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In the first part of this paper it was emphasized that in the framework of line-element
geometry — via the dependence of the dynamic quantities on directions in space-time internal
dynamic relations of the considered system can be geometrized. For the sake of simplicity
this idea of hyper-geometrization was discussed in the case of a pseudo-Euclidean space-time
continuum. In this part, the internal dynamic degrees of freedom, their symmetries and phase-
space picture will be treated generally and reformulated for inhomogeneous and anisotropic
dynamic systems, not only in terms of the tetrad formalism of Riemannian geometry but
also on the basis of the direct generalization of the suggested triad formalism. Finally, a new
general definition of the relativistic phase-space volume and its relation to previous sugges-
tions will be discussed, with some applications in the theory of fermion gases.

In Part I [28] we dealt in detail with the formulation of the general
idea of our suggested geometrization of the relativistic phase-space formalism
in the pseudo-Euclidean space-time continuum. To make it possible to obtain
a deeper insight into the real geometrical structure of the relativistic phase-
space it seems to be worth while to generalize the suggested method in spite
of the fact that from the points of view of several applications of the theory
the suggested formalism would be general enough. In fact, having in mind
the framework of line-element geometry and the definition of inhomogeneous
direction co-ordinates, respectively, the development of the general for-
malism does not mean any considerable trouble, and based on the general
theory, the various applications can be obtained by fairly simple specialization.

In order to reformulate the idea of hyper-geometrization quite generally
it seems to be worth-while to keep in mind a general method for the geometri-
zation of external fields suggested previously [31]* and the tetrad-formalism
of Riemannian geometry. It will be shown that in terms of the suggested
method a natural general definition of the phase-space volume can be proposed
which is a direct generalization of the well-known non-relativistic formalism.
As an application, the calculation of the zcro point kinetic energy of perfect
fermion gases in Riemannian space-time continuum will be reviewed.

* Numeration of paragraphs, formulae and references will be continued in this Part
and, of course, our notations are co-ordinated with those of Part I [28].
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348 J. 1. HORVATH

§ 3. Relativistie phase-space in general spaces

The definition of the local momentum space in general (most often
Riemannian) spaces does not need any essentially new idea. Of course, one
has to take into account that the normalization condition of the four-momenta,
(i-e., the equation of the mass shell) instead of eq. (2.2.1) is, in the case of gas
particles with rest-mass m,,

8u(*) P p’ =mj, (3.0.1)

where g,.(x) denotes the metric fundamental tensor of the space considered.
This means, however, that, e.g., for the time component of the momenta the
expression

Po= % {m3 8o + (8o« 8ok — 8oo &ut) P P} (3.0.2)

can be obtained.
In particular, bearing in mind the special case of zero rest-mass particles
(my, = 0), i.e., light-like four-momenta, we have

gulx)p¥p’ =0 (3.0.3)
and
Po= £ {(goi 8ok — 8oo&in) PiPk}m, (3.0.4)

respectively. We shall meet such special cases when the calculation of the zero-
point kinetic energy of neutrino gas will be treated in Section 4.6. It will be
shown that those problems connected with the zero rest-mass of the gas
particles by the limiting process m, — 0 can be mastered. As a matter of fact,
without loss of generality it can be suppesed in the following that m; == 0.

In order to carry out the generalization of the suggested hyper-geometri-
zation the mean problems to be solved are the orientation of the A-triads and
the definitions of the group of internal transformations, respectively, which
will be discussed after some preparation.

3.1. General method for the geometrization of external fields. In the framework of Einstein’s

theory of gravitation the equations of motion of test particles are given by the equations of
the geodetic lines of the suitable Riemannian space:

"‘a(vf*— —Ea—=0, (3.1.1)

d? x:‘ N { 3 } dx*  dx?
do* x-A
where xlfl x* = x"(0) and o denote the Christoffel’s symbols, the equations of the world-
line of the particles considered and the Riemannian length of arc, respectively.

Switching on an external field of force K* the equations of motion are

= K*. (3.1.2)

d? x* u} dx*  dx*
do* x-l} do do
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Keeping Nelli’s generalization of the Riemannian geometry in mind, the geometrization of
such an external field of force can be carried out — without changing the original Riemannjan
metric — by the introduction of new parameters of affine connection [29—31]. Namely, it

can be shown that replacing the Christoffel’s symbols {x/-‘l} y the new parameters of affine

connections

having the same transformation laws as those of the Christoffel’s symbols, where /1,3 mean
the components of an arbitrary tensor being antisymmetric in their first two indices, i. e.

4 — A+ (3.1.1)

wah =
the metrical properties (e. g., geodesics, invariant differential of g, etc.) of the original Rie-
mannian space do not change, but its geometrical structure will be generalized. This genera-
lization of the geometrical structure — in spite of the unchanged metrical structure — results
in the considerable fact that the geodetic lines of the space and the autoparallel curves of the
geometry will be different.

Based on an adequate connection between the introduced antisymmetric tensor and
the field of force K¥, the suggested geometrization of the external field of force means that
the test particles are moving without external field along geodetic lines and under the influence
of external field of force along autoparallel curves, respectively.

The equations of the autoparallel curves are

d? «* p dx* dxt
dot +Lx-/’. do do

-0 (3.1.3)

which, owing to the definition (3.1.3) of L,,3. can be put in the form

w-il do do wei do do (3.1.6)

d? x* { u) dx* dx u de* dx?
3 =—A
da*
E. g., in the case of an electromagnetic field with the field tensor F,,.owing to the fa-
miliar definition
e st 3.1.7
J = dU ( e )

of the current corresponding to a moving point-particle with the electric charge e. let us

suppose that
Ay.xl = ny.]k (3.1.8)

having the symmetry property required by the definition (3.1.4) of .1,,3. This means, how-

ever, that
dx”
= —eF Mo =Kioent:,  (3.19)

g dx* dit 7 d* . dit

%A do do " # da I* dg

being just the components of the well-known force of Lorentz.

Bearing this method of geometrization of external fields in mind, fairly general homo-
geneous gas systems under the influence of external fields can be treated on the bases of the
framework of geometrization of the phase-space suggested in the following. Indeed, let us
consider a system of gas particles being in a gravitation and also in some kind of external
field. Then the influence of gravitation can be mastered on the basis of Einstein’s theory of
gravitation via the metrical fundamental tensor g,,(x) of the suitable Riemannian space and
of the other external field in terms of the method reviewed above. If also the gravitational
interaction of the particles have to be taken into account, this can in principle be done — as
was pointed out by ISRAEL [9] — via a self-consistent background field.

