Skip to main content
Log in

Stickstoffmonoxid, L-Arginin und die Niere

No, L-arginine and the kidney: Experimental studies to novel therapeutic approaches

Experimentelle Studien zu neuen Therapieansätzen

  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ Hintergrund

Stickstoffmonoxid (NO) ist ein gasförmiges, biologisches Effektormolekül mit multiplen Wirkungen. NO wird durch sogenannte NO-Synthasen (NOS) von der semi-essentiellen Aminosäure L-Arginin gebildet. In der Niere spielen die in der Macula densa lokalisierte neuronale NOS (bNOS) und die endotheliale NOS (ecNOS) eine bedeutsame Rolle in der Regulation der glomerulären Hämodynamik. Eine gestörte Funktion dieser beiden Enzyme könnte einen glomerulären Hochdruck und eine gesteigerte intraglomeruläre Thrombozytenaggregation zur Folge haben. Eine NO-Produktion in hohen Gewebekonzentrationen kann durch die induzierbare NOS-Isoform (iNOS) erreicht werden und scheint hingegen ein potenter Inflammationsmediator bei primär entzündlichen Nierenerkrankungen zu sein. Die selektive Hemmung der iNOS könnte zukünftig ein neues, antiinflammatorisches Therapieprinzip zum Beispiel in der Glomerulonephritisbehandlung werden. Im folgenden soll anhand von überwiegend experimentellen Daten die Bedeutung von NO, aber auch anderer Metaboliten der Aminosäure L-Arginin, für die Pathophysiologie und therapeutische Beeinflussung von Nierenkrankheiten dargestellt werden.

□ Schlußfolgerung

Die Modulation des renalen L-Arginin/NO-Systems repräsentiert einen vielversprechenden Therapieansatz bei akuten und chronischen Nierenkrankheiten.

Summary

□ Background

Nitric oxide (NO) is a small gaseous, molecule with multiple biological effects. NO is produced from the semi-essential amino acid L-arginine by NO synthases (NOS). In the kidney, neuronal NOS (bNOS), which is localized in the macula densa, and endothelial NOS (ec NOS) are involved in the regulation of glomerular hemodynamics. Dysfunction of these enzymes may cause glomerular hypertension and increased intraglomerular platelet aggregation. NO production in high tissue concentrations can be achieved by activation of an inducible NOS isoform (iNOS) and may act as a potent mediator of inflammation in immune-mediated renal diseases. Selective inhibition of iNOS may, therefore, become a novel anti-inflammatory approach in the treatment of glomerulonephritis. Based on experimental data, the potential importance of NO and other metabolites of L-arginine in the pathophysiology and therapy of renal diseases is summarized in this article.

□ Conclusion

Modulation of the renal L-arginine/NO-system represents a promising therapeutic target in the treatment of acute an chronic kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Albina, J. E., C. D. Mills, A. Barbul, C. E. Thirkill, W. L. Henry Jr, B. Mastrofrancesco, M. D. Caldwell: Arginine metabolism in wounds. Amer. J. Physiol. 254 (1988), E459-E467.

    PubMed  CAS  Google Scholar 

  2. Albina, J. E., C. D. Mills, W. L. Henry Jr, M. D. Caldwell: Temporal expression of different pathways of L-arginine metabolism in healing wounds. J. Immunol. 144 (1990), 3877–3880.

    PubMed  CAS  Google Scholar 

  3. Bachmann, S., P. Mundel: Nitric oxide synthase in the kidney: synthesis, localization and function. Amer. J. Kidney Dis. 24 (1994), 112–129.

    CAS  Google Scholar 

  4. Border, W. A., N. A. Noble: Transforming growth factor-β in tissue fibrosis. New Engl. J. Med. 331 (1994), 1286–1292.

    Article  PubMed  CAS  Google Scholar 

  5. Cattell, V., H. T. Cook: Nitric oxide: role in the physiology and pathology of the glomerulus. Exp. Nephrol. 1 (1993), 265–280.

    PubMed  CAS  Google Scholar 

  6. Cattell, V., H. T. Cook, S. Moncada: Glomeruli synthesize nitrite in experimental nephrotoxic nephritis. Kidney int. 38 (1990), 1056–1060.

