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A b s t r a c t  Problems concerned with learning the relationships 
between molecular structure and activity have been important test-beds for 
Inductive Logic programming (ILP) systems. In this paper we examine these 
applications and empirically evaluate the extent to which a first-order repre- 
sentation was required. We compared ILP theories with those constructed 
using standard linear reqression and a decision-tree learner on a series of 
progressively more difficult problems. When a propositional encoding is 
feasible for the feature-based algorithms, we show that such algorithms are 
capable of matching the predictive accuracies of an ILP theory. However, as 
the complexity of the compounds considered increased, propositional encod- 
ings becomes intractable. In such cases, our results show that ILP programs 
can still continue to construct accurate, understandable theories. Based on 
this evidence, we propose future work to realise fully the potential of ILP in 
structure-activity problem. 

Keywords: ILP, inductive, chemistry, comparison, regression, decision-tree 

w Introduction 
A central concern of chemistry is understanding the relationships 

between chemical structure and activity. In most cases, these relationships 
cannot be derived solely from physical theory and experimental evidence is 

essential. Such empirically derived relationships are called Structure Activity 
Relationships (SARs). In a typical SAR problem, a set of chemicals of  known 
structure and activity are given, and the problem is to construct a predictive 
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theory relating the structure of a compound to its activity. This relationship can 
them be used to select for structures with high or low activity. Typically, 
knowledge of such relationships form the basis for devising clinically effective 
non-toxic drugs. 

For some time, structure activity problems have been an important area 
of application for programs developed within the framework of Inductive Logic 
Programming 6'7'13). By using first-order logic as its representation language, 
Inductive Logic Programming (ILP) appears better suited to the efficient analy- 
sis of complex structured objects, like molecules, than programs that perform a 
feature-based analysis. Statistical methods, including traditional parametric 
techniques of regression, and modern non-parametric techniques of decision 
trees fall into this latter category. In this paper, we examine the case for ILP in 
the structure activity problems tackled to date. For these problems, we bring 
together results in historical sequence, and for each, we retrospectively consider 
the following: 

Question 
Was the first-order representation necessary, or is a propositional representation 
adequate? 

To judge "adequacy", we consider recoding the problems propositionally and 
compare the predictive performance of theories learnt with this representation 
against their ILP counterparts. As representatives of propositional learners, we 
use standard linear regression and the decision-tree program CART. z) The ILP 
program we first use is Golem.  11) Due to various restrictions within this program, 
we later adopt P r o g o l .  1~ 

Firstly, it should be noted that a learner using the richer, first-order 
representation can perform worse  than one using a propositional representation 
because of the restrictions used in many ILP learners. Further, a comparison on 
accuracy alone ignores the chemist's natural inclination to use a relational 
representation. Consequently, when judging adequacy, we also make a subjec- 
tive assessment of  the understandability and ease of use of  the propositional 
representation. 

For the problems considered, the results reported in this paper support 
the following answers to the question posed: 

Answer 1 
When propositional learning is feasible, ILP learners give results that are 
comparable in accuracy and chemically easy to understand; and 

Answer 2 
When propositional learning is infeasible, ILP learners still give good results. 

Propositional learning is taken to be 'feasible' if the data can be encoded with 
a reasonable number of  attributes (at most 1000). 
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The paper is organised as follows: Section 2 describes the structure 
activity problem and Sections 3-6 examine the Question posed in cases where 
ILP has yielded interesting results. The order of  cases is historical, and describes 
a line of  research that has progressively increased the complexity of  molecules 
considered to the point where ILP learners appear essential. In Section 7 we 
describe future work to explore the capabilities of an ILP learner in this field. 
Section 8 summarises and concludes this report. We caution the reader that we 
have not attempted detailed descriptions of  the materials and methods for each 
case study. For these, we provide adequate references to the literature. 

w Chemical Structure Activity Relationship (SAR) 
Forming a SAR is a basic step in drug design, and any method that can 

form improved SARs would speed up the process and perhaps help find better 
drugs. An average drug takes 12 years and ~ ~?10 8 to develop)  ) SARs are also 
important in environmental toxicology. It is very expensive and time consuming 
to carry-out toxicological tests, e.g. a carcinogenicity test of a chemical takes 
5 years to complete. 1) It is therefore desirable to have some method to predict 
toxicology from molecular structure. It is estimated that there 10 5 types of 
untested man-made potential carcinogens in the environment. 1) 

The traditional method of developing SARs is to use linear regression. 4'9) 
While other more sophisticated statistical methods are also commonly used, 12~ 
recently neural network and symbolic machine learning methods have also 
started to be applied. For  these methods a large number of  attribute based 
chemical representations have been developed e.g.: Hansch type parameters, 
topological descriptors, quantum mechanical descriptors, substructural units 
molecular shape (MS), and molecular fields (CoMFA).  

