectively. 
Switching on ah external field of force K ~ the equations of motion are 

d2 x ~ ~ ~ ~ dx, ~r d x  ~r K~" 
da ~ ~- {~./.J da da 

(3.1.2) 
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Keeping Nelli's generalization of the Riemannian geometry in mind, the geometrization of 
such ah external field of force can be carried out - -  without changing the original Riemannian 
metric - -  by the introduction of new parameters of affine connection [29--31]. Namely, it 

can be shown tha t  replacing the Christoffel's symbols f # ] [x.2J y the new parameters  of affine 

connections 

L~~~ :ef [~~.~} +l l~t~~,  (3.1.3) 

having the same transformation laws as those of the Christoffel's symbols, where . I ,  xmean  
. .~�91 . 

the components of an arbi trary tensor being antisymmetric in their first two m&ces, I. e. 

A~~~ = - -  Axt~z, (3.1.1) 

the metrical properties (e. g., geodesics, invariant  differential of gt~v etc.) of the original Rie- 
mannian space do not  change, but  its geometrical structure will be generalized. This genera- 
lization of the geometrical structure - -  in spite of the unchanged metrical s trueture - -  resuhs  
in the considerable fact  tha t  the geodetic lines o f  the space and the autoparallel curves o f  the 
geometry will be different. 

Based on an adequate connection between the introduced ant isymmetr ic  tensor and 
the field of force K ~, the suggested geometrization of the external field of force means tha t  
the test partieles are moving without external f i e l d  along geodetic lines and under the influence 
o f  external f i e ld  o f  force along autoparallel curves, respectively. 

The equations of the autoparatlel curves are 

d ~" x ~ ir dx • dx x 
da z + L :.Ÿ da da 0 (3.1.5) 

which, owing to the definition (3.1.3) of Lt~ ~ .  can be put  in the forro 

d" x'~ { .~2} dx~" dx" A t~ dx ~ dx ~ 
da ~ -f- x da da x . ;  ~. d~ da 

(3.1.6) 

E. g., in the case of an eleetromagnetic field with the field tensor F• to the fa- 
miliar definitidn 

ja = e dx~ 
da (3.1.7) 

of the eurrent eorresponding to a moving point-particle with the eleetric charge e, let us 
suppose that  

A~~ x ~ F~~j~. (3.1.8) 

having the symmetry  proper ty  required by the definition (3.1.4) of Ax~~..This means, how- 
ever, that  

Ir.2 dx~ , dx ;~ dx x dx '~ dx a tx ~ JZ eF t,t rL -- -- ~ KLorentz , (3.1.9) A ~: da d~ F :r da x . da 

being just  the eomponents  of the well-known foree of Lorentz. 
Bearing this method of geometrization of external fields in mind, fairly general homo- 

gencous gas systems under  the influence of external fields can be treated on the bases of the 
framework of geometrization of the phase-space suggested in the following. Indeed, ]et us 
eons ide ra  system of gas particles being in a gravitation and also in some kind of external 
fiel& Then the influence of gravitation can be mastered on the basis of Einstein 's  theory of 
gravitation via the metrieal fundamental  tensor g. v(x) of the snitable Riemannian spaee and 
of the other external fleld in terms of the method revzewed above. I f  also the gravitational 
interaetion of the partieles have to be taken into aeeount, this can in prineiple be done - -  as 
was pointed out by ISRAWL [9] - -  via a self-eonsistent baekground field. 

As a mat te r  of facL when for the sake of simplieity a Riemannian space-time baek- 
gronnd is mentioned below, this is not to be regarded as an essential loss of gencrality, 
because the mentioned generalization can automatieally be included. Howevcr, it must be 
emphasized tha t  in the kinetie theory of gases - -  even in the case of perfeet gas systems - -  
the interaetions of the partieles vŸ elastic binary collisions play an impor tant  part.  Therefore, 
this kind of interaetion has to be treated separately below (Seetion 5.2). 

.4cia Physica Academiae Scientiarum Hungaricae 24, 1968 



350  J . I .  HORV~TH 

3.2. Definition of the internal co-ordinates in Riemannian space-time. Owing  
to  the  r e m a r k s  at  the  end  o f  Section 3 . 1 ,  i t  m a y  be supposed  w i t h o u t  a n y  

essen t ia l  res t r ic t ions  t h a t  t he  h i s t o ry  o f  the  a s semblage  is to  be conce ived  as 
a n e t w o r k  of  t ime-l ike wor ld- l ines  in a R i e m a n n i a n  space- t ime .  

H a v i n g  in m i n d  the  def in i t ion  o f  the  i n h o m o g e n e o u s  d i rec t ion  co-ord i ,  
na t e s  o f  the  t h r e e - d i m e n s i o n a l  local  m o m e n t u m - s p a c e ,  let us i n t r o d u c e  in 

e v e r y  p o i n t  of  the  space - t ime  c o n t i n u u m  the  2- t r iad  f o r m e d  b y  th ree  m u t u a l l y  
o r t h o g o n a l  vec to rs  2~ (i = 1, 2, 3) of  un i r  l eng th  which  are o r t h o g o n a l  to  the  i 
t ime- l ike  f o u r - m o m e n t u m  P~0) of  the  gaseous  par t ic les  in the  local  t e s t  f r ame  
of  r e f e r e n c e  K 0. Owing  to  the  R i e m a n n i a n  space - t ime  metr ic ,  and  the  con-  

d i t ion  o f  o r t h o n o r m a l i t y  a n d  the  def in i t ion  o f  the  i n h o m o g e n e o u s  d i rec t ion  

co -o rd ina t e s ,  i.e. eqs. (2 .4 .2) - - (2 .4 .5)  h a v e  to  be r ep laced  b y  

g~v(x) X~ ~~ = ~�91 (3.2.1) 
I j 

g(o)~v(x) 2~0)P~0) = 0 ,  (3.2.2) 

Oi ~ arc  cos {g~~,(x) 2~p~/mo} (3.2.3) 

~t ~~' cos Ÿ --= g~~(x) ),~p~/m o. (3.2.4) 

Of  course ,  the  new i n h o m o g e n e o u s  d i ree t ion  co -o rd ina te s  also a te  u n a m b i -  
g u o u s l y  d e t e r m i n e d  up  t o  t h e  sign o f  pO 

I n  o rder  to  set t le  t he  o r i en t a t i on  o f  the  2 - t r i ad  a t  a n y  po in t  o f  a t  dif- 
f e ren t  po in t s  o f  the  space - t ime  c o n t i n u u m  it  sectas to  be s imple to  use the  

f r a m e w o r k  of  the  o r t h o n o r m a l  t e t r a d  fo rmal i s t a  o f  the  R i e m a n n i a n  spaces  

d i scussed  in deta i l  b y  SYNCE [32] as especia l ly  f a v o u r a b l e  for  ou r  pu rposes .  
As ah o r t h o n o r m a l  t e t r a d ,  four  un i t  vec to r s  A~~) o r t h o g o n a l  b y  pairs  

are d e n o t e d  where  the  indices  in pa ren theses  likes (~) ind ica te  a label  dis t in-  

gu i sh ing  the  pa r t i cu l a r  axes .  

The covariant components of the same tetrad are 

A(~)~ = g~x A~'~). (3.2.5) 

Three of the axes are, of course, space-like and one is time-like. We shall always so label the 
axes that A(~) is time-like. 

The conditions of orthonormality can be written in the forro: 

A(~ A(p)~ = ~(~~), (3.2.6) 
where 

~(00) = -- ~(~~) = -- ~1(22) = -- ~(aa) = 1, ~(~~) = 0 (~ ~ ti) ; (3.2.7) 

~~(~~) = ~(~~) 

is a diagonal matrix; it satisfies the relation 

~(~~) ~(~v) = 5~ (3.2.8) 

being, in the language of matrix algebra, a square root of unity, 
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One has to emphasize that the labels on the vectors have no tensorial meaning; never- 
theless, by means of the ~i-matrix the framework of the tensor ealculus can be introduce& 
Let the raising and lowering of the labels be defined by 

A(~)~ = ~(~~) A(~ and A (~) = ,;(~~)A(fl)g, (3.2.9) 

then owing to eqs. (3.2.8) we have 

A~=) = ~](~fl) A<~)~ and A(:)g = ~(=~) A (~), (3.2.10) 

respectively. Finally, the relations 

A~~) A (~) = ~~ and A~~) A~ =) = �91 (3.2.11) 

can be obtained. The two tetrads A(~) and ,1(=)~ ' are c]osely connected: their space-like axes 
are the same and their time-like ones are opposed to one another, i. e., they differ in their 
handedness. 