As a matter of fact, when for the sake of simplicity a Riemannian space-time back-
ground is mentioned below, this is not to be regarded as an essential loss of generality,
because the mentioned generalization can automatically be included. However, it must be
emphasized that in the kinetic theory of gases — even in the case of perfect gas systems —
the interactions of the particles via elastic binary collisions play an important part. Therefore,
this kind of interaction has to be treated separately below (Section 5.2).
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3.2. Definition of the internal co-ordinates in Riemannian space-time. Owing
to the remarks at the end of Section 3.1., it may be supposed without any
essential restrictions that the history of the assemblage is to be conceived as
a network of time-like world-lines in a Riemannian space-time.

Having in mind the definition of the inhomogeneous direction co-ordi-
nates of the three-dimensional local momentum-space, let us introduce in
every point of the space-time continuum the A-triad formed by three mutually
orthogonal vectors 4* (i = 1, 2, 3) of unit length which are orthogonal to the
time-like four-momentum py;, of the gaseous particles in the local rest frame
of reference K9 Owing to the Riemannian space-time metric, and the con-
dition of orthonormality and the definition of the inhomogeneous direction
co-ordinates, i.e. eqs. (2.4.2)—(2.4.5) have to be replaced by

Buwfx) 2 jl = 10y, (3.2.1)
B(oy%) Xy Piy = 0> (3.2.2)
;% arc cos {g,.(x) %“p”/mo} (3.2.3)
£ 2 cos 8, = g,,(x) 2 p*/mq. (3.2.4)

Of course, the new inhomogeneous direction co-ordinates also are unambi-
guously determined up to the sign of p’.

In erder to seitle the orientation of the A-iriad at any point or at dif-
ferent points of the space-time continuum it seems to be simple to use the
framework of the orthonormal tetrad formalism of the Riemannian spaces
discussed in detail by SYNGE [32] as especially favourable for our purposes.

As an orthonormal tetrad, four unit vectors /{, orthogonal by pairs
are denoted where the indices in parentheses likes («) indicate a label distin-
guishing the particular axes.

The covariant components of the same tetrad are
‘/1(:)[1. = g‘u.}\ Az‘a)' (32.5)
Three of the axes are, of course, space-like and one is time-like. We shall always so label the

axes that Ay is time-like.
The conditions of orthonormality can be written in the form:

Al Agyy = Nwp)y° (3.2.6)
where
Mooy = — M) = — Maz) = — Maz) = L Napy = 0 (@ & B (3.2.7
'](aﬁ) = 17(1/3)
is a diagonal matrix; it satisfies the relation
7@ 15, = & (3.2.8)

being, in the language of matrix algebra, a square root of unity.
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One has to emphasize that the labels on the vectors have no tensorial meaning; never-
theless, by means of the 7-matrix the framework of the tensor calculus can be introduced.
Let the raising and lowering of the labels be defined by

AW = =B Ay and AL = 3D A, (3.2.9)

then owing to eqs. (3.2.8) we have
Ay = 1, AP and A, = 1,5 AP, (3.2.10)

respectively. Finally, the relations
Ay AP — 82 and APy A = (3.2.11)

can be obtained. The two tetrads /15) and A(®* are closely connected: their space-like axes
are the same and their time-like ones are opposed to one another, i. e., they differ in their
handedness.

Let us give at a space-time point two prthonormal tetrads, Af, and
A5 that can be connected by a Lorentz transformation with the so-called

Lorentz matrix
L) 2 A A, (3.2.12)

being the unit matrix if the two tetrads coincide. Owing to eqs. (3.2.11) and
(3.2.12) at every space-time point the equivalent Lorentz transformations:

Ay = L A%y and AP = L, AP (3.2.13)

can be introduced, being independent of any changes of the space-time co-
ordinates. These Lorentz transformations may be interpreted as the “internal”
changes of the orientation of the tetrads.

Now, let us suppose that in the local rest frame of reference K° of the
gaseous particles, distinguished by the original tetrad AZ’;, we have

Ploy 2t A%, %g}» LAY (i=1,2,3) (3.2.14)
then one can immediately see that the A+-triad as the space-like part of the
Lorentz-covariant /7 tetrad and the A~-triad as the space-like part of the
Lorentz-contravariant — A**" tetrad has to be defined.

As a matter of fact, any changes of the orientation of the A-triad generat-
ing the group of internal transformations — which owing to the new definition
(3.2.4) of the inhomogeneous direction co-ordinates will be denoted by ¢, —
is the spatial subgroup of the invariant Lorentz transformations (3.2.12).

3.3. Orientation of the local frames of reference and the invariant mamentum
space. Associated with each point of a curve x* = x"(g) in space-time an ortho-
normal tetrad can be introduced with particular considerable features formed
by the unit tangent

gy 2 9% (3.3.1)
do
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as well as by the first, second and third normals to the curve denoted by n{}),
nyy and n(s), respectively. These orthogonal by pairs unit vectors are determined
by means of the well-known Frenet—Serret formulae:

e o) = 9111y e iy = 03nfy — 0y nfy),
(3.3.2)

——nfy) = 0,y + 0, 15 Ny = — 3Ny,

do
where the scalars g, g, and g, are the first, second and third curvatures of
the curve considered. In the case of time-like curves, i.e., in the case of curves
with time-like unit tangents, we have:

Euwiyty=1, gunfynin=—1 (@=123). (3.2.3)

This so-called normal tetrad {t(y), n(;} to the curves will be used below when the
orientation of the tetrads at different distinct space-time points are compared.

When considering, at any two distinct points of the Riemannian space-
time continuum, a tetrad and A-triad, their orientation has to be compared
by means of the framework of the general parallel transport along the world
lines of the particles.

The world lines of the particles are time-like curves with equations
x = x"(c). It is well-known that a vector V* is said to undergo parallel
transport along a curve if its absolute derivative vanishes

u w A
DVE e AV [ pede (3.3.4)
do do ®- A do

In the following it seems to be more favourable to use a particular kind
of parallel transport of a vector V* — called usually a FErMI— WALKER
transport {32, 33] — along the world lines of the particles defined by the
equation

bre g

y V. (p*nty — P&y (3.3.5)
O m0

where attention has been paid to the fact that in the case of particles world
lines x* = x"(¢) the unit tangent is precisely the four-momentum of the
particles normalized to unity:

— pt/m.. (3.3.6)

As important features of the FERMI— WALKER transport are that
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(1) the unit tangent i) itself automatically undergoes FERMI— WALKER
transport, as can be checked on the basis of egs. (3.3.5) and (3.3.2) immediately;

(2) it resembles parallel transport in the conservation of magnitude and
scalar product;

(3) if the FERMI— WALKER transport is applied to the normals n(,
which are orthogonal to the tangent t(o) at some point of the curve considered’
it remains, of course, orthogonal to ;) and to each other. This means, however,,
that the normal tetrad {t{), n{;} under FErRMU— WALKER transport remains
a normal tetrad along any curves.

