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The exterior solution of the Einstein—Maxwell equations, describing all static axisym-
metric problems, has been found by WEYL [1]. This so-called Weyl solution has been specia-
lized by Bonwor [2] with respect to a point singularity interpreted as a magnetic dipole,
which in certain cases induces a mass dipole. In this paper a special calculus of delta functions
[3] is used to obtain information about the structure of the singular part of T} of the point
source of the field.

§1. Field equations and the dipole solution
Let us use the metric
ds? = *@" (dz2 | dr?) | e 2492 2N 2 4p2 (1)

(abbreviations:
2=, r=a2% ¥ = x5, ct:x“,vgz etr;

Greek indices run from 1 te 3, Latin indices from 1 to 4) with the infinity

conditions:

A—>0,0—>0, if (z*+4 r?)—>oo.

The field equations are

R;;:n(Tz,—%grnT:J, (20)
1 .

H™; =", (2b)
c

B<mn;l>:0- (20)

We split the energy-momentum tensor into two parts
T,.= mn + @mn . (3)

E,n corresponds to the pure magnetic field without polarization, @, to the
magnetization and the additional matter in the point singularity.
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Therefore E,, can be written as

. 1 .
Emn = Bmi B:: + _4‘gmn Bij BY. (4‘)

The tensor @, consists of two parts:
@mn = Spmn —(a)ﬂum Un. (5)

Smn describes the magnetizational and mechanical stress part in the singu-
larity. ®u represents the rest-mass density. In a rest-system (u! = u? =
= u® = 0, uu! = —2) @, is expressed in the form

) = (6)

2

0
0
O k4
e

SO R®™
S O @

o
£
0
0
if we use the notation

LSt Ou—np.

c

The magnetic dipole may be orientated in z-direction. Now we introduce the
four-potential 4,, and use B;, ~ By; = 0. Then we need only 4, = @(z,r) = 0.
As a (non essential) consequence of the line element chosen, we obtain « = .
Using the transformation

D, ,=re g, 1)
D,=—re" %y,

after some calculation we get the following system of Einstein’s equation
(a) do=xe*[(£,)* + (1.)%] + =e* (uc* — B).

(b) Yi1 Tt Ve + —;‘ [(9,1)2 + (9,2)2] = xe” * [(1,1)2 + (r{-’)z] —2xe’ B, (8)

_(c) (9,1)2 — (9,2)2 +2r Vo= 2 xe— e [(1,1)2 - (1‘2)2] 4+ 4 e’ x,
(d) g,l 9,2 - r_l y,l = 2 %e_"x,l le + 2 xeA &

(abbreviations:

Ao =gy + 02+ 0 y=240.
The tensors H™" and B™ are connected with the magnetization tensor M™":
H™ = B | M 9)
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The tensor M™" has the structure

M, =ie,, M*,M,, = 0(e,,; : 3-dimensional Levi-Civita pseudotensor). (10)
The non vanishing Maxwell equation (the Lorentz condition is fulfilled iden-
tically) is

Ay —e 21— 022 2=€(e?M)) . (11)

Outside of the singularity the system for equations (8a,b,c,d; 11) is already
solved (cf. 1, 2).
Using the abbreviations
prt=22+r, D:] 2 &
x 4

?

the general solution for a magnetic dipole can be written as

0 =1 xD2

(a) - [ Dy A] :

2 2l — + arctg——

cos 5 + gZD

Dy A A
b =Dt _x ctg ——-} — —r, 12
(b) x g{z +arg2D} 5 (12)

2 2 52 2 2
(©) e w2 D?p?r 2_9r — o

128 n2 p? 4 p?

where y is the magnetic potential for the field of a magnetic dipole in Min-
kowskian space

Mz
= 13
gy (13)

(1 is the z-component of m®, m” being the vector of the magnetic moment.)
A (or D) is a free constant of integration.

§ 2. The method of extending the solution

The 4-dimensional complex of the magnetic moment we define by

mk = [ M" df,, (14)
where
MF = — % ek MY
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is the dual tensor of electromagnetic polarization and df, the surface element
tensor. If we define the 3-dimensional space by x* = const, we get

df, = df, =df; =0, df, =1 V—gﬂd(:‘)V

(d® V is the 3-dimensional volume element).
This means

m* =i (M) =g, dOV. (15)
Observing the relation between M™ and the 3-dimensional magnetization M,,
namely
Ma4:iV‘“g14Ma’ (16)
we find
m* = ijé’aﬁ g* Mﬁu V — g dOV = j‘gaﬂ Mﬁ dovV. (17

In our metric, for a magnetic dipole in z-direction this equation becomes

m' == (e M, rdzdrd? = 27 { e¢? M, rdzdr. (18)

This equation for a point singularity is satisfied by

ne? 12002
M, =P 6(x)0(r) _ pe?0(p) (19)
2 nr 4 np?
Inserting this result into (11) we obtain
uo
A= eyns— eaza=e (B8] (20)
4np? |,
Eliminating 3 and p by (12a,b) we get
Ay = " cos? ( "12)‘%’ + aretg %) e? (ﬁi‘m;)—) ==
% \ 4ap® ),
B B ' (21)
_ /MP)) . _3pr d(p=
4np? |, 4n pt
This equation is solved by 3
__r 9= . (22)

2z p?

Our method to extend the solution (12a,b,c) into the singularity is the fol-
lowing: We use the form (22) for the potential y in all three equations (12a,b,e)
and find with the help of the abbreviation
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uzDO.
= M + arce tg __-14__,. (23)
4 np3 2D
from (12a,b)
(¢) o=—1In (-—%ﬁil s
»D? (24)

A similar, non artificial generalization of Eq. (12¢) is not known. Therefore
we now investigate the case D = 0.

After some calculation we obtain from (12) for D — 0

@ o-—2mir 7 29R),

o == | 2]+ %{g]—l—l]» (25)
() A4+e=0.

Inserting these results into (8b,c,d) we obtain

e=a=p—0. (26)
From Eq. (8a) we get

T L 107 P ML

By elimination from (25a,b) results

QZZIH[IiV%ZJ : (28)

Inserting into Eq. (20) yields an expression which we use for elimination in
E

q. (27). The result finally is

a5
pet = F - S (29)
( 2 #0(p) s )

An additional caleulation shows that the solution (25a,b,¢) fulfils the condition

T, = 0. (30)
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