Le t  us g i r e  a t  a space - t ime  p o i n t  two  ~ r t h o n o r m a l  t e t r ads ,  A~=) and  

.1(~) t h a t  can  be c o n n e c t e d  b y  a L o r e n t z  t r a n s f o r m a t i o n  wi th  the  so-cal led 

Lorentz matrix 
LI~I" d~~ A(=)A~~) (3.2.12) 

be ing  the  u n i t  m a t r i x  if  the  two  t e t r a d s  coincide.  Owing  to  eqs.  (3.2.11) and 

(3.2.12) a t  e v e r y  space - t ime  po in t  the  equ iva l en t  L o r e n t z  t r a n s f o r m a t i o n s :  

' - - t ( ~ )  Av a nd  A(~ ~) r(~) A'(~) (3.2.13) 

can  be i n t r o d u c e d ,  be ing  i n d e p e n d e n t  o f  a n y  changes  o f  the  space - t ime  co- 
o rd ina tes .  These  L o r e n t z  t r a n s f o r m a t i o n s  m a y  be i n t e r p r e t e d  as t h e  " i n t e r n a l "  

changes  o f  the  o r i e n t a t i o n  o f  the  t e t r ads .  

Now,  let us suppose  t h a t  in the  local  res t  f r a m e  o f  reference  K ~ of  the  
gaseous  par t ic les ,  d i s t ingu i shed  b y  the  or ig inal  t e t r a d  .'1(*~~, we h a v e  

P~o) d~' A~~, ~~o)*' A<*~ ( i = 1 , 2 , 3 )  (3.2.14) 

t h e n  one can i m m e d i a t e l y  see t h a t  the  ) .+- t r iad as the  space- l ike p a r t  o f  the  

L o r e n t z - c o v a r i a n t  Ar t e t r a d  and  the  ) , - - t r i a d  as the  space- l ike  p a r t  o f  the  
L o r e n t z - c o n t r a v a r i a n t  - -A  *(~)f' t e t r a d  has  to  be def ined.  

A s a  m a t t e r  o f  fac t ,  a n y  changes  o f  the  o r i en t a t i on  o f  the  2- t r iad  genera t -  
ing  the  g roup  of  i n t e rna l  t r a n s f o r m a t i o n s  ~- wh ich  owing  to  the  n e w  def in i t ion  

(3.2.4) o f  the  i n h o m o g e n e o u s  d i rec t ion  co -o rd ina tes  will be d e n o t e d  b y  r - -  
is the  spa t i a l  s u b g r o u p  of  the  i n v a r i a n t  L o r e n t z  t r a n s f o r m a t i o n s  (3.2.12). 

3.3. Orientation of the local frames of reference and the invariant m,mentum 
space. Assoc ia t ed  wi th  each  po in t  of  a cu rve  x ~ = x~(a) in space - t ime  an o r tho -  

n o r m a l  t e t r a d  can  be i n t r o d u c e d  wi th  p a r t i c u l a r  cons iderab le  f ea tu res  f o r m e d  

b y  the  unit tangent 
dx ~ 

t~o) o~, (3.3.1) 
da  

Acta Physica Academiae Scientiarum Hungaricae 24, 1968 



352 j.~. HORV�93 

q as well as by  the f i rs t ,  second and third normals  to the curve denoted  b y  n~l~, 
n~~) and n(3)," respectively.  These or thogonal  by  pairs uni r  vectors  are de te rmined  
by  means of the well-known F r e n e t - - S e r r e t  formulae:  

D D 
- -  t~0 ~ = o 1 n ~ ~ ,  
da &r 

- - n ~ ~ = e 3 n ~ ~  ~2 ~ . - -  n ( 1  ) 

D D 
(3.3.2) 

where the scalars ~~, ~2 and ~3 are the first ,  second and third curx, atures of 
the curve  considered. In the case of t ime-like curves,  i.e., in the case of curves 
with t ime-like unir tangents ,  we have:  

g~,, t~~) t~'0) = 1,  g~v ni~) n~'i) = --  1 ( i =  1,2,3). (3.3.3) 

This so-called normal  tetrad " {t(0), n~i)} to the curves will be used below when the 
or ienta t ion  of the te t rads  at  different  dist inct  spacc-t ime points are compared.  

When  considering, at  any two dist inct  points of the Riemannian  space- 
t ime cont inuum,  a t e t r ad  and 2-triad, their  or ien ta t ion  has to be compared  
by  means  of the f ramework  of the general parallel t r anspor t  along the  world 
lines of the particles. 

The  worId Iines of the  partictes are t ime-like curves with equat ions  
x ~ =  xt~(g). I t  is well-known tha t  a vec tor  V "~ is said to undergo paralIel  
t ransport  along a curve ir its absolute der ivat ive  vanishes 

DV~ - -  dV~ + { ~" } I/~ dxx ~ 2 da (3.3.4) 

In  the following it seems to be more favourable  to use a par t icu lar  kind 
of parallel  t ranspor t  of a r e c t o r  V ~' --  called usual ly  a FERMI--WALKER 
t r anspor t  [32, 33] --  along the world lines of the particles defined by  the 
equa t ion  

DV'~ - -  ~~ V~ (p~ n~~) --  P~I)), (3.3.5) 
d G  m o 

where a t t en t ion  has been paid to the fact  t h a t  in the case of particles world 
lines x " ~  x"(a) the unir  t angen t  is precisely the fou r -momen tum of the 
part icles normalized to un i ty :  

dx~ 
tS~ - -  - -  p~/m.  (3.3.6) 

da 

As impor t an t  features  of the FERMI--WALKER t ranspor t  are t h a t  
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(1) the uni t  t angent  t~0) itself automat ica l ly  undergoes FERMI--WALKER 
t ransport ,  as can be checked on the basis of eqs. (3.3.5) and (3.3.2) immediate ly;  

(2) ir resembles parallel t ranspor t  in the conservation of magn i tude  and 
scalar product ;  

(3) if the FERMI--WALKER transpor t  is applied to the normals ~]~Ÿ 
�9 J 

which ate orthogonal  to the t angent  t~0) at  some point of the curve cons~dered 
it remains, of course, orthogonal to t~0 ) and to each other. This means, however, ,  

it t ha t  the normal  t e t rad  {t~0), n(0} under  FERMI--WALKER t ranspor t  remains 
a normal  t e t rad  along any curves. 

A s a  ma t t e r  of fact,  the comparison of the orientations of two ortho- 
normal  te t rads  at  two distinct points {x"} and {y"} of the Riemannian  space- 
t ime can be mastered in the following way; 

Let  the two considered points be connected by a world-line with a unir 
tangent  the direction of which, e.g. at  the point {x"}, coincides with t h a t  of 
the t~0) axis of the te t rad  considered. Then,  let the or thonormal  t e t r ad  with its 
origin, e.g. at  {x~'}, be subjected to FERMI--WALKER transpor t  unt i l  its origin 
coincides with {y~'}. In this way a vir tual  te t rad  is unambiguously  oriented 
which can be used a s a  basis to determine the orientation of the seeond te t rad  
with its origin originally at  {y"~, by  means of the method  for the comparison 
of te trads at  the same space-time point  in terms of the internal  Lorentz trans- 
formations.  

The comparison of the ~-triads of different space-time points, having 
their  definition in mind, based on tha t  of the te t rads  is s t raightforward and 
need not  be gone into.  However,  then  the inhomogeneous direction co-ordi- 
nates {~i} of the local momentum-spaces  originally defined at different space- 
t ime points can be "synchronized"  and the relativistic phase-space, also in 
Riemannian space-times, can be defined a s a  direct product  of the configur- 
ation spaces and momentum spaces, respectively. 

Finally,  we have to mention tha t  the definition of the inhomogeneous 
direction co-ordinates -- the framework of which, having the invar iant  cha- 
racterization of the internal  degrees of freedom of physical fields in mind,  was 
suggested several years ago [16] -- seems to be very close to t h a t  of the spatial 
set of FERMI co-ordinates [32] the advantages of which from other points of 
view were emphasized by SY•GE [32]. 

