ON SOME ASPECTS OF THE MASS DIPOLE PROBLEM OF A SPECIAL WEYL SOLUTION IN THE EINSTEIN-MAXWELL THEORY

By

E. SCHMUTZER and J. NOTTROTT

INSTITUTE FOR THEORETICAL PHYSICS OF THE UNIVERSITY OF JENA, JENA, DDR

(Presented by A. Kónya, - Received 4. IV. 1967)

The exterior solution of the Einstein—Maxwell equations, describing all static axisymmetric problems, has been found by Weyl [1]. This so-called Weyl solution has been specialized by Bonnor [2] with respect to a point singularity interpreted as a magnetic dipole, which in certain cases induces a mass dipole. In this paper a special calculus of delta functions [3] is used to obtain information about the structure of the singular part of T_4^a of the point source of the field.

§ 1. Field equations and the dipole solution

Let us use the metric

$$ds^{2} = e^{\lambda(z,r)} (dz^{2} + dr^{2}) + e^{-\varrho(z,r)} r^{2} d\theta^{2} - e^{\varrho(z,r)} c^{2} dt^{2}$$
(1)

(abbreviations:

$$z = x^{1}, r = x^{2}, \vartheta = x^{3}, ct = x^{4}, \sqrt{\frac{1}{g}} = e^{\lambda} r;$$

Greek indices run from 1 to 3, Latin indices from 1 to 4) with the infinity conditions:

$$\lambda \to 0, \varrho \to 0$$
, if $(z^2 + r^2) \to \infty$.

The field equations are

$$R_m^n = \varkappa \left(T_m^n - \frac{1}{2} g_m^n T_r^r \right), \qquad (2a)$$

$$H^{mn};_{n} = \frac{1}{c} j^{m}, \qquad (2b)$$

$$B_{< mn; l>} = 0.$$
 (2c)

We split the energy-momentum tensor into two parts

$$T_{mn} = E_{mn} + \Theta_{mn}. (3)$$

 E_{mn} corresponds to the pure magnetic field without polarization, Θ_{mn} to the magnetization and the additional matter in the point singularity.

Therefore E_{mn} can be written as

$$E_{mn} = B_{mi} B_n^i + \frac{1}{4} g_{mn} B_{ij} B^{ij}.$$
(4)

The tensor Θ_{mn} consists of two parts:

$$\Theta_{mn} = S_{mn} - {}^{(\Theta)} \mu u_m u_n. \tag{5}$$

 S_{mn} describes the magnetizational and mechanical stress part in the singularity. $^{\Theta}\mu$ represents the rest-mass density. In a rest-system ($u^1=u^2=u^3=0,\ u_4u^4=-c^2$) Θ_m^n is expressed in the form

$$(\Theta_m^{\gamma}) = \begin{pmatrix} \alpha & \varepsilon & 0 & 0 \\ \varepsilon & \overline{\alpha} & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & uc^2 \end{pmatrix}, \tag{6}$$

if we use the notation

$$\frac{1}{c^2}S_a^4+{}^{(\Theta)}\mu=\mu.$$

The magnetic dipole may be orientated in z-direction. Now we introduce the four-potential A_m and use $B_{12} \sim B_{\vartheta} = 0$. Then we need only $A_3 = \varPhi(z, r) \neq 0$. As a (non essential) consequence of the line element chosen, we obtain $\alpha = \bar{\alpha}$. Using the transformation

$$\Phi_{,1} = re^{-\varrho} \chi_{,2}
\Phi_{,2} = -re^{-\varrho} \chi_{,1}$$
(7)

after some calculation we get the following system of Einstein's equation

(a)
$$\Delta \varrho = x e^{-\varrho} \left[(\chi_{,1})^2 + (\chi_{,2})^2 \right] + \kappa e^{\lambda} (\mu c^2 - \beta)$$
,

(b)
$$\gamma_{,1,1} + \gamma_{,2,2} + \frac{1}{2} \left[(\varrho_{,1})^2 + (\varrho_{,2})^2 \right] = \varkappa e^{-\varrho} \left[(\chi_{,1})^2 + (\chi_{,2})^2 \right] - 2 \varkappa e^{\lambda} \beta$$
, (8)