As a matter of fact, the comparison of the orientations of two ortho-
normal tetrads at two distinct points {x"} and {y"} of the Riemannian space-
time can be mastered in the following way;

Let the two considered points be connected by a world-line with a unit
tangent the direction of which, e.g. at the point {x”}, coincides with that of
the 1) axis of the tetrad considered. Then, let the orthonormal tetrad with its
origin, e.g. at {x"}, be subjected to FERMI— WALKER transport until its origin
coincides with {y"}. In this way a virtual tetrad is unambiguously oriented
which can be used as a basis to determine the orientation of the second tetrad
with its origin originally at {y”}, by means of the method for the comparison
of tetrads at the same space-time point in terms of the internal Lorentz trans-
formations.

The comparison of the A-triads of different space-time points, having
their definition in mind, based on that of the tetrads is straightforward and
need not be gone into. However, then the inhomogeneous direction co-ordi-
nates {&;} of the local momentum-spaces originally defined at different space-
time points can be “synchronized”” and the relativistic phase-space, also in
Riemannian space-times, can be defined as a direct product of the configur-
ation spaces and momentum spaces, respectively.

Finally, we have to mention that the definition of the inhomogeneous
direction co-ordinates — the framework of which, having the invariant cha-
racterization of the internal degrees of freedom of physical fields in mind, was
suggested several years ago [16] — seems to be very close to that of the spatial
set of FERMI co-ordinates [32] the advantages of which from other points of
view were emphasized by Syn~ce [32].

3.4. Geometrization of the relativistic phase-space of dynamically aniso-
tropic gas systems. Bearing the framework of Section 2.5. in mind, if some dy-
namical anisotropy of the considered gas system exists characterised by the
metrical fundamental tensor g, (x, p) of the suitable line-element space, the
conditions of orthonormality (3.2.1)—(3.2.2) and the definition of the inhomo-
geneous direction co-ordinates (3.2.4) have to be replaced by the fairly general
equations

8%, p) & =1dyc, (3.4.1)
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&% P) Moy Ploy = 0, (in the rest system K°) (3.4.2)
b3

and
i L gal%, p) Ap'im, (i,k=1,23), (3.4.3)

respectively; of course, with the normalization of the four-momenta, i.e., the
equation of the mass-shell:

8ulx, p) p* p’ = m; (3.4.4)
corresponding to the general definition (2.3.5) of the unit vector
I+ ¥ F = p*/m, (3.4.5)

which have the same direction as that of the line-element (x, v). The tildes
over the symbols 1, p” and & — introdueed previously in the analogous case
at the end of Section 2.5 — for the sake of a simplified notation here and in
the following may be omitted without any risk of confusion if we agree that
the metrical properties of the vectors always have to be understood in terms
of the particular metrical fundamental tensor actually considered.

Taking the framework of the line-element geometry, i.e. the new defi-
nition of the metrical fundamental tensor into account, the orientation of the
A-iriad and the general definition of the invariant momentum space can be
formulated, essentially in the same way as has been discussed in the previous
Section 3.3.

However, let us emphasize that in the case of a special but, from the point of view of
applications in physics, very large class of general line-element spaces, the orientation of the

a-triads ean be mastered in a more straightforward way:
Let us suppose that in the general line-element space considered a field of directions

At = p*(x) exists satisfying the differential equations
di* ~
r~ =o, A,
dxe + Y] 0 (3.4.6)
where
di* def O
e gl = T 1 (x, v(x)) (3.4.7)
and N
e p* _ 4% (3.4.8)
xeT ®eT P2V SR 4
with
det 1 agxu
A,‘M= "2— _GPT (34.9)

the latter being the so-called torsion tensor of the line-element space. Finally, the abbreviation
r =T p’ (3.4.10)

is introduced; i. e., an asterisk instead of a covariant or contravariant index means contraction
with the unit vector [*.
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The condition of integrability of the differential equations (3.4.6) is

def s M
8p 8 I — 8,8, "= —R roor = 0, (3.4.11)
where
B OH et g M A T N M O
R ==27r 2FI r —2 r 3.4.12
- QT %’[Q,‘(]+ «-l0 Tlen0 g-lo t}x= ( )

is the tensor of principal curvature of the line-element space. Here the following abbreviations
have been used: Let T',, be an arbitrary tensor, then

T”v’e =19, Ty (3.4.13)
and

et 1
T[p,l'nv] = 9 {Tp.'rv - Twy,} (3.4.14)

denotes the Schouten’s commutator.

This means, however, that our line-element space is “quasi-flat”; i. e., strictly speak-
ing, in our space of line-elements absolute parallelism of the line-elements exists. However, one
has to be aware that the absolute parallelism of the line-elements is an essentially different
concept from the absolute parallelism of vectors, the latter being a characteristic property
of Euclidean point-spaces.

The absolute parallelism of the line-elements only means that for any given direction
.at an arbitrary space-time point a parallel direction in the sense of Levi-Civita can unambi-
guously be determined at all other points of the space-time continuum. But just this is needed
if the orientation of the A-triads is to be carried out.

As matters stand, two methods are at our disposal for the orientation of the basic
A-triads of the local momentum space. ¥From the intuitive point of view of applications the
second method, based on the concept of the absolute parallelism of the line-elements, has
some advantage being a direct generalisation of the familiar framework accustomed to in the
case of pseudo-Euclidean spaces, discussed in the previous paragraph in detail.

§ 4. General definition of the relativistic phase-space volume

Previous definitions of the relativistic phase-space volume have usually
been proposed either in the language of special co-ordinate systems or based
on invariance in respect to a group of transformations properly introduced.
If the suggested framework of the general line-element geometry could be
accepted, it has to be used, of course, the concept of the hyper-surfaces of the
line-element spaces is more complicated than that of the usual point-geo-
metries. In fact, the complications arise from the dependence of the geo-
metrical quantities and relations on the directions as well. Strictly speaking,
a set of so-called osculate Riemannian spaces belongs to all points {x“} of the
co-ordinate- (configuration-) space and the line-element space can be regarded
as the ensemble of osculate Riemannian spaces (see Section 5.5).