3.4. Geometrization of the relativistic phase-space of dynamically aniso- 
tropic gas systems. Bearing the framework of Section 2.5. in mind,  if some dy- 
namical anisotropy of the considered gas system exists characterised by the 
metrical fundamenta l  tensor g,~(x, p) of the suitable line-element space, the 
conditions of or thonormal i ty  (3.2.1)--(3.2.2) and the definition of the inhomo- 
geneous direction co-ordinates (3.2.4) have to be replaced by  the fairly general 
equations 

g~v(x,p) ~~ '~~ = ~�91 (3.4.1) 
i k 
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a n d  

�91 ~,t ggv(x,  p )  2~p~/mo 

( in t h e  r e s t  s y s t e m  K o) (3.4.2)  

(i ,  k----1,2,3) ,  (3.4.3) 

r e s p e c t i v e l y ;  o f  course ,  w i t h  t h e  n o r m a l i z a t i o n  o f  t h e  f o u r - m o m e n t a ,  i .e . ,  t h e  

e q u a t i o n  o f  t he  m a s s - s h e l l :  

g~v(x ' p )  p~ p V =  mo (3.4.4)  

c o r r e s p o n d i n g  to  t h e  g e n e r a l  d e f i n i t i o n  (2.3.5) o f  t h e  u n i t  v e c t o r  

l~ .~-~~--~ v~ /F  = p ~ / m  o (3.4.5) 

w h i c h  h a v e  t h e  s a m e  d i r e c t i o n  as t h a t  o f  t h e  l i n e - e l e m e n t  (x ,  v). T h e  t i l d e s  

o v e r  t h e  s y m b o l s  2 ~', p "  a n d  .~i - -  i n t r o d u c e d  p r e v i o u s l y  in t h e  a n a l o g o u s  case  

a t  t h e  e n d  o f  Sec t ion  2.5 - -  fo r  t h e  s ake  o f  a s i m p l i f i e d  n o t a t i o n  he re  a n d  in 

t h e  fo l l owing  m a y  be  o m i t t e d  w i t h o u t  a n y  r i sk  o f  c o n f u s i o n  i f  we ag ree  t h a t  

t h e  m e t r i c a l  p r o p e r t i e s  o f  t h e  v e c t o r s  a l w a y s  h a v e  to  be  u n d e r s t o o d  in t e r m s  

o f  t h e  p a r t i c u l a r  m e t r i c a l  f u n d a m e n t a l  t e n s o r  a c t u a l l y  c o n s i d e r e d .  

T a k i n g  t h e  f r a m e w o r k  o f  t h e  l i n e - e l e m e n t  g e o m e t r y ,  i .e .  t h e  n e w  def i -  

n i t i o n  o f  t h e  m e t r i c a l  f u n d a m e n t a l  t e n s o r  i n to  a c c o u n t ,  t h e  o r i e n t a t i o n  o f  t h e  

~ - t r i a d  a n d  t h e  g e n e r a l  d e f i n i t i o n  o f  t h e  i n v a r i a n t  m o m e n t u m  s p a c e  can  be  

f o r m u l a t e d ,  e s s e n t i a l l y  in  t h e  s a m e  w a y  as has  b e e n  d i s cus sed  in  t h e  p r e v i o u s  

S e c t i o n  3.3. 

However, let us emphasize that in the case of a special but, from the point of view of 
applications in physics, very large class of general line-element spaces, the orientation of the 
a-triads can be mastered in a more straightforward way: 

Let us suppose that  in the general Iine-element space considered a field of directions 
2 l` = va(x) exists satisfying the differential equatians 

where 

a n d  

with 

dl l" 4 ~ ~ ir 0, - - -  = 

dxe , .  

dl ~ g def O 
dx~ = o~l - -  OxO r ( x ,  v (x ) )  

X . ' t "  ; g ' Z  ~ r  " , " ' � 9 1  

Aug,~. d~f 1 Ogx~ 
2 Op~ 

(3.4.6) 

(3.4.7) 

(3.4.8) 

(3.4.9) 

the latter being the so-called torsion tensor of  the line.element space. Finally, the abbreviation 

F ~ a~ t -  ), v (3.4.10) , . r ~ l ' v . r P  

is introduced; i. e., an asterisk instead of a covariant or contravariant index means contraction 
with the unir rector q 
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The condition of integrability of the differential equations (3.4.6) is 

Oe8~lg __ 0~O~l# del __  ~ # = 0,  (3.4.11) 
* . ~ 7  

where 

x- 07 x'[e,7] ~- 2 F ~  ~t --  2 ~ .[ (3.4.12) 
, . [~  71"~,~ ~ O r ] .x  

is the tensor of principal curvature of the line-element spaee. Here the following abbreviations 
have been used: Let T~v be an arbitrary tensor, then 

and T~v,~ = O~ Tg v (3.4.13) 

del 1 T[g,~,u ] - - -  ~ -  {T#~ v -- T~~} (3.4.14) 

denotes the Sehouten's eommutator. 
This means, however, that  our line-element space is "quasi-flat"; i. e., strictly speak- 

ing, in our space of line-elements absolute paraUelism of the line-elements exists. However, one 
has to be aware that  the absolute parallelism of the line-elements is an essentially different 
concept from the absolute parallelism of vectors, the latter being a characteristic property 
of Euclidean point-spaces. 

The absolute parallelism of the line-eiements only means that for any given direetion 
a t  an arbitrary space-time point a parallel direction in the sense of Levi-Civita can unambi- 
guously be determined at all other points of the space-time continuum. But just this is needed 
if the orientation of the 2-triads is to be earried out. 

As matters stand, two methods are at our disposal for the orientation of the basic 
2-triads of the local momentum spaee. From the intuitive point of view of applications the 
second method, based on the concept of the absolute parallelism of the line-elements, has 
some advantage being a direct generalisation of the familiar framework accustomed to in the 
case of pseudo-Euclidean spaces, discussed in the previous paragraph in detail. 

w 4. General definition of  the relativistic p h a s e - s p a e e  v o l u m e  

P r e v i o u s  d e f i n i t i o n s  of  t h e  r e l a t i v i s t i e  p h a s e - s p a c e  v o l u m e  h a v e  u s u a l l y  

been  p r o p o s e d  e i t h e r  in t h e  l a n g u a g e  o f  spee i a l  e o - o r d i n a t e  s y s t e m s  o f  b a s e d  

on i n v a r i a n e e  in  r e s p e e t  to  a g r o u p  of  t r a n s f o r m a t i o n s  p r o p e r l y  i n t r o d u e e d .  

I r  t h e  s u g g e s t e d  f r a m e w o r k  of  t h e  gene ra l  l i n e - e l e m e n t  g e o m e t r y  e o u l d  be  

a e e e p t e d ,  i t  ha s  to  be  used ,  o f  eourse ,  t h e  e o n e e p t  o f  t h e  h y p e r - s u r f a e e s  of  t h e  

l i n e - e l e m e n t  spaees  is m o r e  e o m p l i e a t e d  t h a n  t h a t  o f  t h e  u s u a l  p o i n t - g e o -  

m e t r i e s .  I n  f a e t ,  t h e  e o m p l i e a t i o n s  ar i se  f r o m  t h e  d e p e n d e n e e  of  t h e  geo- 

m e t r i c a l  q u a n t i t i e s  a n d  r e l a t i o n s  on  t h e  d i r e e t i o n s  as  wel l .  S t r i e t l y  s p e a k i n g ,  

a se t  of  so - ea l l ed  o s e u l a t e  R i e m a n n i a n  spaees  b e l o n g s  to  a l l  p o i n t s  {x" ) o f  t h e  

e o - o r d i n a t e -  ( e o n f i g u r a t i o n - )  spaee  a n d  t h e  l i n e - e ] e m e n t  s p a e e  can  be  r e g a r d e d  

as t h e  e n s e m b l e  o f  o s e u l a t e  R i e m a n n i a n  spaees  (see S e c t i o n  5.5).  

U n f o r t u n a t e l y  t h e  e o n c e p t s  o f  t he  h y p e r - s u r f a e e  in l i n e - e l e m e n t  g e o m e t r y  

h a v e  p r e v i o u s l y  b e e n  b a s e d  on s eve ra l  d e f i n i t i o n s  n o n e  o f  w h i c h  m e e t s  t h e  

a s s e r t i o n  o f  t h e  n a t u r a l  e l a im  of  a r e l a t i v i s t i c  gas  t h e o r y ;  i .e .  t h e y  c a n n o t  be  

e o n n e e t e d  t o  t h e  n a t u r a l  g e n e r a l i z a t i o n  o f  t h e  c o n e e p t  of  p h a s e - s p a e e  v o l u m e  

w h i e h  is so f a m i l i a r  in t h e  n o n - r e l a t i v i s t i e  t h e o r y .  
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One of  these definit ions is carried out  as follows: Let  the ensemble of 
l ine-elements (x ~, v ~} be called a hyper-surface of the  l ine-element space S 
the  posi t ion co-ordinates (x ~ } of which are lying on a three-dimensional  hyper -  
surface of four-dimensional  co-ordinate  space, the directions of which are e i ther  
perpendicu lar  of tangent ia l  to the hyper-surface considered. In terms of ano the r  
defini t ion the position eo-ordinates ate lying again on the above ment ioned  
hyper-surface  and the angles of inclination of the directions de te rmined  b y  
the  homogeneous direetion eo-ordinates {v ~'} ate cons tant  in respect  of  the 
normal  un i t  r e c to r  of the surface. 