(c)
$$(\varrho_1)^2 - (\varrho_2)^2 + 2 r^{-1} \gamma_2 = 2 \kappa e^{-\varrho} [(\chi_1)^2 - (\chi_2)^2] + 4 \kappa e^2 \alpha$$
,

(d)
$$\varrho_{,1}\,\varrho_{,2}-r^{-1}\,\gamma_{,1}=2\,\varkappa e^{-\varrho}\,\chi_{,1}\,\chi_{,2}+2\,\varkappa e^{\lambda}\,\varepsilon$$

(abbreviations:

$$\Delta \varrho = \varrho_{,1,1} + \varrho_{,2,2} + r^{-1}\varrho_{,2}, \gamma = \lambda + \varrho.$$

The tensors H^{mn} and B^{mn} are connected with the magnetization tensor M^{mn} :

$$H^{mn}=B^{mp}+M^{mn}. (9)$$

The tensor M^{mn} has the structure

$$M_{\mu\nu} = i\varepsilon_{\mu\nu\lambda} M^{\lambda}$$
, $M_{\mu i} = 0$ ($\varepsilon_{\mu\nu\lambda}$: 3-dimensional Levi-Civita pseudotensor). (10)

The non vanishing Maxwell equation (the Lorentz condition is fulfilled identically) is

$$\Delta \chi - \varrho_{,1} \chi_{,1} - \varrho_{,2} \chi_{,2} = e^{\varrho} \left(e^{-\varrho/2} M_1 \right)_{,1}. \tag{11}$$

Outside of the singularity the system for equations (8a,b,c,d; 11) is already solved (cf. 1, 2).

Using the abbreviations

$$p^2 = z^2 + r^2 \,, \;\; D = \sqrt{rac{2}{arkappa} - rac{A^2}{4}} \,,$$

the general solution for a magnetic dipole can be written as

(a)
$$\varrho = \ln \left\{ \frac{\varkappa D^2}{2 \cos^2 \left[\varkappa \frac{D\psi}{2} + \operatorname{arctg} \frac{A}{2 D} \right]} \right\},$$
(b)
$$\chi = D \operatorname{tg} \left\{ \frac{\varkappa D\psi}{2} + \operatorname{arctg} \frac{A}{2 D} \right\} - \frac{A}{2},$$
(c)
$$\lambda = -\frac{\varkappa^2 D^2 \overline{\mu}^2 r^2}{128 \pi^2 p^3} \left[2 - \frac{9 r^2}{4 p^2} \right] - \varrho,$$
(12)

$$128\,\pi^2\,p^3$$
 [$4\,p^2$]

where ψ is the magnetic potential for the field of a magnetic dipole in Minkowskian space

$$\psi = \frac{\bar{\mu}z}{4\pi p^3} \tag{13}$$

 $(\bar{\mu} \text{ is the } z\text{-component of } m^a, m^a \text{ being the vector of the magnetic moment.})$ A (or D) is a free constant of integration.

§ 2. The method of extending the solution

The 4-dimensional complex of the magnetic moment we define by

$$m^k = \int \check{M}^{kr} df_r, \qquad (14)$$

where

$$\check{M}^{kr} = -rac{i}{2}\,arepsilon_{ij}^{kr}\,ijM^{ij}$$

is the dual tensor of electromagnetic polarization and df_r the surface element tensor. If we define the 3-dimensional space by $x^4 = \text{const}$, we get

$$df_1 = df_2 = df_3 = 0$$
, $df_4 = i \sqrt{-g_{44}} d^{(3)} V$

 $(d^{(3)} V \text{ is the 3-dimensional volume element}).$

This means

$$m^k = i \int \check{M}^{k_4} \sqrt{-g_{44}} d^{(3)} V.$$
 (15)

Observing the relation between \check{M}^{k4} and the 3-dimensional magnetization M_{α} , namely

$$\dot{M}_{\alpha 4} = i \sqrt{-g_{44}} M_{\alpha}, \qquad (16)$$

we find

$$m^{\alpha} = i \int g^{\alpha\beta} g^{44} \, \dot{M}_{\beta4} \, \sqrt{-g_{44}} \, d^{(3)} \, V = \int g^{\alpha\beta} \, M_{\beta} \, d^{(3)} \, V.$$
 (17)