    Article  PubMed  CAS  Google Scholar 

  7. Cattell, V., P. Largen, E. DeHeer, T. Cook: Glomeruli synthesize nitrite in active Heyman nephritis: the source is infiltrating macrophages. Kidney int. 40 (1991), 847–851.

    Article  PubMed  CAS  Google Scholar 

  8. Cattell V., E. Lianos, P. Largen, T. Cook: Glomerular NO synthase activity in mesangial cell immune injury. Exp. Nephrol. 1 (1993), 36–40.

    PubMed  CAS  Google Scholar 

  9. Chen, P. Y., P. L. St. John, K. A. Kirk, D. R. Abrahamson, P. W. Sanders: Hypertensive nephrosclerosis in the Dahl/Rapp rats. Lab. Invest. 68 (1993), 174–184.

    PubMed  CAS  Google Scholar 

  10. Cook, H. T., H. Ebrahim, A. S. Jansen, G. R. Foster, P. Largen, V. Cattell: Expression of the gene for inducible nitric oxide synthase in experimental glomerulonephritis in the rat. Clin. exp. Immunol. 97 (1994), 315–320.

    PubMed  CAS  Google Scholar 

  11. Cook, H. T., A. Jansen, S. Lewis, P. Largen, M. O’Donnell, D. Reaveley, V. Cattell: Arginine metabolism in experimental glomerulonephritis: interaction between nitric oxide synthase and arginase. Amer. J. Physiol. 267 (1994), F646-F653.

    PubMed  CAS  Google Scholar 

  12. Cook, H. T., R. S. Sullivan: Glomerular nitrite synthesis in in situ immune complex glomerulonephritis in the rat. Amer. J. Pathol. 139 (1991), 1047–1052.

    CAS  Google Scholar 

  13. De Nicola, L., R. C. Blantz, F. B. Gabbai: Nitric oxide and angiotensin II. J. clin. Invest. 89 (1992), 1248–1256.

    Article  PubMed  Google Scholar 

  14. De Nicola, L., S. C. Thomson, L. M. Wead, M. R. Brown, F. B. Gabbai: Arginine feeding modifies cyclosporine nephrotoxicity in rats. J. clin. Invest. 92 (1993), 1859–1865.

    Article  PubMed  Google Scholar 

  15. Ferrario, R., K. Takahashi, A. Fogo, K. F. Badr, K. A. Munger: Consequences of acute nitric oxide synthesis inhibition in experimental glomerulonephritis. J. Amer. Soc. Nephrol. 4 (1994), 1847–1854.

    CAS  Google Scholar 

  16. Furchgott, R. F., J. V. Zawadski: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (Lond.) 288 (1980), 373–376.

    Article  CAS  Google Scholar 

  17. Glicklich, D., L. Swartz, N. Bank: Nitric oxide metabolites in acute renal allograft rejection. J. Amer. Soc. Nephrol. 6 (1995), 1087 (abstract).

    Google Scholar 

  18. Hibbs, J. B., Jr, R. R. Taintor, Z. Vavrin: Macrophage cytotoxicity: role for L-arginine deaminase and imino nitrogen oxidation to nitrate. Science 235 (1987), 473–476.

    Article  PubMed  CAS  Google Scholar 

  19. Hibbs, J. B. Jr, R. R. Taintor, Z. Vavrin, E. M. Rachlin: Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. biophys. Res. Commun. 157 (1988), 87–94.

    Article  PubMed  CAS  Google Scholar 

  20. Höltta, E., M. Auvinen, L. C. Andersson: Polyamines are essential for cell transformation by pp60v-src: Delineation of molecular events relevant for the transformed phenotype. J. Cell Biol. 122 (1993), 903–914.

    Article  PubMed  Google Scholar 

  21. Ignarro, L. J., G. M. Buga, K. S. Wood, R. E. Byrne, G. Chaudhuri: Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. nat. Acad. Sci. (Wash.) 84 (1987), 9265–9269.

    Article  CAS  Google Scholar 

  22. Ito, S., O. A. Carretero, K. Abe: Nitric oxide in the juxtaglomerular apparatus. Kidney int. 49, Suppl. 55 (1996), S6-S8.

    Google Scholar 

  23. Jänne, O. A., K. K. Kontula, V. V. Isomaa, C. W. Bardin: Ornithine decarboxylase in mouse kidney: a low abundancy gene product, regulated by androgens with rapid kinetics. Ann. N. Y. Acad. Sci. 438 (1984), 72–84.