Nei ther  of these definit ions is adequa te  for  our  purposes,  namely ,  the  
hyper-surfaces  in t roduced in this way are (3 d- 2)- and (3 q- 0)-dimensional,  
respect ively.  Since we are t ry ing  to in t roduce a hyper-surface with (3 + 3)- 
dimension,  this definit ion of  the hyper-surface would recall the famil iar  
def ini t ion of the nonrelat ivis t ic  theory  at a given ins tan t  of t ime, i.e. on the 
hyper-surface  x 0 = const,  of  the co-ordinate space. 

As a ma t t e r  of fact ,  we have to suggest a new definit ion of the  hyper-  
surfaces in the  f ramework of  general l ine-element geometry :  

As hyper-sttrface of  the geometrized relativistic phase-space the ensemble 
o f  the line-elements {x" = x~(u') ,p ~} or { x " =  x•(u'), �91 (i = 1 ,2 ,  3) will be 
denoted where {u i } and u i = const,  mean respectively the parameters and the 
parametric lines of the three-dimensional hyper-surface of the co-ordinates of the 
line-elements {x~, p"}. 

4.1. The invariant volume-element of  the eo-ordinate-space. In order  to 
define the  invar iant  volume-element  of the configurat ion-space we have  to  
keep in mind t ha t  of the famil iar  scalar densi ty of the Riemannian  space-t ime. 
To p repare  the analyt ieal  definit ion of the suggested general definit ion of  the 
relat ivist ic  phase-spaee volume-element  let the in t roduct ion  of the well-known 
Riemannian  invar iant  volume-e lement  be diseussed in some detail. 

Le t  the set of  quant i t ies  

q- 1, 

- -  1 ,  

0, 

ir /ct,fl,y,5} means an even permutation 
"of the numbers {0,1,2,3}, 

i f  {~,fl,y,5} means an odd permutation 
@the numbers {0,1,2,3}, 

i f  at least two of  the indices ~, ti, ~,, �91 
agree 

(4.1.1) 