In our metric, for a magnetic dipole in z-direction this equation becomes

$$m^{1} = \widetilde{\mu} = \int e^{-\varrho/2} M_{1} r dz dr d\vartheta = 2 \pi \int e^{-\varrho/2} M_{1} r dz dr. \qquad (18)$$

This equation for a point singularity is satisfied by

$$M_{1} = \frac{\overline{\mu}e^{\varrho/2} \delta(z) \delta(r)}{2 \pi r} = \frac{\overline{\mu}e^{\varrho/2} \delta(p)}{4 \pi p^{2}}.$$
 (19)

Inserting this result into (11) we obtain

$$\Delta \chi - \varrho_{,1} \chi_{,1} - \varrho_{,2} \chi_{,2} = e^{\varrho} \left(\frac{\overline{\mu} \delta (p)}{4 \pi p^2} \right)_{,1}$$
 (20)

Eliminating χ and ϱ by (12a,b) we get

$$\Delta \psi = \frac{2}{\varkappa D^2} \cos^2 \left(\frac{\varkappa D \psi}{2} + \operatorname{arctg} \frac{A}{2D} \right) e^{\varrho} \left(\frac{\bar{\mu} \, \delta \, (p)}{4 \, \pi p^2} \right)_{,1} = \\
= \left(\frac{\bar{\mu} \delta \, (p)}{4 \, \pi p^2} \right)_{,1} = -\frac{3 \, \bar{\mu}}{4 \, \pi} \, \frac{\delta \, (p) \, z}{p^4} . \tag{21}$$

This equation is solved by

$$\psi = \frac{\overline{\mu}}{2\pi} \frac{\overline{\Theta}(p)z}{p^3} . \tag{22}$$

Our method to extend the solution (12a,b,c) into the singularity is the following: We use the form (22) for the potential ψ in all three equations (12a,b,c) and find with the help of the abbreviation

$$s = \frac{\varkappa \overline{\mu} z D \overline{\Theta}(p)}{4 \pi p^3} + \text{arc tg } \frac{A}{2 D}$$
 (23)

from (12a,b)

(a)
$$\varrho = -\ln\left(\frac{2\cos^2 s}{\varkappa D^2}\right)$$
,
(b) $\chi = D \operatorname{tg} s - \frac{A}{2}$.

A similar, non artificial generalization of Eq. (12c) is not known. Therefore, we now investigate the case D=0.

After some calculation we obtain from (12) for $D \rightarrow 0$

(a)
$$\varrho = -2 \ln \left(1 \mp \sqrt{\frac{\varkappa}{2}} \frac{\bar{\mu} z \bar{\Theta}(p)}{2 \pi p^3} \right),$$

(b) $\chi = \pm \sqrt{\frac{2}{\varkappa}} \left[\left(1 \mp \sqrt{\frac{\varkappa}{2}} \frac{\bar{\mu} z \bar{\Theta}(p)}{2 \pi p^3} \right)^{-1} - 1 \right],$ (25)
(c) $\lambda + \varrho = 0.$

Inserting these results into (8b,c,d) we obtain

$$\varepsilon = \alpha = \beta = 0. \tag{26}$$

From Eq. (8a) we get

$$\mu c^{2} = \pm \sqrt{\frac{2}{\kappa}} \left(1 \pm \sqrt{\frac{\kappa}{2}} \chi \right) \Delta \chi - 2 \left[(\chi_{,1})^{2} (\chi_{,2})^{2} \right]. \tag{27}$$

By elimination from (25a,b) results

$$\varrho = 2 \ln \left(1 \pm \sqrt{\frac{\varkappa}{2}} \chi \right). \tag{28}$$

Inserting into Eq. (20) yields an expression which we use for elimination in Eq. (27). The result finally is

$$\mu c^{2} = \mp \frac{3 \overline{\mu} \sqrt{\frac{2}{\varkappa}}}{4 \pi \left(1 \mp \frac{\sqrt{\frac{\varkappa}{2}} \overline{\mu} \overline{\Theta}(p) z}{2 \pi p^{3}}\right)} \frac{\delta(p) \cdot z}{p^{4}}.$$
 (29)

An additional calculation shows that the solution (25a,b,c) fulfils the condition

$$T_{m;n}^n = 0.$$
 (30)