It is widely recognised in the SAR community that existing methods are 
poor  at representing chemical structure. There are two main methods used to try 
and get around the problem: the manual invention of  new structural attributes, 
and structural alignment. The former relies heavilly on chemical experience, and 
to some extent, trial and error. The latter forms the basis of  the CoMFA 
methodology. Here the chemicals are aligned to a 3 dimensional grid space, with 
the attributes being voxols of  space. This idea has been successful, but it needs 
chemicals to be able to be aligned in a meaningful way. This is not possible for 
heterogeneous compounds.  Further, the use of  voxol attributes produces large 
numbers of attributes (possibly hundreds) and special resampling statistical 
methods need to be applied to avoid forming spurious SARs. 

In contrast to the attribute-based representation, the constructs used by 
chemists in normal discourse are relational. These relational representations are 
either based on a tom/bond  connectivities or on Cartesian co-ordinates. Estab- 
lished knowledge of  this form finds only restricted expression within feature 
based analysis tools, and hence the interest in the role of  ILP in developing 
SARs. First, it may be possible to discover relationships that are inaccessible to 
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a conventional method (because the SAR is relational), and second, it is 
possible to express the SARs in a language easily understood by chemists. The 
question in Section 1, aims to examine the extent to which ILP has been 
successful on these two fronts. 

w Case Study 1: E. Coli Dihydrofolate Reductase by Pyrimidines 

3.1 Problem Description 
We first consider the classic drug design problem of  inhibition of  E. Coli 

Dihydrofolate Reductase and Pyrimidines. Pyrimadine compounds are antibi- 
otics. They act by inhibiting Dihydrolate Reductase, an enzyme on the pathway 
to forming DNA. They inhibit bacterial forms of  the enzyme preferentially to 
the human form and therefore kill bacteria. Further details on experimental 
design are available in Ref. 6). 

3.2 Representation 
In this problem, the chemicals structures of  all compounds used to induce the 

SAR can be considered to have a common template (see Fig. 1). To this template, 
chemical groups can be added at three possible substitution positions, 3, 4, and 
5. A chemical group is an atom or set of  structurally connected atoms that can 
be substituted together as a unit and have well defined chemical properties. 

R4 H= 

A ~s 

ci 

NH H2 

B 

Fig. 1 Chemical structure of pyramidine compounds. (A) Generic template for all compounds in the 
study; and (B) An example compound: 3--Cl, 4--NH2, 5--CH3. 

(1~ ILP representation 
The existence of  a template with only three possible substitution posi- 

tions gives the pyrimidine problem a relatively small structural component.  The 
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chemical structure of  the example compound in Fig. 1 is adequately represented 
by a Prolog fact of  the form: 

struc(d55, cl, nh2 ch3) 

which is intended to represent that drug 55 has a chlorine atom substituted at 
position 3, a amino group (NH2) group substituted at position 4, and a methyl 
(CHs) group at position 5. 

In Ref. 6), the authors use 9 integer-valued attributes to represent chemi- 
cal properties of the substituents. These are shown in Fig. 2. These were encoded 
as predicates of the form: 

polar(br, polar3) 

which states that a bromine atom has a polari ty of value 3. 
Positive examples are pairs of drugs, the activity of  one being known to 

be higher than the other. For  example: 

great(dl, d2) 

states that the E. Coli Dihydrofolate Reductase inhibition by drug d l  is higher 
than that by d2. 

(2] Propositional represention 
The chemical structures used in Ref. 6) can be encoded by 27 integer- 

valued attributes (nine each for positions 3, 4, and 5). In order to learn the same 
pairwise comparison relationship considered by an ILP program, each example 
is actually a pair of  drugs. The simple-minded approach of concatening the sets 
of  attributes for each drug appears to be adequate. Thus each drug-pair can be 
represented by 54 attributes. 