be in t roduced  which are per  defini t ionem ant i - symmetr ic  in all their  Ÿ 
as weU as the pseudo-tensor  

~~~va ~'~ tz:~~~#y~ (gd~~ det  Igual) (4.1.2) 
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with the law of t ransformat ion  

Ox ~" Ox ~" Ox~" Ox £ rj,~t3v ~ (4.1.3) 

be defined. Then the normal  r ec to r  to the hyper-surface x ~' - -  x~'(u i) of the 

configuration-space in the forro: 

8x a Ox ~' ~x ~ 
d~~ (4.1.4) 

~'~=-~/@v~ 0u 1 0u 2 0u 3 

can be obtained,  where Ox~/Ou i denotes the tangents  to the parametr ic  lines 
i u = -cons t .  of the surface considered. 

The length of the normal  r e c t o r  v~ one calculates in a s t ra ightforward 

way:  
v~ v ~ = g* (4.1.5) 

with 
O x  ~ OX ~ 

g*a dr g,~ Ou i Ou k and g* ~~' det  igi*k] �9 (4.1.6) 

This means, however,  tha t  the unit  normal  r ec to r  to the hyper-surface 

{x~ = x~ (ul  u2 u3), p~} 
is given by  

1 
/ t  a - -  ~ ' .  

@t 
(4.1.7) 

Let us suppose in the following tha t  the vectors  v~ and no are time-like vectors,  
i.e. g* > 0; then the set of tangents  to the hyper-surface and the hyper-surface 

itself will be called space-like. 
Keeping this familiar definition in mind, the oriented hyper-sur face  

elements can be introduced in the case of the relativistic configurat ion-space 

also by means of the definition 

with 
d f  e d~_ f Ve du a du 2 du 3 ~_ no d f  

d l  do~ ~ / ~  du I du 3 du 3 

( 4 . 1 . 8 )  

(4.1.9) 

being the invar iant  measure of the hyper-surface element.  
Considering the curve x ~ =  x~'(s) of the configurat ion-space s again 

being the pa ramete r  of the length of arc of the line-element geometry ,  let us 

suppose tha t  the uni t  tangent o f  the curve coincides wi th  the un i t  normal  rector 

o f  the hyper-sur face  in the crossing po in t  o f  the curve and the hyper-sur face  

d xfi  
- -  n -o or dx  ~  nOds , (4.1.10) 

ds 
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t hen  the analytical  definition of the invariant volume-element of  the configuration. 
space can in general be given by 

dV e~~ 1/~g dx~ - t/~gg n"-nedfds 1/---g d f  ds. (4.1.11) 

In the particular impor tan t  special case of parametr izat ion 

x ~ x i ~  u i ( i=1,2,3)  (4.1.12) 

the formally  well-known formula:  

d V  = I/~~g dx~ 3 dof r  d4x (4.1.13) 

can be obtained. 
4.2. The invariant volume-element of  the local momentum-space. Owing to 

the definit ion (3.4.3) of the inhomogeneous direction co-ordinates {~i}, t hey  
are invariants  of  the group of the t ransformations of the co-ordinates. How- 
ever, ir ins tead of the line-element {x ~, pf'} the line-element {x", p" + Dp"}  
is eonsidered, the irdaomogeneous direetion eo-ordinates are, of eourse, ehanged 
and thei r  inf/nitesimal ehanges of first order being linear in the eovariant  
different~aI of the veetors p"  

Dp" = (de �9 q- -Pl, x p~ d x~) (/5; -4- p"  A ,) ~~' ~,(d) ~ to,, (4.2.1) 

can be calculated based on eqs. (3.4.3) as follows: 

d~i  = ggv(X ~~, a ~ + Dp ~) 2" (p' + Dp~)/mo --g~,~(~t~,p ~) 2i " p~/m o 
i (4.2.2) ~.[g~~2"to~-~~&'~'~~ 2~}/mo= 1 �9 $P" m0 {to~ + 2 Ag,~ :~=} ~,2 

where the abbreviations int roduced in eqs. (3.4.8)--(3.4.10) have been used. 
Owing to the obvious invariance of d~i against  any  co-ordinate trans- 

formation,  the invariant  volume-element of the local momentum-space at  ah 
arbi t rary  but  fixed point {x") of the configuration-space can, of course, be 
defined as follows: 

d P  ~~~ m3od�91 d~ 2 d$ a del mo 3 d a � 91  (4.2.3) 

where t h e  factor  m£ has to be introduced in order to mainta in  the correct 
physical  dimensions of the volume-element of the momentum-space.  Al though 
d P  is ah invarimat of the group ~x, it  will generally change if  the internal  trans- 
formations 

~i" = �91191 (4.2.4) 
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of the group �91 are considered. Bearing in mind t h a t  the t rans format ions  ~~ 
ate homogeneous l inear or thogonal  t ransformat ions  --  i.e., they  ate iso- 
morphic to the three-dimensional  subgroup of the Lorentz  t ransformat ions  
(3.2.13) - -  of the type  

�91 D~�91 (D ~ detlDfl  = • 1), (4.2.5) 
we have 

d3~ ' ~ d�91237 d�91 d�91225 --  0 (�91 �91 �91225 d�91 1 d�91 2 d�91 3 = sgm {D} d3�91 (4.2.6) 
(�91 �91 23) 

and, a s a  m a t t e r  of  fact ,  d P  will be a pseudo-scalar  under  the group a~e of the 
in ternal  t ransformat ions .  Indeed,  the  invar ian t  vo lume-e lement  of the  local 
momentum-space  depends on the or ienta t ion  of Che basic ~-triad. 

4.3. The general definition of  the pseudo-scalar volume-element of  the 
relativistic phase-space. The under ly ing  general group ~ in the background  of 
the concept  of the relativist ic phase-space --  corresponding to the relativist ic 
generalization of the group of the eontac t  t ransformat ions  of classical dynamics  
--  is the direct  p roduc t  of the groups of the external  and in ternal  t ransforma-  
tions, i.e., 

5~=~~• (4.3.1) 

This means,  however ,  t ha t  as the relat ivist ic phase-space vo lume-e lement  in 
terms of the paramet r iza t ion  (4.1.12) the expression 

d ~  do~ m3o ~/_~ dx o dx ~ dx 2 dx 3 d~ 1 d�91 d�91 = m3o ~~gg d4xd3�91 (4.3.2) 

can be in t roduced,  being a pseudo-scalar  of the group 4 ,  The scalar fac tor  mo 3 
is again considered to keep the correct  physical  dimensions of the phase-space 
volume-element .  

In fact ,  the  relat ivist ic phase-space -r m a y  be oriented;  
let  ir be denoted  as a positive one if the under ly ing  ~-triad is r ight-handed.  

At  a given ins tan t  of  t ime,  i.e., on the hyper-p lane  x 0 = const,  of  the 
confŸ the phase-space volume-element  is reduced to the form 

dO ~ eef m3o }/~gg dx 1 dx 2 dx 3 d~~ d~ 2 d~ 3 = m 3 } / 7  d3xd3�91 (4.3.3) 

which is the direct  generalizat ion of the well-known expression of non-rela t iv-  
istic gas theory .  For  the sake of s implici ty in the following d~0 will be called 
the momentary expression of  the phase-space volume-element dQ. 

Finally, owing to the general definition (3.4.3) of the inhomogeneous directi.3n co- 
ordinates {�91 let the explicit forros of the relativistie phase-space volume-element be obtained 
in two important cases, in speeial frames of reference defined in different underlying raetrical 
spaee-times: 
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(1) Considering a pseudo-Euclidean space-time continuum with the metrical funda- 
mental tensor (2.0.1), let us first suppose that  the axes of the A+-triad due to its orientation 
in the rest frame of reference K ~  given by (2.4.6). Then, based on the definitions (4.2.2) 
of the sealar differentials d~ i of the inhomogeneous direction co-ordinates, one obtains 

d�91 i = - -  dpi/mo = dp i /m  o . (4.3.4) 

This means, however, that  the relativistic phase-space volume-clement is given in this case by 

d~2 = dx  o dx '  dx  2 dx 3 dpl  dp2 dp3 d~f__ d4 x d3pr (4.3.5) 

and its momentary expression, i. e. its expression on the x ~ = const, hyper-plane can be put  
in the form 

d~2 o = dx  ~ d x  ~ dx  a dp~ dp~ dpa ~-- dax d3pcov, (4.3.6) 

the very familiar expression of the non-relativistic phase-space volume-element. 
(2) Now, let us assume that  the background space-time continuum is Riemannian. 

In order to obtain the phase-space volume-element and its momentary expression one has 
to use the framework of the theory of external forros, [6, 15]. Namely, in terms of the method 
of the external forms the phase-space volume-element can be written as follows: 

d~2 = m~ ] / - -~  dx  ~ A dx  ~ A dx ~" A dx  a A d~j A d~ 2 A ds~~ (4.3.7) 

with the temporarily more favourable abbreviation of the commutators,  e. g., A and B: 

A A B  dr [A ,  B ] .  (4.3.8) 

With this frame of refcrence and orientation of the Ÿ in mind we havc 

~~i=o~i ' ( ~ i {  ~-} ) =.  m~o i . ~ pk dx~" �9 

Nevertheless, owing to identity 

(4.3.9) 