Unfortunately the concepts of the hyper-surface in line-element geometry
have previously been based on several definitions none of which meets the
assertion of the natural claim of a relativistic gas theory; i.e. they cannot be
connected to the natural generalization of the concept of phase-space volume
which is so familiar in the non-relativistic theory.
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One of these definitions is carried out as follows: Let the ensemble of
line-elements {x", v} be called a hyper-surface of the line-element space &
the position co-ordinates {x*} of which are lying on a three-dimensional hyper-
surface of four-dimensional co-ordinate space, the directions of which are either
perpendicular or tangential to the hyper-surface considered. In terms of another
definition the position ca-ordinates are lying again on the above mentioned
hyper-surface and the angles of inclination of the directions determined by
the homogeneous direction co-ordinates {#} are constant in respect of the
normal unit vector of the surface.

Neither of these definitions is adequate for our purposes, namely, the
hyper-surfaces introduced in this way are (3 + 2)- and (3 + 0)-dimensional,
respectively. Since we are trying to introduce a hyper-surface with (3 + 3)-
dimension, this definition of the hyper-surface wenld recall the familiar
definition of the nonrelativistic theory at a given instant of time, i.e. on the
hyper-surface x;, = const. of the co-ordinate space.

As a matter of fact, we have to suggest a new definition of the hyper-
surfaces in the framework of general line-element geometry:

As hyper-surface of the geometrized relativistic phase-space the ensemble
of the line-elements {x* = x“(u)), p*} or {x" = 2*(u'), &} (i = 1,2, 3) will be
denoted where {u'} and ui = const. mean respectively the parameters and the
parametric lines of the three-dimensional hyper-surface of the co-ordinates of the
line-elements {x*, p“}.

4.1, The invariant volume-element of the co-ordinate-space. In order to
define the invariant volume-element of the configuration-space we have to
keep in mind that of the familiar scalar density of the Riemannian space-time.
To prepare the analytical definition of the suggested general definition of the
relativistic phase-space volume-element let the introduction of the well-known
Riemannian invariant volume-element be discussed in some detail.

Let the set of guantities

+1, if {a,ﬂ,y,é} means an even permulation
of the numbers {0,1,2,3},

Gppp ) — 1, if {a,ﬁ,y,é} means an odd permutation (4.1.1)
of the numbers {0,1,2,3},

0, if at least two of the indices o, f,y, 0
agree

be introduced which are per definitionem anti-symmetric in all their indices,

as well as the pseudo-tensor

Napys = V— B Eapys (8L det [g,) (4.1.2)
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with the law of transformation

Bx* Oxf OBx¥ Ox°

ox 8% O 6a

Na'gy's = S8M {A} Nagys (4.1.3)

be defined. Then the normal vector to the hyper-surface x* = x"(u’) of the
configuration-space in the form:

Bxf  ox¥ B’

4.1,
dul Odu? dud (4.1.4)

def
Py ==m nuﬂ\/b

can be obtained, where 8x°/0u’ denotes the tangents to the parametric lines
u' = const. of the surface considered.
The length of the normal vector v, one calculates in a straightforward

way:
v, = g* (4.1.5)
with
9x* Bxf
ot g, 9% * 4 Joi'g® 1.
8L g.g Sl and g* X detgj . (4.1.6)

This means, however, that the unit normal vector to the hyper-surface

{x“ = x* (ul, u?, u?), Pu}
is given by
n, = 1 Y, (4.1.7)
vig*|

Let us suppose in the following that the vectors v, and n, are time-like vectors,
i.e. g* > 0; then the set of tangents to the hyper-surface and the hyper-surface
itself will be called space-like.

Keeping this familiar definition in mind, the oriented hyper-surface
elements can be introduced in the case of the relativistic configuration-space
also by means of the definition

df, & v, du’ du* du® = n, df (4.1.8)
with
df X yig*| du! du® du? (4.1.9)

being the invariant measure of the hyper-surface element.

Considering the curve 2° = x°(s) of the configuration-space s again
being the parameter of the length of arc of the line-element geometry, let us
suppose that the unit tangent of the curve coincides with the unit normal vector
of the hyper-surface in the crossing point of the curve and the hyper-surface

¢
d; =n? or dx®=ntds, {4.1.10)
s
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then the analytical definition of the invariant volume-element of the configuration.
space can in general be given by

w V—8 V-8 V—g
dV=——dx9df=tn9n dfds——:d dS. 4.1.11
Vig®] ©ovE e Tl R

In the particular important special case of parametrization
20 == s, xi = ui (i:112’3) (4..]__12)
the formally well-known formula:

dV = y"gdxddatdade® &2 y_g d*x (4.1.13)

can be obtained.

4.2. The invariant volume-element of the local momentum-space. Owing to
the definition (3.4.3) of the inhomogeneous direction ce-ordinates {&;}, they
are invariants of the group of the transformations of the co-ordinates. How-
ever, if instead of the line-element {1, p“} the line-element {x*, p* + Dp*}
is considered, the inkomogeneous direction co-ordinates are, of course, changed
and their infinitesimal changes of first order being linear in the covariant
differential of the vectors p*

Dp* = {(dp™ + I, prdad) (8¢ + p* A,) %% wi(d) = o*, (4.2.1)
can be calculated based on eqs. (3.4.3) as follows:

dé; = g, (%", a* + Dp*) 2% (p" + Dp’)fmy — g,,(a%, p*) 4 p’/my ~
! ! (4.2.2)

9g,... 1

A2 g AP 0"+ =E 0f M my = —— {wy + 24, :u“} A
i ap“ i m, i

where the abbreviations introduced in eqs. (3.4.8)—(3.4.10) have been used.
Owing to the obvious invariance of d; against any co-ordinate trans-
formation, the invariant volume-element of the local momentum-space at an
arbitrary but fixed point {x*} of the configuration-space can, of course, be

defined as follows:
dP 2 m3dE dE, dé; L md3E, (4.2.3)

where ‘the factor my has to be introduced in order to maintain the correct
physical dimensions of the volume-element of the momentum-space. Although
dP is an invariant of the group ¢y, it will generally change if the internal trans-

formations

§r=§r(&) (4‘~2~4)
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of the group ¢, are considered. Bearing in mind that the transformations ¢,
are homogeneous linear orthogonal transformations — i.e., they are iso-
morphic to the three-dimensional subgroup of the Lorentz transformations
(3.2.13) — of the type

Er=DFE, (D=det |IDH = 4+ 1), (4.2.5)
we have
&3 = d&] d&, dE; = %’—5—2-’5—3) d& d&ydEy = sgm {D} d3¢ (4.2.6)
G (51, 52’ 53)

and, as a matter of fact, dP will be a pseudo-scalar under the group ¢; of the
internal transformations. Indeed, the invariant volume-element of the local
momentum-space depends on the orientation of ¢he basic A-triad.