To be fully comparable to the ILP learner, a propositional learner also 
has to account for the fact that former has access to predicates that, for each drug 
pair, allow pairwise comparison of chemical properties for each of  the positions. 
For  each drug-pair comparisons are possible for substituent at six positions 
(three of each drug). For  example, it is possible to express that the polarity of 
the substituent at position 3 is the same as, or greater than the polarity of  the 
substituent at position 4. To be able to express the same, a propositional learner 
would require an additional 2 x 6C2 = 30 boolean-valued attributes for each 
property considered (the multiplicative factor 2 arises from the need to have 1 
attribute for equality, and 1 for expressing if one value is greater than the other). 
Mutal comparison of  the 9 properties (Fig. 2), at 3 substituent positions there- 
fore requires 9 x 30 = 270 boolean-valued attributes. 

Our preliminary experiments however, suggested thet the predicates for 
comparison were not of  much use for the ILP learner. Consequently, we did not 
encode these addidtional attributes for the propositional learners. As will be 
seen in the following section, this omission does not cost us unduly. One 
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Chemical Property Number of Values (values in parentheses) 
Polarity 
Size 
Hydrogen-bond donor 
Hydrogen-bond acceptor 
pi-donor 
pi-acceptor 
Polarisability 
Sigma effect 

6 (polar0, polarl,...,polar5) 
6 (size0, sizel,...,sizeS) 
3 (h_doner0, h donerl, h_doner2) 
3 (h_acceptor, h_acceptor, h_acceptor) 
3 (p_doner0, p donerl, p_doner2) 
3 (p_acceptor0, p_acceptorl, p_acceptor2) 
4 (polarisible0,...,polarisible3) 
6 (sigma0, sigmal,...,sigma5) 

Fig. 2 Chemical properties of substituents and their valuea. 

Number of compounds 55 Number of compounds 
Number of positive examples 1 3 9 4  Number of positive examples 
Number of negative examples 1 3 9 4  Number of negative examples 
Background clauses 2116 Attributes per example 

(A) ILP (B) Propositional 

Fig. 3 Data summaries for Dihydrofolate Reductase by pyrimidines. 

55 
1394 
1394 
55 

additional boolean-valued attribute is required to specify if the first drug in the 
pair has higher activity than the second. 

A summary of the sizes of background knowledge and examples for both 
ILP and propositional learners is in Fig. 3. 

3 .3  Experimental Results 
The ILP program Golem was used to develop a SAR for the compounds. 

The mean accuracies calculated from a five-fold cross-validation study of the 
data is in Fig. 4. Linear regression was done stepwise using the program Minitab 
with variables and their squares (this allows for some simple non-linearities). 
Figure 5 gives a summary description of the theory resulting from each method. 
Golem's mean Spearman rank correlation coefficients with the true activity 
ordering is 0.684. This is not significantly higher (P = 0.05) that the results 

Method Mean Spearman's rank 
Golem 0.684(0.107) 
Regression 0.654(0.104) 
CART 0.499(0.294) 

Fig. 4 Rank correlation of predicted activity ordering against true ordering of pyramidine com- 
pounds. Mean Spearman's rank correlation coefficient calculated from a five-fold cross- 
validatation. Standard deviations are in parentheses. 

Fig. 5 

Method Description of theory 
Golem 9 clause Prolog program 
Regression Equation with 7 independent variables 
CART Classification tree with 49 leaves 

Description of theories produced for Dihydrofolate Reductase inhibition by pyramidine 
compounds. Sizes of theories are averaged over results from each data split of the cross- 
validation. 
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achieved by the propositional learning methods. 
On the issue of chemical understandability, the Prolog rules found by 

Golem for the SAR are easily comprehensible and can be simply translated into 
meaningful rules for a chemist. An example is shown in Fig. 6. 

great(Drugl ,Drug2):- 
struc(Drug I ,Pos_3,Pos 4,_), 
struc(Drug2 . . . . .  h), 
h donor(Pos 3,h don0), 
pi acceptor(Pos_3,pi_acc0), 
polar(Pos_3,Polarity), 
great0_polar(Pola rity), 
size(Pos_3,Size), 
less3_size(Size), 
polar(Pos_4,~. 