dx ~' A dx  ~ ~-~ O,  (4.3.10) 

finally, the expressions 

dl2 = 1 / - ~  d4x dSpcov (4.3.11) 

and 

di2 o --  ~ ' - ~  d3x d3pcov , (4.3.12) 
can be obtained. 

Further  important  particular cases and a re-definition of df)r will be discussed in in 
detail below, especially in Section 4.5. 

4 .4 .  G e n e r a l i z a t i o n  o f  C h e r n i k o v ' s  m o m e n t a r y  p h a s e - s p a c e  v o l u m e - e l e m e n t .  

As  w a s  m e n t i o n e d  in  S e c t i o n  2.1 - -  in  o r d e r  t o  t a k e  i n t o  a c c o u n t  t h e  r e s t r i c t e d  

n u m b e r  o f  d i m e n s i o n s  o f  t h e  l o c a l  f o u r - m o m e n t u m - s p a c e  - -  CHERNIKOV h a d  

t o  t a k e  a n  a r t i f i c i a l  g r o u p  o f  t r a n s f o r m a t i o n s  as an  u n d e r l y i n g  g e o m e t r i c a l  

b a c k g r o u n d  o f  b is  r e l a t i v i s t i c  t h e o r y  o f  ga se s .  T h e  d e E n i t i 0 n  o f  b i s  t r a n s -  

f o r m a t i o n  g r o u p  h a s  b e e n  s u g g e s t e d  b y  m e a n s  o f  t h e  f o r m u l a e :  

x . "  = x " ( x ' 9  , p k ,  __ 
O~z k, 

6x ~ 
- - - - p = ( L 1  + 0 ; /~ ,#~  ~ = 0, 1, 2, 3; k '  = 1, 2, 3 ) ( 4 . 4 . 1 )  

k e e p i n g  t h e  e x p l i c i t  e x p r e s s i o n  (3 .0 .2)  o f  t h e  t i m e  c o m p o n e n t  o f  t h e  m o m e n t u m  
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in mind. I t  can easily be proved tha t  the Jacobian of this t ransformat ion  can 
be factorized:  

x , x  , x  , p  , p  , p  ) = A  ::~ 0(x  o', 1" 2, 3, v 2, 3,, O(pV,p2",p~') 

o (xo, x~, x~, x~, e ~, v ~, v ~) o (el ,  e~, ea) 
(4.4.2) 

Owing to eqs. (4.4.1), (3.4.9), (3.4.10) and the iden t i ty  

Opk, _ Opk, + Ox1,, •x o ,  
Op r Ox" Ox O ~pr 

based on eq. (3.0.2) we have 

OpO __ p + A**r 

OP r Po + A**o 
; (4.4.3) 

consequent ly ,  for the Jacobian  the final  expression 

t _ _  

**0 A2 (4.4.4) 9 - -  Po A'  

Po + A**0 
can be obtained.  

In fact ,  the  analyt ie  expression of the relativistic phase-space volume- 
element  in terms of the external  forms --  analogously to eq. (4.3.7) --  in the 

form 

dM do~ - - g  d x o A d x  ~ Adx2 Adx3 A D p l  A D p 2 A D p  a (4.4.5) 
Po -4- A**o 

has to be in t roduce& Owing to the definit ion (4.2.1) of the covar iant  differen- 
tials Dp =, this expression of dM, owing to the iden t i ty  (4.3.10), m ay  also be 

pu t  in the form 

dM . . . . . . . .  ~ g 
Po + A**o 

d4x d3pco~tr (d3Pco,tr de~ dpl dp2 dp3) . (4.4.6) 

The adequate  expression of the m o m e n t a r y  phase-space volume-e lement  is 

given by  

dM o --  - -  g d3x d3pcontr . (4.4.7) 
Po + A**o 

In the  case of gaseous systems wi thout  intrinsic dynamic  anisot ropy 
--  i.e. if  in terms of  the suggested geometr ized model of the relat ivist ic phase- 
space the under ly ing  background l ine-element space is reduced to a Riemannian  
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one --  the  metrical  fundamen ta l  tensor  of  the field does not  depend on the  
homogeneous  direction co-ordinates.  Consequently,  the torsion tensor  def ined 
by  eq. (3.4.9) vanishes. Of course, also the con t rac ted  torsion tensor,  A** F, = 
= 0; i.e. eqs. (4.4.6) and (4.4.7) are reduced to 

and 

d '~R- -  g d%d3p~o,t~ (4.4.8) 
Po 

d~Ro- -  g d3xd3pr r, (4.4.9) 
Po 

respect ively,  being precisely the formulae first  obta ined in this special case b y  
CHERNIKOV [6]. One sees immedia te ly  also t h a t  these volume-elements  are 
pseudo-scalars depending on the sign of pO. By means of the suggested gene- 
ral izat ion in eqs. (4.4.6) and  (4.4.7), respectively,  the  sign of Po --  in this 
connect ion -- has to be replaced by  tha t  of p0 + A** 0. 

We shall see in Section 4.6. t ha t  the defini t ion (4.3.3) of the m o m e n t a r y  
phase-space volume-element  in the language of inhomogeneous direct ion co- 
ordinates  is much more favourable  for pract ical  calculations than  the present  
formalism based on the group of the Chernikov's  t ransformat ions  because 
then  warning and seemingly insurmountable  difficulties of  a pure technical  
charac te r  appear  when carrying out  some im p o r t an t  applications. 

4.5. LiouviIle's Relativist ic Theorem. In  order  to explain the physica] 
meaning  of  dQ 0, i.e. to in te rpre t  the m o m e n t a r y  expression of  the phase-space 
volume-e lement  in more famil iar  language and to invest igate  its invar ian t  
propert ies  it  seems to be worth-while to improve the above, pure geometr ical  
defini t ion of the relativist ic phase-space volume-e]ement  in terms of phase- 
space formalism. Such an approach was most  recent ly  suggested b y  LIND- 
QUIST [36] - -  having SASAKI'S tangent -bundle  geomet ry  in mind [37] --  
published shor t ly  af ter  the appearance  of [35] and we shall see tha t  bo th  de- 
finit ions of d/20 are equivalent .  

Let  us s tar t  with the defini t ion (4.1.4) of the uni t  normal  r e c t o r  na to 
the ~ hyper-surface x ~ =  x~'(u j) and denote  the tangents  to the pa ramet r i c  
lines u j = const,  of the surface eonsidered b y  djx ~ ~-~ dx~/duJ (j  = 1, 2, 3). We 
ma y  emphasize again t ha t  n~ is now an a rb i t r a ry  time-like uni t  vector ,  being 
or thogonal  to the space-like hyper-surface spanned by  the vectors  djx ~, i.e. 

l /Z g ~~~~~, dlx ~ d2 x~ d3x;' = d~(~) nz , (4.5.1) 
where 

d22o ~-~~ r ~~~~~ n i dlx  �9 d2x ~ d4x~' (4.5.2) 

means a cons tant  of p ropor t iona l i ty  being an invar ian t  volume-e lement  ortho-  
gonal to  n~. Keeping our  eqs. (4.1.5)--(4.1.9) in mind,  its geometr ical  meaning  
can immedia te ly  be unders tood  as follows. 
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To begin,  let us r e m e m b e r  t h a t  at  this  point  we have  supposed in 
Section 4.1. t h a t  the  uni t  t angen t  of  the  world-line x i. ~ xa(~) of  the gaseous 
part icles coincides wi th  the unir  no rm a l  vec tor  n~ in the crossing point  of  the 
curve and the hyper -sur face  and  the i nva r i an t  vo lume-e lement  of  the  configur- 
a t ion-space has been  defined in this special  case. Now, let us generalize our  
me thod  to a cer ta in  ex ten t  b y  suppos ing  t h a t  on the one hand  the  uni t  normals  
n~ of the hyper - sur faces  are defined along a world-line b y  some kind  of paral lel  
t r anspor t s  - -  e.g. b y  FERMI--WALKER t r a n s p o r t  - -  and  on the  other  hand  
t h a t  the solid angle be tween the t angen t s  of the world-line 

d ~  2 
- -  pa/m o, dx  a = mo~ p~ dr  (4.5.3) 

dv 

and n~ is cons tan t ,  where d v =  ds means  the  proper  t ime-di f ference  which, in 
our sys tem of units ,  is equal  to ds, i.e. to the inf ini tes imal  change of length of 
arc along the world-line. This means ,  however ,  t h a t  

d V  (~ % mo s ( p Z n z ) d ~  (~ dr  ~~. mff~ 1/~ g ez,~~~, pa dlX~, d2x~ dax ~, ~ 

--~~ mff 1 (Px n~) d~(~) d~ 
(4.5.4) 

is exac t ly  the  four-d imensional  i nva r i an t  vo lume-e lement  of  the conf igurat ion-  

space.  
In  the  pa r t i cu l a r  case when x i ~-- x~(v) is the o r thogona l  t r a j e c t o r y  of 

our  a hyper - sur face  - -  i.e. Pa and n A are paral lel  - -  mo-X(pt, n a) ---- 1 and  we 
reproduce  our  previous  result :  dV('~)= d~('~)dv = d V .  Indeed ,  if  in the rest  
f r ame  of re fe ren te  K ~ of the gaseous sys tem,  as in the case of  eq. (4.1.12), the  

pa rame t r i za t i on  
x ~  r,  x j - ~  uJ ( j = 1 , 2 , 3 )  (4,5.5) 

were to be in t roduced ,  

and 

d l X ~ =  {0, dxl, 0,0}, d 2 x ~ =  {O,O, dx2, O} ,daxY= {0,0,0, dx a} (4.5.6) 

dV(") = d22 dr  = V - ~  d4x (4.5.7) 

can be obta ined ,  in full ag reement  wi th  eq. (4.1.13). 
As m a t t e r s  s tand ,  it seems to be worth-while  to define the  inva r i an t  

quan t i t y  
d V  (~) 

dV(o ~) ae~ _ _  = mo 1 (pz  n a) d~ ( , ) ,  (4.5.8) 
d~ 