    Article  PubMed  Google Scholar 

  24. Jansen, A., T. Cook, G. M. Taylor, P. Largen, V. Riveros-Moreno, S. Moncada, V. Cattell: Induction of nitric oxide synthase in rat immune complex glomerulonephritis. Kidney int. 45 (1994), 1215–1219.

    Article  PubMed  CAS  Google Scholar 

  25. Ketteler, M., F. Abou-Rebyeh, H. Peters, R. Langhoff, N. Noble, W. Border, A. Distler: Die Bedeutung von Polyaminen für die TGF-β-induzierte Fibronektinsynthese kultivierter Mesangiumzellen der Ratte (RMZ). Nieren- u. Hochdruckkr. 9 (1995), 535–536 (abstract).

    Google Scholar 

  26. Ketteler, M., W. A. Border, N. A. Noble: Cytokines and L-arginine in renal injury and repair. Amer. J. Physiol. 267 (1994), F197-F207.

    PubMed  CAS  Google Scholar 

  27. Ketteler, M., D. K. Brees, W. A. Border, N. A. Noble: Inhibition of polyamine synthesis reduces TGF-β-induced hypertrophy of cultured rat mesangial cells. J. Amer. Soc. Nephrol. 5 (1994), 694 (abstract).

    Google Scholar 

  28. Ketteler, M., N. Ikegaya, D. K. Brees, W. A. Border, N. A. Noble. L-arginine metabolism in immune-mediated glomerulonephritis in the rat. Amer. J. Kidney Dis. 28 (1996), 878–887.

    Article  CAS  Google Scholar 

  29. Ketteler, M., N. A. Noble, W. A. Border: Increased expression of transforming growth factor-β in renal disease. Curr. Opin. Nephrol. Hypertens. 3 (1994), 446–452.

    Article  PubMed  CAS  Google Scholar 

  30. Knowles, R. G., S. Moncada: Nitric oxide synthases in mammals. Biochem. J. 298 (1994), 249–258.

    PubMed  CAS  Google Scholar 

  31. Langrehr, J. M., R. A. Hoffinan, J. R. Lancaster Jr, R. L. Simmons: Nitric oxide — a new endogenous immunomodulator. Transplantation 55 (1993), 1205–1212.

    Article  PubMed  CAS  Google Scholar 

  32. Li, G., S. Regunathan, C. J. Barrow, J. Esharaghi, R. Copper, D. J. Reis: Agmatine, an endogenous clonidin-replacing substance in the brain. Science 263 (1994), 966–969.

    Article  PubMed  CAS  Google Scholar 

  33. Lortie, M. J., W. F. Novotny, O. W. Peterson, V. Vallon, K. Malvey, M. Mendonca, J. Satriano, P. Insel, S. C. Thompson, R. C. Blantz: Agmatine, a bioactive metabolite of arginine. J. clin. Invest. 97 (1996), 413–420.

    Article  PubMed  CAS  Google Scholar 

  34. Lowenstein, C. J., J. L. Dinerman, S. H. Snyder: Nitric oxide: a physiological messenger. Ann. intern. Med. 120 (1994), 227–237.

    PubMed  CAS  Google Scholar 

  35. Marletta, M. A.: Nitric oxide synthase structure and mechanism. J. biol. Chem. 268 (1993), 12231–12234.

    PubMed  CAS  Google Scholar 

  36. Marsden, P. A., B. J. Ballermann: Tumor necrosis factor α activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism. J. exp. Med. 172 (1990), 1843–1852.

    Article  PubMed  CAS  Google Scholar 

  37. Moncada, S., H. Higgs: The L-arginine-nitric oxide pathway. New Engl. J. Med. 329 (1993), 2002–2012.

    Article  PubMed  CAS  Google Scholar 

  38. Moncada, S., R. M. J. Palmer, E. A. Higgs Nitric oxide: physiology, pathophysiology, and pharmacology Pharmacol. Rev. 43 (1991), 109–143.

    PubMed  CAS  Google Scholar 

  39. Morrissey J., U. Alvarez, N. Kizer, S. Klahr: Agmatine activates nitric oxide synthase in endothelial cells. J. Amer. Soc. Nephrol. 6 (1995), 665 (abstract).