Drugl inhibits more than Drug2 if 
Drugl has a position 3 substituent which 

is a hydrogen-bond donor with value 0; 
is a pi-acceptor with value 0; 
has polarity greater than 0; 
has size less than 3; and 

Drugl has a substituent at position 4 (i.e. not hydrogen); and 
Drug2 does not have substituent at position 5 

Fig. 6 A Gotem SAR rule for comparing Dihydrofolate Reductase inhibition by a pair of  pyramidine 
drugs, and its English translation. 

From the Golem rules it is possible to deduce certain facts about the 
physical mechanism of inhibition: for example, that positions 3 and 5 of the 
template are partially buried within a hydrophobic environment. These deduc- 

Regression: 

Activity = 0.44 + 0.66( • 0.21 ) PO3 -- 0.82( -+- 0.23 ) PO32 + 0. ! 1 ( • 0.05) zcA4 
+0 .79( •  0.94(• + 1.10(•177 z 

(1) 

CART: 
a27 < 0.5: 

a46< --0.5: 
al < --0.5: 

a38<4:  
al I <4 :  

a29< 1.5: 
a44 < 0.5: 

a38<2.5: 
I a l 0 <  - - 0 . 5 : + 0 + 2 0  
I a l 0 >  = - - 0 . 5 :  
I I a l 0 < 4 . 5 : + 3 5 + 1 1  
I I a l 0 >  = 4 . 5 : + 0 + 2 0  
a38> = 2 . 5 : + 3 + 6 0  

a44> =0.5: 
(etc 

Fig. 7 An example of  propositional theories for Dihydrofolate Reductase inhibition by a pair of 
pyramidine drugs. The independent variables in the regression equation are as follows: PO3: 
polarity of substituent at position 3; JrA4,5: pi-acceptor values of substituents at positions 4,5; 
SZs: size of substituent at position 5; and FLs: flexibility of substituent at position 5. 
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Regression: 
Drugl inhibits more than Drug2 if 

Drugl has a position 3 substituent which 
has a small size; 
has low flexibility; and 

Drugl has a position 4 substituent which 
is involved in a pi-bond 

CART: 
Drugl inhibits more than Drug2 if 

Drugl has a position 3 substituent which 
is a hydrogen-bond donor with value 0; 
has polarity that is not 0; and 

Drugl has a position 4 substituent which 
has polarity that is not O; and 

Drugl has a substituent at position 5 (i.e. not hydrogen) 

Fig. 8 Some SARs extracted by propositional learners for comparing Dihydrofolate Reductase 
inhibition by a pair of pyramidine drugs. 

tions have been shown to be true by physically co-crystaltising Dihydrofolate 
Reductase with pyrimidines. 

Interpreting the results of linear regression and CART are not as straight- 
forward. An example of  results from one of  the cross-validation runs is in Fig. 
7 (for reasons of space, only part of  the C A R T  tree is shown). Figure 8 shows 
some general chemical trends that we have been managed to extract from the 
output of  the prqposit ional learners. 

w Case Study 2: E. Coli Dihydrofolate Reductase by Triazines 

4.1 Problem Description 
The study in Section 3 was extended to the inhibition of  E. Coli 

Dihydrofolate Reductase by triazines. Triazines act as anti-cancer agents by 
inhibiting the enzyme Dihydrolate Reductase. They act by preferentially inhibit- 
ing reproducing cells. Further details on experimental design are available in 
Ref. 5). 

4 . 2  Representation 
Like the pyrimidines, the triazines can also be considered to have a 

common template structure (see Fig. 9). However, the chemical groups substituted 
onto the template are much more complicated than those in Section 3. Further, many 
of  the substituting groups can more naturally be considered as sub-templates 
with substitutions. There are seven regions where a substituent might be present: 
the 2, 3, and 4 positions of  the phenyl ring as shown in Fig. 9. Each substituent 
at positions 3 and 4 can in turn, itself contain a ring structure. In this case, 
further substitutions are possible into positions 3 and 4 of each additional rings. 

[1] ILP representation 
The first-order representation of  the triazines is best explained using an 
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Fig. 9 Chemical structure of triazine compounds. (A) Generic template for all compounds in the 
study; and (B) An example compound: 3--Cl, 4--(CH2)3C6H~--4--Cl, 5--CHs. 

example. The example compound in Fig. 9 is represented by the following 
Prolog facts: 

struc3(d217, cl, absent). 
struc4(d217, (ch2)3, substl4). 
subst(substl4, so2f, cl). 