which m a y  be i n t e rp re t ed  as the invar ian t  three-dimensional  voIume-element  

pro  uni t  o f  the length o f  arc along the world-l ine x a = xa(~). Of  course, in the  
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par t i cu l a r  case discussed above ,  when p~ is paral le l  to n a, the  expression of  

dV~‰ > is reduced to d~/~(~0 ~~ - dVo ~ d3x. 
I t  would be a mere  repet i t ion of our previous  discussions if we were to 

follow the  famil iar  w a y  of th inking  to cons t ruc t  the phase-space  vo lume-  
e lement  in general  t e rms .  Therefore,  w i thou t  any  considerable loss of  gene- 
ra l i ty ,  we m a y  suppose t h a t  the  space- t ime b a c k g r o u n d  of our t heo ry  is a 
s t a t i o n a r y  four-dimensional  R iemann ian  manifo ld  wi th  the met r ica l  funda-  
men t a l  tensor :  

800 = goo(r), g n  = - -  811(r), 822 = - -  g22(r) , 838 = - -  833(r,z~); ggv = 0 (/~ =~= v), (4.5.9) 

where  {r, z~, ~} are polar  co-ordinates  in the  th ree-d imens iona l  space-l ike sub- 
space. In  faet ,  8 ~'~ ----: g~-~ [no s u m m a t i o n  over  #] and  due to the normal i za t ion  

eondi t ions  
g~v n~ n~ = 1 and 8~~P~Pv = m~o, (4.5.10) 

for the  unir  no rma l  vec to r  and  for the f o u r - m o m e n t u m  in the rest  fraIne of 
reference K ~ the r a the r  explici t  expressions 

n ~ =  {1/t/g~~0,0,0,0} and p~ = {mo/li ~ ,  0,0,0} (4.5.11) 

can be obta ined.  
H a v i n g  the  s t a t i o n a r y  R iemann ian  mani fo ld  wi th  the met r ica l  funda-  

men t a l  tensor  (4.5.9) in mind ,  in order to in t roduce  the  inhomogeneous  direct ion 
co-ordinates  one has to refer  back  to the i r  original definit ion 

~~ pg 
( j  = 1, 2, 3). (4.5.12) 

We m a y  suppose t h a t  2 ~ ~  djx ~, then,  if  we use the par t i cu la r ly  defined 
J 

2+- t r i ad  (2.4.6) in K ~ we get 

~j z (m0l/~jj)--lpj ( j  = 1,2,3). (4.5.13) 

I t  mus t  be cons tan t ly  borne  in mind t h a t  all ~j-s ate invar ian ts  of the co" 
ord ina te  t r ans fo rmat ions ,  mean ing  their  values  ate  unchanged  in o ther  f rames  

of referenees,  too. 
Owing to our  previous  general  result  (4.3.6), the  vo lume-e lement  of the 

m o m e n t u m - s p a c e  can be wr i t t en  in the forro 

d P  ~ m~ d 3 ~ = m~ �91 sin 6) d~ dO dq~ , (4.5.t4) 
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where {~, O, ~}  are polar co-ordinates in the momentum-space with 

�91 do~_ �91 q_ ~2 _}_ �91 : mo 2 {gllp2 ~_ g~p2,_ q_ g33p3}. (4.5.15) 

The triad- and tetrad-axes are usually defined with their  contravar iant  
components.  This is why  in the definition of the inhomogeneous direction co- 
ordinates and on the occasion of the normalization,  the covariant  components 
of the four-momenta  were introduced.  A s a  consequence, it  seems to be natura l  
to represent the energy of the gaseous particle in terms of the covariant  t ime- 
like component  of the four-momentum:  

i.e. 
Po --~ ~, (4.5.16) 

g~176 - -  {gllp2 A- g22p~ q_ g33p2} ~ gOOp~ _ p2 _- g~0 ~2 _ m2o �91 = m02 (4.5.17) 

with 
p ~-  {gUp2 + g22p22 § g33p2}1/2. 

Considering tha t  

~2 }1/2 mo 2 gOO I e2 t ] I-1/2 �91 : m o l p  = [__gOO 1 ; d�91 - -  = - - 1 .  ; 
[ m~o [ m~ 

do) ~- sin OdO dqb, 

(4.5.18) 

(4.5.19) 

for the 
expression 

d P  : mao ~2 d�91 do) = mog~ gOO _ 1 ede do) ~ g~176 ep de do) (4.5.20) 

can be obtained. 
Finally,  from eq. (4.3.2) the invar iant  volume-element of the (4 q -3 )  

dimensional phase-space has the forro 

volume-element of the momentum-space the co-ordinate invar iant  

�91 }1/2 
d~2 (~ = d V  (~ d P  : gOO(p~ n ~) [ _ _  gOO _ 1 ede do) d~/(~ dz  

! m 2 
(4.5.21) 

and the invar iant  (3 q- 3),dimensional volume-element on the hyper-surface 
pro the unir length of arc along the world-line can be wri t ten as 

d~(‰ ) 82 }I/2 
d~2(‰ ~o~ _ gOO ( pz  na ) I _ _  gOO _ 1 ~d~ do) d22,(o) = 

dr  | m 2 

= mo 1 g0O(p~ n x) ep de do) d ~  (") 

(4.5.22) 
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whieh is equivalent  to the  momen ta ry  value of phase-spaee volume-e lement  
in t roduced  in eqs. (4.3.3) and (4.3.12) on the hyper-p lane  x 0 ----- eonst.  

In  part icular ,  in the  case of parallel px and n A one gets 

d~~‰ = g00 ep d~ da) d ~  ~~ (4.5.23) 

and in the rest  frame of reference K ~ if  pseudo-Eucl idean metric were to be 
in t roduced  locally, the familiar  non-relat ivis t ic  phase-space vo lume-e lement  
could be obtained:  

d~~o tpe) = ep de do) d ~  ~~~o~ = ep d3x d~ dco . (4.5.24) 

The phase-space volume-elements  d ~  and ds o as well were invar iants  
of the  t ransformat ion  group �91 of the configurat ion-space.  In  Section 4.3. 
we ment ioned  t ha t  owing to the possibility of in ternal  inversion in respect  to 
the  origin of the ~+-tr iad in the case of the general t r ans format ion  group 
~J ~-- 4 •  of the relat ivist ic  phase-space,  t h ey  are pseudo-scalars.  Never-  
theless, keeping the defini t ion (4.5.1) of nA in mind,  a s a  result  of the parallelism 
be tween  djx ~ and the  t r iad-axes  X~. (j  = 1, 2, 3) and of the appearance  of the 
fac tor  (p~n~'), our  new volume-elements  d ~  (~) and d~2~‰ ), respect ively,  are 
invar iants  of the general group ~ = ~~ x~~, too.  

The reason why  in te rms of the relat ivist ic  phase-space formalista  as 
m o m e n t a r y  value of the  phase-space vo lume-e lement  exac t ly  the  famil iar  
expression of the non-relat ivis t ic  phase-space volume-e lement  was obta ined 
can be found in the fact  t h a t  the suggested hyper -geometr iza t ion  is a na tura l  
geometr izat ion of the real space-time and dynamic  relations. W h a t  is more,  
if the "na tu r a l  motion of the phase-space"  as  F E R M I - - W A L K E R  t r anspor t  or 
"geodesic  f low" along the  world-line of the gaseous part ieles were to be inter-  
pre ted ,  d[2~o o) is an invar ian t  along the world-line of the gaseous particles.  
Having  this impor t an t  p rope r ty  of d~£ ~) in mind,  if a bundle  of t ra jector ies ,  
i.e., a "pha se - t ube"  is considered generated b y  a section ds ) of the world 
lines of neighbouring phase-points ,  the relat ivist ic form of Liouville 's Theorem 
can be formula ted  in the following way:  

.l' dQ~ ') =- [ d~2~‰ (4.5.25) 

where ~2(‰ )~ is the image of .Q(‰ ) via the na tu ra l  motion,  i.e. by  the geodesic 
flow of the phase-space. 

4.6. The zero-point kinetic energy of perfect fermion gases. In addition to the natural 
theoretical interest in the generalization of important physical concepts, investigations to 
deal with the definitions of the energy and momentum of particles on the Fermi level in the 
case of relativistic fermion gases in Riemannian space-time continuums ate also suggested by 
problems more recently raised in neutrino-astronomy [38--41]. 
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Consider ing a completely degenerate fermion gas, i. e., - -  for t he  sake o f  s impl ic i ty  - -  
a per fec t  sy s t em  of  fe rmions  a t  zero po in t  of  abso lu te  t e m p e r a t u r e ,  t he  fe rmions  a te  d i s t r ibu ted  
over  the  d i f fe ren t  q u a n t u m  s ta tes  in such a way  t h a t  t he  tota l  energy  of  the  gas has its smal les t  
possible value.  Owing to the  f u n d a m e n t a l  f ea tu re  of  fe rmion  gases,  - -  i. e. to Paul i ' s  exclusion 
pr inciple  - -  no more  t h a n  one fe rmion  m a y  be in any  one s ta te ,  t he  fe rmions  fill all s ta tes  
wi th  energies b e t w e e n  the  smal les t  (equal  to zero) and  some la rges t  va lue  wich  is d e t e r m i n e d  
by  the  n u m b e r  N of  the  fermions .  Le t  us suppose  t h a t  the  f e rmion  gas i s  in a vo lume ~/~ of 
t he  conf igura t ion  space,  t hen  the  smal les t  possible  value of  i ts  to ta l  energy  - -  the  so-called 