4.3. The general definition of the pseudo-scalar volume-element of the
relativistic phase-space. The underlying general group ¢ in the background of
the concept of the relativistic phase-space — corresponding to the relativistic
generalization of the group of the contact transformations of classical dynamics
— is the direct produet of the groups of the external and internal transforma-
tions, i.e.,

= x dj. (4.3.1)

This means, however, that as the relativistic phase-space volume-element in
terms of the parametrization (4.1.12) the expression

dQ ' m3 Y=g da® da? da? dx® d&, d&, dE; = m3y— g dxd¢ (4.3.2)

can be introduced, being a pseudo-scalar of the group ¢}. The scalar factor mg
is again considered to keep the correct physical dimensions of the phase-space
volume-element.
In fact, the relativistic phase-space volume-element may be oriented;
let it be denoted as a positive one if the underlying A-triad is right-handed.
At a given instant of time, i.e., on the hyper-plane x; = const. of the
configuration-space, the phase-space volume-element is reduced to the form

dQ,  m3 Y=g dx! da? dad d€, dE, dEy = md Y = g doxd3E (4.3.3)

which is the direct generalization of the well-known expression of non-relativ-
istic gas theory. For the sake of simplicity in the following d€, will be called
the momentary expression of the phase-space volume-element df2.

Finally, owing to the general definition (3.4.3) of the inhomogeneous direction co-
ordinates {&;}, let the explicit forms of the relativistic phase-space volume-element be obtained
in two important cases, in special frames of reference defined in different underlying metrical
space-times:
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~ {1) Considering a pseudo-Euclidean space-time coniinuum with the metrical funda-
mental tensor (2.0.1), let us first suppose that the axes of the A+-triad due to its orientation
in the rest frame of reference K° are given by (2.4.6). Then, based on the definitions (4.2.2)
of the scalar differentials d&; of the inhomogeneous direction co-ordinates, one obtains
d; = — dpifmg = dp;/m,. (4.3.9)
This means, however, that the relativistic phase-space volume-element is given in this case by
df2 = dx° dx' dx* dx® dp, dp, dp; &L dix &Bpeyy (4.3.5)
and its momentary expression, i. e. its expression on the x® = const. hyper-plane can be put
in the form
d82, = dx' dx® dx® dp, dp, dp, = d®x d°p_, , (4.3.6)
the very familiar expression of the non-relativistic phase-space volume-element.
(2) Now, let us assume that the background space-time continuum is Riemannian.
In order to obtain the phase-space volume-element and its momentary expression one has
to use the framework of the theory of external forms, [6, 15]. Namely, in terms of the method
of the external forms the phase-space volume-element can be written as follows:
dQ =m3 V" g dx® Adxt Adx® Ada® AdE; Adé, Ads, (4.3.7)
with the temporarily more favourable abbreviation of the commutators, e. g., 4 and B:

AAB ¥ (4, B]. (4.3.8)

With this frame of reference and orientation of the A+-triad in mind we have

— = 1 * *

Nevertheless, owing to identity

dx* Ads" =0, (4.3.10)
finally, the expressions
dQ = Y7 g d*x d°py (4.3.11)
and
dQ, = V=g &®xd?pyy » (4.3.12)

can be obtained.
Further important particular eases and a re-definition of df2, will be discussed in in

detail below, especially in Section 4.5.

4.4. Generalization of Chernikov’s momentary phase-space volume-element.
As was mentioned in Section 2.1 — in order to take into account the restricted
number of dimensions of the local four-momentum-space — CHERNIKOV had
to take an artificial group of transformations as an underlying geometrical
background of his relativistic theory of gases. The definition of his trans-
formation group has been suggested by means of the formulae:
aak/

Bx*

= xH(x") ,p" = pA4+0ppxa=01,2,3;k=1,2,3) (44.1)

keeping the explicit expression (3.0.2) of the time component of the momentum
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in mind. It can easily be proved that the Jacobian of this transformation can
be factorized:

a 0/’ 1/, 2/, 3/, 1/, 2/, 37 8 1/’ 21’ 37
g aer B, 2V, 2%, 2%, p¥, p¥, pY) _ 4 8" p"pY) (4.4.2)

a9 (x()’ xl’ x2’ x3’ P17 pZ’ pS) ] (p1’ P2’ P3)

Owing to eqs. (4.4.1), (3.4.9), (3.4.10) and the identity

8p"’ Gp"’ axk  9x0

8p" ox’ ax° 8p”

based on eq. (3.0.2) we have

O _ Pt Aur, (4.4.3)
op’ Po+ Axuo

consequently, for the Jacobian the final expression

g=Po—Aew 4o (4.4.4)

Po+ Axso
can be obtained.

In fact, the analytic expression of the relativistic phase-space volume-
element in terms of the external forms — analogously to eq. (4.3.7) — in the
form

A0t T8 gy Adx Ada Adxd ADp' ADp*ADp®  (4.4.5)
Pot Asxo

has to be introduced. Owing to the definition (4.2.1) of the covariant differen-
tials Dp°, this expression of dQ, owing to the identity (4.3.10), may also be
put in the form

A0 — 8 dixdip . (dpeonys “* dp' dp? dp?). (4.4.6)
Pot+ Auxo

The adequate expression of the momentary phase-space volume-element is

given by

A0, = — 8  Bxdpeon,. (4.4.7)
Po+ Axxo ¢

In the case of gaseous systems without intrinsic dynamic anisotropy
— i.e. if in terms of the suggested geometrized model of the relativistic phase-
space the underlying background line-element space is reduced to a Riemannian
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one — the metrical fundamental tensor of the field does not depend on the
homogeneous direction co-ordinates. Consequently, the torsion tensor defined
by eq. (3.4.9) vanishes. Of course, also the contracted torsion tensor, A4
= 0; i.e. eqs. (4.4.6) and (4.4.7) are reduced to

kkp

dQR - —g.; d4x d3pc0ntr (4‘-48)
Do
and
dﬁRO — i dx dzpcontr? (4.4'.9)
Do

respectively, being precisely the formulae first obtained in this special case by
CHERNIKOV [6]. One sees immediately also that these volume-elements are
pseudo-scalars depending on the sign of p®. By means of the suggested gene-
ralization in eqs. (4.4.6) and (4.4.7), respectively, the sign of p, — in this
connection — has to be replaced by that of py 4+ A4, .-

We shall see in Section 4.6. that the definition (4.3.3) of the momentary
phase-space volume-element in the language of inhomogeneous direction co-
ordinates is much more favourable for practical calculations than the present
formalism based on the group of the Chernikov’s transformations because
then warning and seemingly insurmountable difficulties of a pure technical
character appear when carrying out some important applications.