The first clause represents substitutions at position 3 on the basic tem- 
plate: a CI is present and there is an absence of  a further phenyl ring. The second 
clause represents substitutions at position 4 on the basic template: there is a 
(CH2)3 bridge to a second phenyl ring (implicit in the representation). This 
second phenyl ring has a SOzF group substituted at position 3 and a CI group 
substituted at position 4. This is represented using the linker constant substl4 to 
the third clause. There is no substitution at position 2 on the basic template. 
Each of the chemical groups had 10 attributes, 9 of which were the same as used 
in the study of pyrimidines. One further attribute was added to capture 
flexibility of a substituent. The degree of flexibility is represented by one of 9 
values. 

As in the previous study, examples are pairwise comparisons of the 
inhibitions of E. Coli Dihydrofolate Reductase. 

[2] Propositional representation 
We adopt the following propositional encoding for the data. Substitu- 

tions at the main position 2 are relatively rare and are ignored. 20 integer-valued 
attributes are required for the substitution positions 3, and 4; and lO attributes 
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Number of compounds 186 Number of compounds 
Number of positive examples 1 7 0 6 3  Number of positive examples 
Number of negative examples 17063  Number of negative examples 
Background clauses 1 9 3 3  Attributes per example 

(A) ILP (B) Propositional 

Fig. 10 Data summaries for Dihydrofolate Reductase by triazines. 

186 
17063 
17063 
121 

each for the possible substitutions on rings (if  present) at the main positions 3 
and 4. This gives a total of 60 attributes. As before, examples are actually 
drug-pairs, each of  which can be represented by 60 § 60 --- 120 attributes. 

Ignoring the substitution at the main position 2 leaves 6 possible substitu- 
tion positions for a drug. For a drug pair therefore, pairwise comparison of 
substituent properties requires 10 x 2 • 12C2 = 1320 boolean attributes. How- 
ever, as in Section 3, we found it unneccessary to include these binary attributes 
for comparison. Along with one additional attribute to specify the class value, 
each example is therefore a vector of  121 entries. 

A summary of  the sizes of  background knowledge and examples for both 
ILP and proposit ional learners is in Fig. 10. 

4 . 3  Experimental Results 
As before,, the ILP program Golem was used to develop a SAR for the 

compounds. The mean accuracies of  the different methods, calculated from a 
six-fold cross-validation study of  the data is in Fig. 11. Figure 12 gives a 
summary description of  the theory resulting from each method. Again, no one 
method's rank ordering is significantly better (P  : 0.05). 

As before, the main advantage of  the results obtained by Golem appears 
to be the comprehensibility of its SAR. The understandability of  the rules 
contrast favourably with the other two methods examined. The rules make 

Method Mean Spearman's rank 
Golem 0.431 (0.166) 
Regression 0.446(0.181 ) 
CART 0.532(0.121) 

Fig. 11 Rank correlation of predicted activity ordering against true ordering of triazine compounds. 
Mean Spearman's rank correlation coefficient calculated from a six-fold cross-validatation. 
Standard deviations are in parentheses. 

Method Description of theory 
Golem 7 clause Prolog program 
Regression Equation with 10 independent variables 
CART Classification tree with 78 leaves 

Fig. 12 Description of theories produced for Dihydrofolate Reductase inhibition by triazine com- 
pounds. Sizes of theories are averaged over results from each data split of the cross-validation. 
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several predictions, for example, that at position 4 there should be a substituent 
connected to a phenyl ring with polarity = 1. Unfortunately because triazines 
have not as yet been co-crystallised with Dihydrofolate Reductase, it is not 
possible to judge how well these rules correspond to physical reality. In contrast 
to Golem's results, we have found it difficult to extract any meaningful chemical 
predictions from the regression equation. The relatively large size of  the CART 
trees also pose a problem. We believe that they are broadly in consensus with the 
Golem rules, with additional constraints on the size of  substituents at position 
3. 

w Case Study 3: Design of Tacrine Analogues 

5.1 Problem Description 
The relational representation used in the pyrimidine and triazine prob- 

lems (Sections 3, 4) was then applied to a practical drug design problem of  direct 
clinical interest. The problem concerns the design of  analogues to the Alz- 
heimer's disease drug tacrine. For Alzheimer's disease there is no known protein 
structure to inhibit, there is not even a well defined biological mechanism of 
action. Four  biological/chemical properties are considered to be important  and 
sets of rules are to be constructed for each of  them: maximisation of  acetyl 
cholinesterase inhibition, maximisation of inhibition of  amine reuptake, max- 
imisation of the reversal of scopolamine-induced memory impairment, and 
minimisation of toxicity. The individual rule-sets would then aid in developing, 
if possible, potential drugs that satisfy all of  the sub-problems.* Further details 
on experimental design are available in Ref. 7. 