    Google Scholar 

  40. Narita, I., W. A. Border, M. Ketteler, N. A. Noble: Nitric oxide mediates immunologic injury to kidney mesangium in experimental glomerulonephritis. Lab. Invest. 72 (1995), 17–24.

    PubMed  CAS  Google Scholar 

  41. Narita, I., W. A. Border, M. Ketteler, E. Ruoslahti, N. A. Noble: L-arginine may mediate the therapeutic effects of low protein diets. Proc. nat. Acad. Sci. (Wash.) 92 (1995), 4552–4556.

    Article  CAS  Google Scholar 

  42. Nathan, C.: Nitric oxide as a secretory product of mammalian cells. FASEB J. 6 (1992), 3051–3064.

    PubMed  CAS  Google Scholar 

  43. Nathan, C., Q.-W. Xie: Regulation of biosynthesis of nitric oxide. J. biol. Chem. 269 (1994), 13725–13728.

    PubMed  CAS  Google Scholar 

  44. Palmer, R. M. J., A. J. Ferrige, S. Moncada: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (Lond.) 327 (1987), 524–526.

    Article  CAS  Google Scholar 

  45. Pegg, A. E.: Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 48 (1988), 759–774.

    PubMed  CAS  Google Scholar 

  46. Pfeilschifter, J., D. Kunz, H. Mühl: Nitric oxide: an inflammatory mediator of glomerular mesangial cells. Nephron 64 (1993), 518–525.

    Article  PubMed  CAS  Google Scholar 

  47. Raij, L., C. Baylis: Glomerular actions of nitric oxide. Kidney int. 48 (1995), 20–32.

    Article  PubMed  CAS  Google Scholar 

  48. Reyes, A. A., I. Karl, S. Klahr: Role of arginine in health and in renal disease. Amer. J. Physiol. 267 (1994), F331-F346.

    PubMed  CAS  Google Scholar 

  49. Reyes, A. A., M. L. Purkerson, I. Karl, S. Klahr: Dietary supplementation with L-arginine ameliorates the progression of renal disease in rats with subtotal nephrectomy. Amer. J. Kidney Dis. 20 (1992), 168–176.

    CAS  Google Scholar 

  50. Satriano, J., M. Lortie, C. J. Kelly, R. C. Blantz: Nitric oxide synthase (iNOS) activity is regulated by the arginine decarboxylase (ADC) pathway. J. Amer. Soc. Nephrol. 6 (1995), 669 (abstract).

    Google Scholar 

  51. Satriano, J., M. Lortie, V. Vallon, C. J. Kelly, R. C. Blantz: Ornithine decarboxylase (ODC) activity is regulated by agmatine. J. Amer. Soc. Nephrol. 6 (1995), 775 (abstract).

    Google Scholar 

  52. Shih, V. E.: Regulation of ornithine metabolism. Enzyme 26 (1978), 254–258.

    Google Scholar 

  53. Weinberg, J. B., D. L. Granger, D. S. Pisetzky, M. F. Seldin, M. A. Misukonis, S. N. Mason, A. M. Pippen, P. Ruiz, E. R. Wood, G. S. Gilkeson: The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J. exp. Med. 179 (1994), 651–660.

    Article  PubMed  CAS  Google Scholar 

  54. Worrall, N. K., W. D. Lazenby, T. P. Misko, T. S. Lin, C. P. Rodi, P. T. Manning, R. G. Tilton, J. R. Williamson, T. B. Ferguson Jr: Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J. exp. Med. 181 (1995), 63–70.

    Article  PubMed  CAS  Google Scholar 

  55. Yang, X., N. Chowdury, B. Cai, J. Brett, C. Marboe, R. R. Scianca R. E. Michler, P. J. Cannon: Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J. clin. Invest. 94 (1994), 714–721.

    Article  PubMed  CAS  Google Scholar 

  56. Yu, L., P. E. Gengaro, M. Niederberger, T. J. Burke, R. W. Schrier: Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc. nat. Acad. Sci. (Wash.) 91 (1994), 1691–1695.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketteler, M., Abou-Rebyeh, F., Frey, A. et al. Stickstoffmonoxid, L-Arginin und die Niere. Med. Klin. 93, 15–21 (1998). https://doi.org/10.1007/BF03045035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03045035

Schlüsselwörter

Key Words

Navigation