4.5. Liouville’s Relativistic Theorem. In order to explain the physical
meaning of df, i.e. to interpret the momentary expression of the phase-space
volume-element in more familiar language and to investigate its invariant
properties it seems to be worth-while to improve the above, pure geometrical
definition of the relativistic phase-space volume-element in terms of phase-
space formalism. Such an approach was most recently suggested by Linp-
ouisT [36] — having SaAsAKI’s tangent-bundle geometry in mind [37] —
published shortly after the appearance of [35] and we shall see that both de-
finitions of df, are equivalent.

Let us start with the definition (4.1.4) of the unit normal vector n, to
the ¢ hyper-surface x* = x*(u’) and denote the tangents to the parametric
lines u’ = const. of the surface considered by djx* ~ dx'[dui (j = 1, 2, 3). We
may emphasize again that n, is now an arbitrary time-like unit vector, being
orthogonal to the space-like hyper-surface spanned by the vectors djx"‘, i.e.

V=8 erupy d1a* dox® dyx” = A2 m, (4.5.1)
where

d7° 2y gy ,p, 0t dixt donf dyx? (4.5.2)

means a constant of proportionality being an invariant volume-element ortho-
gonal to n;. Keeping our eqgs. (4.1.5)—(4.1.9} in mind, its geometrical meaning
can immediately be understood as follows.
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To begin, let us remember that at this point we have supposed in
Section 4.1. that the unit tangent of the world-line x* = x*(7) of the gaseous
particles coincides with the unit normal vector n, in the crossing point of the
curve and the hyper-surface and the invariant volume-element of the configur-
ation-space has been defined in this special case. Now, let us generalize our
method to a certain extent by supposing that on the one hand the unit normals
n, of the hyper-surfaces are defined along a world-line by some kind of parallel
transports — e.g. by FERMI— WALKER transport — and on the other hand
that the solid angle between the tangents of the world-line

ds* i V) -1 J
o =p'/m,, dx*=m;'p*dr (4.5.3)

and n, is constant, where d7=ds means the proper time-difference which, in
our system of units, is equal to ds, i.e. to the infinitesimal change of length of
arc along the world-line. This means, however, that

AV @ & mst (p'n,)d7 ) dr =mg}! V=g Erapy Pt dyx” dyrd dyx? =
= mg!(p,n')dZ dz

(4.5.4)

is exactly the four-dimensional invariant velume-element of the configuration-
space.

In the particular case when x* = x’(7) is the orthogonal trajectory of

3 Z —1 A

our ¢ hyper-surface — i.e. p; and n* are parallel — m,"}(p,n") =1 and we
reproduce our previous result: dV© = d7©dy — dV. Indeed, if in the rest
frame of reference K° of the gaseous system, as in the case of eq. (4.1.12), the
parametrization

=1, o =u (j=12,3) (4.5.5)

were to be introduced,

dix* = {0, dxt, 0,0}, dyaf = {0,0, dx2, 0}, dyx” = {0,0,0, dx3} (4.5.6)
and

dV©® = dPdr = y"gd' (4.5.7)

can be obtained, in full agreement with eq. (4.1.13).
As matters stand, it seems to be worth-while to define the invariant

quantity

(o)
dV(()") Set % = mo‘l (Pl n") A7), (4.5.8)

which may be interpreted as the invariant three-dimensional volume-element
pro unit of the length of arc along the world-line x* = «*(7). Of course, in the
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particular case discussed above, when p; is parallel to n®, the expression of
dV§ is reduced to d2V =dV,= dx.

It would be a mere repetition of our previous discussions if we were to
follow the familiar way of thinking to construct the phase-space volume-
element in general terms. Therefore, without any considerable loss of gene-
rality, we may suppose that the space-time background of our theory is a
stationary four-dimensional Riemannian manifold with the metrical funda-
mental tensor:

Boo = Zoo(T)> 811 = — £11(T)s 82z = — &ua(r)> B3z = — Baa(r,9); 8w = 0 (u+7), (4.5.9)

where {r, 9, p} are polar co-ordinates in the three-dimensional space-like sub-
space. In fact, g* = g, [no summation over ;] and due to the normalization

conditions

gwn*n’=1 and g*p, p,=mg, (4.5.10)

for the unit normal vector and for the four-momentum in the rest frame of
reference K°, the rather explicit expressions

n* = {1/Vgy» 0,0,0} and p, = {m,/yg®, 0,0,0} (4.5.11)

can be obtained.

Having the stationary Riemannian manifold with the metrical funda-
mental tensor (4.5.9) in mind, in order to introduce the inhomogeneous direction
co-ordinates one has to refer back to their original definition

A p,
’ (j=1.2,3). (4.5.12)

g =
e 22 Vg p,

We may suppose that 1* ~ d;x*, then, if we use the particularly defined
j

A*-triad (2.4.6) in K® we get
&= (movg;)tp; (J=123). (4.5.13)

It must be constantly borne in mind that all £;-s are invariants of the co”
ordinate transformations, meaning their values are unchanged in other frames
of references, too.