5.2 Representation 
A template based on the tacrine molecule is shown in Fig. 13. New 

compounds are created by substituting chemicals for R, 2"6 and )(7. The X 
substitutions are much like the ones already studied in Sections 3 and 4. The R 
substitutions are more complicated. For  the compounds in this study, the 
substitution consists of  one or more single alkyl groups linked to one or more 
benzene rings. The linkage can either be direct, or through N or O atoms, or 
through a CH bond. As is readily observed, the compounds considered are more 
complicated than those in either problem described before. This makes the 
tacrine problem more relational than the studies in Sections 3, and 4. 

(1) ILP representation 
As before, we describe the relational representation using the example 

compound in Fig. 13. It has a Chlorine (CI) substitution at position 7 and a 
complex substitution (CHz)2CH(4--FC~H4)z at position R. The position 7 

* This work was done in collaboration with Chemistry and Pharmaceutical Departments of  
Strathclyde University. 
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Chemical structure of tacrine analogues. (A) Generic template for all compounds in the 
study; and (B) An example compound. 

substitution is represented as follows: 

x_subst(n 1,7,cl). 

In the compounds considered here, the R substitution can have up to 3 chemical 
units linked together. These units are either alkyl groups (like CH2, CH) or ring 
(aromatic) structures. The latter can be benzyl derivatives that arise from 
substitutions within the basic benzene ring structure. There are 5 positions in the 
benzene structure at which a hydrogen atom may be substituted for a different 
chemical (one final position is reserved for linking up with the rest of the 
compound). The number of such substitutions in the basic benzene structure, the 
position of the substitutions on the actual substituent are provided. In the 
example compound considered here, the complex substitution at position R 
contains an alkyl chain and 2 substituted benzene groups. This is represented by 
the following facts: 

alk_groups(n 1, 4). 
r_subst_l (n 1, single_alk(2)). 
r_subst_2(n 1, double_alk(1)). 
r_subst_3(nl, 3, aro(2)). 
ring_substitution(nl, 1). 
ring_subst_4(n 1, f). 

which state 1) that drug nl has four alkyl groups; 2) the R substitution group 
in drug nl starts with two methyl groups ((CHz)z; 3) this is followed by an ethyl 
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group (CH); 4) the final alkyl group in drug nl has two substitutions; 5) drug 
n l has two aromatic rings; 5) the aromatic rings have one substitution; and 6) 
the aromatic rings have substitutions at position 4. 

The 10 attributes of chemical groups used in Section 4 are inherited here. 
For each of the biological/chemical properties analysed, examples are pairwise 
comparisons of the values of drugs for that property. For example: 

less_toxic(d 1,d2) 

states that the toxicity of drug d l  is less than that of d2. 

[2) Propositional representation 
The X substituents are adequately described by 20 attributes (10 each for 

positions 6 and 7). The following encoding can capture the R substitution 
structure. One integer-valued attribute is required to specify the number of single 
alkyl groups at the start of the R substitution. A further 10 integer-valued 
attributes are required to specify the chemical properties of the group. One 
four-valued categoric attribute is sufficient to specify the linkage to the benzene 
rings. One integer-valued attribute is needed to specify the number of rings. 
Since all rings are identical, it is sufficient to have 1 integer to indicate the 
number of substitution and 50 further attributes to describe the ring substituents 
(10 each for each of the five possible substituents). This is a total for each 
compound of 20 + 1 § 10 + 1 § 1 + 50 = 83 attributes. Following the ILP 
representation, examples are drug-pairs. Along with an attribute for class value, 
each such drug pair therefore requires 167 attributes. 