zero point kinetic energy - -  E o can essent ia l ly  be ca lcula ted  based  on the  f r amework  o f  the  
non-re la t iv is t ic  phase - space  m e t h o d  if  an a d e q u a t e  def in i t ion of  t he  phase - space  vo lume-  
e l emen t  is used.  

For  the  sake of  s impl ic i ty  le t  the  re la t iv is t ic  neu t r ino  gas be cons idered  in R i e m a n n i a n  
spaces wi th  spher ical  s y m m e t r y .  F i r s t  the  s o m e w h a t  more  general  case of  fe rmions  wi th  non-  
vanish ing  res t  mass  (m o # 0) will be discussed.  Then  the  resul ts  will be special ized for  the  
neut r ino  gas by  the  l imi t ing  process  m o -~ 0. 

According  to t he  classical resul ts  t he  Fermi  m o m e n t u m  and  energy  of  the  gaseous 
par t ic les  de pe nd  on the  mean  dens i ty  ~ = N/~/~ of  fermions  in t he  conf igura t ion-space .  This 
mean  dens i ty  can na tu ra l ly  be def ined  e i ther  in a s t a t i ona ry  R i e m a n n i a n  space - t ime  i r  the  
universe  is closed of  in open  universes  h a v i n g  in m i n d  the  f r a m e w o r k  of  in f in i te  sys t ems  of  
fermions ,  i. e. t he  l imi t  N ~ co and  9/~~ co wi th  t he  res t r ic t ion  ~ = const .  B o t h  cases wili 
be  discussed in R i e m a n n i a n  space- t ime  c o n t i n u u m s  wi th  p a r t i c u l a r l y i n t e r e s t i n g  metr ica!  
s t ruc tures .  

Owing to t he  spher ical  s t ruc tu re  of  t he  space- t ime  c o n t i n u u m  and  to the  d y n a m i c  
i so t ropy  of  sys t ems  of  t he  cons idered  par t ic les  on the  x ~ = const ,  h y p e r - p l a n e  the  spherical  
po la r  co-ordina tes  {r, ~, ~v) and  {p, 0, ~}  will, of  course,  be  i n t roduced  in t h e  conf igura t ion-  
and  local m o m e n t u m - s p a c e s ,  respect ively .  In  t he  pa r t i cu la r  cases to be t a k e n  in to  considera-  
t ion  in t he  fol lowing the  componen t s  of  t h e  metr ica l  f u n d a m e n t a l  t ensor  can  genera l ly  be 
given as  follows: 

g00 = - -  h0(r), g l l  : hi(r),  g22 = h2(r), g33 = h3(r) sin" 0 ; ggv = 0 (p # v). (4.6.1) 

The reason why  the  s igna tu re  ( - - +  +-4-)  is i n t r o d u c e d  here ins t ead  of  the  usual  one,  is t h a t  
t he  hyper - suf race  x ~ = const ,  is space-like.  This  means ,  however ,  t h a t  

g = - -  h0 hl h2 ha sin o/~ a n d  t/-~g = {ho h~ h." ha}'/" sin O .  (4.6.2) 
F u r t h e r m o r e ,  

g00 = __ h~q(r),gl~ = h~~(r), g22 = h~-l(r), g33 = h~~(r) sin-" 0 ; glW = 0 (# # v). (4.6.3) 

Therefore ,  t he  normal i za t ion  condi t ion  can be p u t  in to  the  form:  

--  h~' p~o + {h~' p~ + h; '  p~ + h~' sin -2 Opta} = -- m~o (4.6.4) 

and  by  using eqs. (4.5.19) we have  

~ =  m'~l p = {  ~-~~-~~ ho ' (r ) - -  l} '/.". (4.6.5) 

Final ly,  t he  m o m e n t a r y  re la t iv is t ic  phase - space  vo lume on the  x ~ = const ,  h y p e r  
p lane  can be wr i t t en  as follows: 

R zt 2zt ~F zt 2zt 

o o o o o (4.6.6) 

R 

- ~ ~~ h~~(O - 11 ~/.",/ (4 zt)."3 m3 , I d r  {h 0 h 1 h~ h~} ' '2 | m~ 

0 

where  CF and  e F m e a n  the  h ighes t  possible  values  of  ~ and  ~, respec t ive ly ,  on the  Fermi  level 
o f  the  m o m e n t u m - s p a c e .  The  uppe r  l imit  R of  t he  conf igura t ion-space  in tegra l  means  e i ther  
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the radius of the universe or in the  case of open universes the radius of the spherical symmet-  
rical space-time domain considering before the l imiting process R = (3~/4zr) t'# ~ ~ .  The 
lower l imit  ct is determined by the metrical  properties.  

In  fact,  the number  of s tates  in the momen tum interval  (o, PF) filled wi th  phase-points  
of the particles is given by N and owing to the definit ion of the three-dimensional  volume in 
the configuration-space, we have 

R 

~'~ = 4~t ./" dr {h o h i h 2 h3}' '~ (4.6.7) 

artd one can write 

R 

~ ( . _ .  mo )a i. {e~r hol(r) _ 1}3/-0, (4.6.8) 

r 

wbere ~ denotes the number  of the internal  degrees of freedom in each quan tum s ta te  (having 
usually ouly spirt dcgeneracy in mirtd). 2~rh denotes P lanck ' s  constant .  

Let  the mean densi ty  of the fermion-gas be defined by  

= N/~ ,  (4.6.9) 

then its density ~(r) on the hyper-plane x ~ = const, of the configuration-space muy be defin- 
ed by  

R R 

? (4zt)" (2__~oh)3 f dr{hoh, hzh3},i2{_~~_ho,(r) - 1}a," = ~/ 3 . 2 4~z f dr r ~ ~(r). (4.6.10) 

ec 

Indeed,  let  the three-dimenional  densi ty o(r) be in t roduced by 

e(r) .... - ~ - - 3 -  t ~ 2 =  J r = { h'hehz)'"-' ~" -- 0 l -~-o  h~ (r) 1 . (4.6.11) 

So far the  Fermi energy of the particles is unknown and in terms of ~ is only implicit ly deter-  
mined by eq. (4.6.10). In order to caleulate it explicitly one has to carry out  the  r - integrat ion 
in eq. (4.6.10). 

Finally,  it sectas to be worth-whi]e to introduce the three-dimensional  energy densi ty  
of the  fermion gas, being the  corresponding To~ component  of the energy-momentum tensor  
of the  system. Owing to the  definition of the zero point  kinet ic  energy this may be carried out  
by means of the relation: 

R zt 2,7 c F R R 

E o = .f dr S da .~ dqv .f d-~ r 2 #(r)r  = 2rte~ S dr r 2 s ar __ 4~r .1" dr {hohth,ha} ' "T~ (4.6.12) 
a 0 0 0 zt 

based on whieh the definition 

can be suggested. 
We ate part icular ly interes ted in the special case of a relativistic neutr ino gas. This 

means t h a t  we huye to carry out  the l imiting process m o ~ 0 in the formulae obta ined above. 
Firs t  of all, one observes t h a t  owing to eqs. (4.6.9) and (4.6.10), and also, to the fact 

t h a t  owing to the spin degeneracy in the case of neutr inos ~ = 2, the mean densi ty  ~ of the 
neutr ino gas on the hyper-plane x ~ = const, of the configuration-spaee is determined in terms of 

R 

4 e F f d r  h;~(r) {ht h~ h3} '/2 , (4.6.14) 
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e. th~ Fermi  energy is given by means of ~ as 

R R 
r 3n e •1,3 -ir3 

e F =h [ 4  ~.1 dr {1% h i 112 h3~ 1/2] [tdr ho 1 {h 1 h 2 h3~'12 ] . (4.6.15) 

As to the three-dimensional  densi ty (4.6.11) of the neutr ino gas and its three-dimen-  
sional cnergy densi ty (4.6.13) on the hyper-plane x ~ = const, of the  configurat ion-space 
we have:  

23 1 {h, h 2 h~}'/'-" (4.6.16) 
o(,) - 3 ~,-~ y~h 3 P h0(,) 

and  

TO(r) -- ~~ 6 ~ ~ ' h  3 h~ " (4.6.17) 

In  order to obtain the  final results in the  case of different  R iemannian  space-t ime 
con t inuums  the explicit expressions of the metrical  fundamen ta l  tensor in eqs. (4.6.1) have 
to be t aken  into account. These ate summarized in Table I. 
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O CBEPX-FEOMETPId3AL[IdFI PESI~THBHCTCt(OFO ~A3OBO- 
IIPOCTPAHCTBEHHOFO r II 

~l. Id. XOPBAT 

P e 3 ; o M e  

B r~epBo~i qaCTH ~2aHH0.q pa6OTbl noRqepKHBaeTcŸ qT0 B paMKax flldHetlHbIX 3~eMenTOB 
reoMeTpHn c n0mOlI~biO 3aBHCItM0CTH ,~ltHaMHqeCKHX B(~~qldqHH 0T HarlpaB21eHH~l B np0cTpanCTBe 
BpeMeHa B03MO>I(Ha reoMeTp~i3alltl¡ BHyTpeHHHX ~~tHaMHqecKHX C00TH01IIeHH~'I paCCMOTpeitH0~ 
CHCTeMbI. ,~J1~l Hp0CTOTbl ]],aHHa~I H,~e~t CBepX-Fe0MeTpH3aI~HH ,~HCKyTHp0BaJ1acb B cayyae 
IlCeB,~0-~)BKJII4,KOBOF0 Hp0cTpaHCTBeHHO-BpeMeHHOF0 t<0HTHHyyMa. B HaCTO~Ute~'! qaCTH, C 0J1H0fŸ 
CT0p0Hbl, B paMKaX Ta�9 Ha3bIBaeMOF0 qeTblpexqJleHHOF0 ~b0pMa,qHaMa Fe0MeTpI414 PHMaHHa 
14 OCHOBblBaY[cb Ha HeH0cpe~CTBeHHOM 0‰ npe,/ul0)KeHHOPO TpeXqJleHHOFO qb0pMa~H3Ma 
c ~pyroft ,  BHyTpeHH;te ,~VlHaMHqecl<rle cTeneHvi CB060IIb[, Ii• c v t ~ e T p m t  ~.l np0cTpaHcTBeHH0- 
BpeMeHHa~ KapTHHa HCTOJ1KylOTCfi ],l pacLuHp¡ ,a.n~ He0./~H0p0,a.HblX tl aHH30Tp0nHMX 
,IltHaMHqeCKI4X CHCTeM. HaKoHeIL, RHCKyTtlpyto'rc~ O,~HO HOBOe o6mee orlpeaeneHvte pea2ITHBI, I- 
CTHqeCKOFO FIpOCTpaHCTBeHHO-BpeMeHHOFO o6"r, eMa ti e ro  CB~3H C Ilpe~bl~,yll~|lMH n p e , a a o ~ e -  
HH~IMII C HeKOT0pbIMtl IlpltMeHeHH5qMH B Te0pHH qbepMltOHHblX Fa30B. 
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