Owing to our previous general result (4.3.6), the volume-element of the
momentum-space can be written in the form

AP =m}d*f =m3&2sin O dEdO dPD, (4.5.14)
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where {£, 0, @} are polar co-ordinates in the momentum-space with

284 B4 8 =m* g pt + g2 p} + g% pi} - (4.5.15)

The triad- and tetrad-axes are usually defined with their contravariant
components. This is why in the definition of the inhomogeneous direction co-
ordinates and on the occasion of the normalization, the covariant components
of the four-momenta were introduced. As a consequence, it seems to be natural
to represent the energy of the gaseous particle in terms of the covariant time-
like component of the four-momentum:

Po=2¢, (4.5.16)
i.e.
8°ps — {8 Pt + g2 pi + gV pi} =g p; — p*=g" & — mi & =mj (4.5.17)
with

p L {guP% + g% p? _{_gsspg}l/z (4.5.18)
Considering that

3
0 my

-1 & 12 2 00| & i
E=mylp= ﬁg — 1! ;dé =my2g0——1 :
(4.5.19)
do = sin OdO dD ,

for the volume-element of the momentum-space the co-ordinate invariant
expression

2 12
dP = m} £2dé dw = m, g% {8_2 g% — 1} ededo =g%epdedw  (4.5.20)
nty

can be obtained.
Finally, from eq. (4.3.2) the invariant volume-element of the (4 4 3)
dimensional phase-space has the form

2 1/2
dSX®) = gV dP = g(p, n’) {—12 g% — 1} ededo d?@dr  (4.5.21)
mg

and the invariant (3 + 3)-dimensional volume-element on the hyper-surface
pro the unit length of arc along the world-line can be written as

(o) 2 1/2
dQE) st ’—ddto = g%(p, n" {—;?g"o — l} ede dw d7) =

0

(4.5.22)
= my1 g%(p, n*) ep de dow d7/(®
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which is equivalent to the momentary value of phase-space volume-element
introduced in egs. (4.3.3) and (4.3.12) on the hyper-plane 1 — const.
In particular, in the case of parallel p, and n* one gets

A0 = g% ep de dew dP (4.5.23)

and in the rest frame of reference K, if pseudo-Euclidean metric were to be
introduced locally, the familiar non-relativistic phase-space volume-element
could be obtained:

dQUPE) = ep de dew 70 = ep d3x de do. (4.5.24)

The phase-space volume-elements dQ and df2, as well were invariants
of the transformation group ¢ of the configuration-space. In Section 4.3.
we mentioned that owing to the possibility of internal inversion in respect to
the origin of the A*-triad in the case of the general transformation group
G = djx X s of the relativistic phase-space, they are pseudo-scalars. Never-
theless, keeping the definition (4.5.1) of n; in mind, as a result of the parallelism
between dx* and the triad-axes %“ (j = 1,2, 3) and of the appearance of the
factor ( pzn}'), our new volume-elements dQ” and dQ, respectively, are
invariants of the general group ¢ = ¢ xdj;, too.

The reason why in terms of the relativistic phase-space formalism as
momentary value of the phase-space volume-element exactly the familiar
expression of the non-relativistic phase-space volume-element was obtained
can be found in the fact that the suggested hyper-geometrization is a natural
geometrization of the real space-time and dynamic relations. What is more,
if the “natural motion of the phase-space’ as FERMI— WALKER transport or
geodesic flow” along the world-line of the gaseous particles were to be inter-
preted, dO is an invariant along the world-line of the gaseous particles.
Having this important property of dQ% in mind, if a bundle of trajectories,
i.e., a ““phase-tube” is considered generated by a section d.QE;’) of the world
lines of neighbouring phase-points, the relativistic form of Liouville’s Theorem
can be formulated in the following way:

[ dQY = [ dOpr, (4.5.25)

ol oo

where .Qf)”)' is the image of O via the natural motion, i.e. by the geodesic
flow of the phase-space.

4.6. The zero-point kinetic energy of perfect fermion gases. In addition to the natural
theoretical interest in the generalization of important physical concepts, investigations to
deal with the definitions of the energy and momentum of particles on the Fermi level in the
case of relativistic fermion gases in Riemannian space-time continuums are also suggested by
problems more recently raised in neutrino-astronomy [38—41].
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Considering a completely degenerate fermion gas, i. e., — for the sake of simplicity —
a perfect system of fermions at zero point of absolute temperature, the fermions are distributed
over the different quantum states in such a way that the total energy of the gas has its smallest
possible value. Owing to the fundamental feature of fermion gases, — i. e. to Pauli’s exclusion
principle — no more than one fermion may be in any one state, the fermions fill all states
with energies between the smallest (equal to zero) and some largest value wich is determined
by the number N of the fermions. Let us suppose that the fermion gasis in a volume 2* of
the configuration space, then the smallest possible value of its total energy — the so-called
zero point kinetic energy — E, can essentially be calculated based on the framework of the
non-relativistic phase-space method if an adequate definition of the phase-space volume-
element is used.

For the sake of simplicity let the relativistic neutrino gas be considered in Riemannian
spaces with spherical symmetry. First the somewhat more general case of fermions with non-
vanishing rest mass (m, = 0) will be discussed. Then the results will be specialized for the
neutrino gas by the limiting process m; — 0.

According to the classical results the Fermi momentum and energy of the gaseous
particles depend on the mean density g = IV/2* of fermions in the configuration-space. This
mean density can naturally be defined either in a stationary Riemannian space-time if the
universe is closed or in open universes having in mind the framework of infinite systems of
fermions, i. e. the limit N — oo and % — co with the restriction g = const. Both cases will
be discussed in Riemannian space-time continuums with particularly interesting metrical
structures.

Owing to the spherical structure of the space-time continuum and to the dynamic
isotropy of systems of the considered particles on the x° = const. hyper-plane the spherical
polar co-ordinates {r, #, ¢} and {p, 8, @} will, of course, be introduced in the configuration-
and local momentum-spaces, respectively. In the particular cases to be taken into considera-
tion in the following the components of the metrical fundamental tensor can generally be
given as follows:

Zoo = — ho(r), 811 = Mi(r), g22 = ha(7), g3 = hy(r) sin® B ; B =0 (p#7). (4.6.1)

The reason why the signature (—+ -+ 4-) is introduced here instead of the usual one, is that
the hyper-sufrace x® = const. is space-like. This means, however, that

g=—hoh hyhysin®*® and Y=g = {hoh hyh}V?sind. (4.6.2)
Furthermore,
8% = — hgl(r), g" = hy'(r), g% = h3'(r), g** = h3'(r) sin > &5 g =0 (u #£v). (4.6.3)
Therefore, the normalization condition can be put into the form:
— k' p§ + {hy! p} + k3 p§ + h3' sin™2 & p§} = — m} (4.6.4)
and by using eqs. (4.5.19) we have

2

. & 1
E=mjlp = { ma hy'(r) — 1} . (4.6.5)

Finally, the momentary relativistic phase-space volume on the x° = const. hyper
plane can be written as follows:

R n 2n ép n 2
Q= m} fdx fdﬁ [dq; d& fd@J 4D {hy by by b}V sin 562 sin © =
« 6 ¢ & o o (4.6.6)

2
3 mg

R
2 2 3/2
L CL. . [[dr by by by hs}”{ . ha‘(r)—l}
s ”
0

where £ and ¢z mean the highest possible values of £ and ¢, respectively, on the Fermi Jevel
of the momentum-space. The upper limit R of the configuration-space integral means either
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the radius of the universe or in the case of open universes the radius of the spherical symmet-
rical space-time domain considering before the limiting process R = (32*/47)!'3 — oo. The
lower limit « is determined by the metrical properties.