Unlike the studies in Sections 3 and 4, our preliminary experiments 
suggested that pairwise comparison of chemical properties of the substituents 
were important. For each drug pair, there are 16 possible substituent positions 
(in order, for each drug, 2 X substituents, 1 at the start of the R substitution, and 
5 possible substituents into a benzene ring), a comparison of any single property 
requires 2 x ~6C2 = 240 attributes. Mutual comparison of the 10 attributes, 
therefore requires 2400 attributes. In addition, for each drug pair, the following 

Number  of compounds 37 
Number  of positive examples 663 + 343 + 596 + 443 = 2045 
Number  of negative examples 663 + 343 + 596 + 443 = 2045 
Background clauses 580 

(A) ILP 

Number  of  compounds 37 
Number  of  positive examples 663 + 343 + 596 + 443 = 2045 
Number  of  negative examples 663 + 343 + 596 + 443 = 2045 
Attributes per example 2575 

(B) Proposit ional 

Fig. 14 Data summaries for tacrine analogues. Numbers of  positive and negative examples shown as 
summations of  numbers required for each of  the four sub-problems. 
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R substitution comparisons are also possible: the number of alkyl groups, the 
number ring substitutions, the number of single and double alkyl bonds. These 
require 2 • 4 = 8 boolean attributes, therefore requires 167 -t- 2400 -F 8 = 2575 
attributes. 

A summary of  the sizes of  background knowledge and examples for both 
ILP and proposit ional learners is in Fig. 14. 

5 . 3  Experimental Results 
Given the large number of  attributes required, propositional learning was 

deemed infeasible. Consequently, we do not report any comparative trials. 
Instead, we only describe the ILP-derived SAR and on a new drug suggested by 
the rules. For full details, we refer the reader to Ref. 7). An example rule for 
acetyl cholinesterase inhibition is in Fig. 15. This rule like many other found is 
quite relational and structural in nature. 

The Golem rules have been used to suggest a number of compounds that 
could prove to be less toxic to the human body than tacrine. Figure 16 shows 
one such compound. Unfortunately, we are not aware of  any laboratory tests 
having been performed to date on this compound.  

better_acinh(Drugl, DrugZ):- 
alk_groups(Drugl, N I), 
alk_groups(Drug2, N2), 
gt(N2, N I), 
ring_substitution(Drug2, I). 

Orugl inhibits acetyl cholinesterase more than Drug2 if 
The R substitution of Drug; ) has 

more alkyl groups than Drugl; and 
has a benzyl ring with I hydrogen atom substituted 

Fig. 15 A Golem SAR rule for comparing acetyl cholinesterase inhibition by a pair of  tacrine 
analogue drugs, and its English translation. 

Fig. 16 A compound proposed by Golem rules to have similar efficacy to tacrine, but with lower 
toxicity. 
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w Case Study 3: Nitroaromatic and Heteroaromatic Mutagens  

6 .1  Problem Description 
The problem concerns identification of  mutagenic nitroaromatic and 

heteroaromatic compounds. Mutagenicity a strong indicator of  carcinogenicity 
and is assessed using the Ames test. These compounds are very structurally 
heterogeneous (see Fig. 17). 

The task here is to distinguish compounds with Ames test mutagenicity 
greater than 0, from those for which this value is at most 0. Further details on 
experimental design can be found in Ref. 13). 

o ~ A ~  ~ :..o. 
CI S~ ~1 

:Sh L 

Fig. 17 Examples of the nitroaromatic and heteroaromatic compounds used in the mutagenesis study. 
(A) 3,4,4'-trinitrobiphenyl, (B) 2-nitro-l,3,7,8-tetrachlorodibenzo-l,4-dioxin, (C) 1,6-dinitro- 
9,10,11,12-tetrahydrobenzo [e] pyrene, (D) nitrofuraniton. 

6 .2  Representation 
Representing the pyrimidine, triazine and tacrine analogues relied on the 

existence of a template on which substitutional groups are added. Using a 
template has the disadvantage that the representational scheme has to be tailored 
for each individual problem. A more fundamental problem with templates is 
that many SAR problems the compounds involved are so diverse that they 
cannot reasonably be said to be variations of  a template. 
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~1~ ILP representation 
The obvious generic description of  compounds is to use atoms and their 

bond connectivities. Unfortunately, such a description could not be used by 
algorithms life Golem which require a deterministic representation. This is not 
a property of  the a tom/bond  representation, as a molecule is typically made up 
of  many linked atoms. 