In fact, the number of states in the momentum interval (o, pg) filled with phase-points
of the particles is given by N and owing to the definition of the three-dimensional volume in
the configuration-space, we have

R
Y= dn | dr{hghyhy by (4.6.7)
and one can write
(4n) af 2 3
47)? m i e, o
N=v—y (2::0;7] | dr (o by By b {Tng— hg'(r) — 1} : (4.6.8)
&

where y denotes the number of the internal degrees of freedom in each quantum state (having
usually only spin degeneracy in mind). 2n# denotes Planck’s constant.
Let the mean density of the fermion-gas be defined by

¢ = N/, (4.6.9)

then its density p(r) on the hyper-plane x° = const. of the configuration-space may be defin-
ed by

R R
B Yy (dm) m 3 \ 2 a2 .
¢ =3 (2;;; ) J o o e {2y — 1 =4:erAdrr-9(r). (4.6.10)
o o
Indeed, let the three-dimenional density o(r) be introduced by
dei Y Am m 3 ] »l £2 _ 3/2
e 22 () el mbe by e < @)

So far the Fermi energy of the particles is unknown and in terms of p is only implicitly deter-
mined by eq. (4.6.10). In order to calculate it explicitly one has to carry out the r-integration
in eq. (4.6.10).

Finally, it seems to be worth-while to introduce the three-dimensional energy density
of the fermion gas, being the corresponding T,%(r) component of the energy-momentum tensor
of the system. Owing to the definition of the zero point kinetic energy this may be carried out
by means of the relation:

R F 2 ep

E, = S dr S dd \ dp S‘ d:r2p(r) e(r) = 2ned
: 0 0 0

a

R R
{ drreo(r) 2 — am [ dr {hohyhuhy} 2 TY(r), (4.6.12)

%
based on which the definition

2:” ’ m, 3 62 ar2
0(yy JeL e () 2 ] EF pory ! :
T - (2::}; ) eF{ g B0 =1 (4.6.13)

can be suggested.
We are particularly interested in the special case of a relativistic neutrino gas. This
means that we have to carry out the limiting process m, — 0 in the formulae obtained above.
First of all, one observes that owing to egs. (4.6.9) and (4.6.10), and also, to the fact
that owing to the spin degeneracy in the case of neutrinos y = 2, the mean density ¢ of the
neutrino gas on the hyper-plane x° = const. of the configuration-space is determined in terms of

4ep

R
2= g Idr B () {Ry hs B)12 (4.6.14)
x
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e. thz Fermi energy is given by means of 5 as

37 _ A N s N
ep—h [—4—9 [dr {h, hlhzhs}”-] [Jdr hyt {hy by hs}'/-] ) (4.6.15)
x 3

As to the three-dimensional density (4.6.11) of the neutrino gas and its three-dimen-
sional energy density (4.6.13) on the hyper-plane x® = const. of the configuration-space
we have:

£3
F

1
= e
g(r) 32 %hg r;), hu(r) {hl h2 h:;} (4'.6.16)
and )
&%
TYry =— ﬁ_iz‘rﬁ—g hy3%(r) . (4.6.17)

In order to obtain the final results in the case of different Riemannian space-time
continuums the explicit expressions of the metrical fundamental tensor in eqs. (4.6.1) have
to be taken into account. These are summarized in Table I.

I am very grateful to Professor H. FROHLICH for many belpful discus-
sions and for his kind interest in these investigations. I am also indebted to
Professor G. Marx for his stimulating criticism concerning the problems
connected with the definitions of the phase-space volume and with the inter-
pretation of the distribution functions.
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O CBEPX-TEOMETPHM3AUMY PEJAATUBUCTCKOIO ®A30BO-
MNMPOCTPAHCTBEHHOI'O ®OPMAIJIM3MA 11

5. M. XOPBAT

Peswome

B nepBoit uactH AaHHOH padoThl NOJUEPKHUBALTCS, YTO B PAMKAX JIHHEHHBIX 3/1€MEHTOB
FeOMETPHIL C TIOMOLIbI0 3aBHCHMOCTH IHHAMHYECKUX BEJIMUMH OT HAmpaBJleHUH B NPOCTPanCTBE
BPEMEHU BOSMOYKHA I€OMETPH3ALHS BHYTPEHHHX IMHAMHUYECKHX COOTHOUIEHMEH pacCMOTpeHHOH
cucrembl. [INsi TIPOCTOTH AaHHAsl HAe CBepX-TeOMeTpU3anUM JUCKYTHPOBajach B Cllyvae
NICeBA0-IBKIIUA0BOTO NPOCTPAHCTBEHHO-BPEMEHHOr0 KOHTHHYYMA. B HacTosiuieit uacty, ¢ oanoil
CTOPOHBI, B PAMKAaX TAK HA3bIBAEMOr0 4YeTbiPEXWIEHHOro (opManu3Ma reomerpuu PumanHa
M OCHOBBIBASICh HA HETIOCPEACTBEHHOM 060011eHHd MPEANMKEHHOTO TpeXuieHHoro gopmanusma
¢ Apyroil, BHYTPeHHHE AWHAMHYECKHe CTerneHH CBOOOIbI, MX CHMMETPHU W NPOCTPAHCTBEHHO-
BPEMEHHAST KapTHHA MCTONKYIOTCH M PACWHPSIOTCA ANS HeOAHOPOAHBIX H AHWU3OTPOIHBIX
JUHAMUUeCKUX crucTeM. HakoHel, AHCKYTHPYOTCS OZHO HOBoe 00Iiee onpejejleHue pPelisiTUBHU-
CTHYECKOTG NPOCTPAHCTREHHO-BPEMEHHOT0 00bemMa H ero CBSISH C TIpe/bily WIHMH TIpefsioKe-
HHUSIMI C HEKOTOPBIMH NpPUMEHEHHSIMH B TeOPHH (epPMHOHHBIX Tasos.
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