The compounds were input into the molecular modelling p ro g ~m  
QUANTA using its chemical editing facility. QUANTA then automatically adds 
typing information and calculates approximate partial charges associated with 
each atom. The choice of  QUANTA was arbitrary, any similar molecular 
modelling package would have been suitable. The result is that each compound 
is represented by a sets of  facts of  the form: 

atom(127, 127_1, c, 22, 0.191) 
bond(127, 127_1, 127_6, 7) 

which states that in compound 127, atom number 1 is a carbon atom of  
Q U A N T A  type 22 with a partial charge of  0.191, and atoms 1 and 6 are 
connected by a bond of  type 7 (aromatic). This representation is not peculiar to 
the compounds in this study, and can be used to encode arbitrary chemical 
structures. 

Positive examples are those compounds whose log mutagenicity (mea- 
sured by the Ames test) is greater than 0. These compounds are termed 'active', 
and all others are deemed to be 'inactive'. 

C2~ Propositional representation 
The lack of  any well-defined template for the compounds poses some 

problems in capturing structural information in a propositional form. Consider 
the following straightforward method for encoding the data at hand. 

From QUANTA's typing mechanism, we can deduce that there are 726 
distinct atom types. 726 integer-valued attributes can be used to indicate the 
number of  atoms of each type present in a compound.  We now turn to the bond 
connectivities. A pair of  atoms may be connected to each other by one of 6 
different bond-types. A further 6 integer-valued attributes will be needed to 
encode the number of  bonds of each type for a molecule. 

This does not, by itself capture all that can be said with the language 
restrictions used by the authors of Ref. 13). In that encoding, it is also possible 
to state: 

(1) Bond connections between atoms of particular types; and 
(2) That  a compound has one or more atoms with at least (at most) some 

partial charge. 

For the first, we need to associate the number and type of bonds between 
each pair of  atom types. This requires a further 726 z integer-valued attributes to 
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specify the number of  bonds between atom-pairs, and 7262 integer-valued 
attributes to specify the bond type. Secondly, QUANTA identifies 529 charge 
constants in the data. With 529 integer-valued attributes, it is possible to specify 
the number of atoms in the compound with partial charge that is at least that of 
the corresponding QUANTA constant. 529 more will be needed to specify the 
number with at most that value. The data available in Ref. 3) also provide 4 
attributes identified by chemists as being potentially relevant. These can be used 
directly by bothe proposit ional and ILP learners. They are: 

(1) The hydrophobici ty of the compound (termed logP); 
(2) The energy level of the lowest unoccupied moelcular orbital (termed 

LUMO); 
(3) A boolean attribute identifying compounds with 3 or more benzene rings 

(termed I1); and 
(4) A boolean attribute identifying a sub-class of compounds termed acen- 

thryles (termed Ia). 

One additional boolean-valued attribute is needed to indicate if the compound's  
Ames mutagenicity is greater than 0 oherwise. This accounts for a total of  726 + 
6 § 7262 § 7262 -4- 529 + 529 § 4 -4- 1 = 1055947 attributes to specify each 
compound. 

A summary of  the sizes of background knowledge and examples for both 
ILP and proposit ional learners is in Fig. 18. 

Number of compounds 230 
Number of positive examples 138 
Number of negative examples 92 
Background clauses 12203 

(A) ILP 

Number of compounds 230 
Number of positive examples 138 
Number of negative examples 92 
Attributes per example 1055947 

(B) Propositional 

Fig. 18 Data summaries for mutagens 

6 . 3  Experimental results 
As in Section 5, propositional learning with all attributes is intractable. 

However, unlike the data in that Section, we do have access to four attributes 
that have been shown to be useful for a regression analysis. Using these 
attributes, the compounds had previously been split into two subsets by the 
authors of Ref. 3), 188 compounds that were known to be amenable to regres- 
sion, and 42 that were not. We are therefore in a position to examine the 
performance of  an ILP learner in a setting where linear modelling by regression 
is known to be inadequate for a subset of the data. 

Given the non-determinate nature of  the a tom/bond representation (a 
given compounds has more than one atom, each associated with one or more 
bond connections), the ILP program Golem is unsuitable. Consequently, we use 
the more recent Progol system) ~ The proposit ional learners are as before. 
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However, they use the four attributes that have proven value. We further adopt 
the convention of learning rules for the minority class for each of the two 
distinct subsets identified by the chemists in Ref. 3). This is the 'inactive' class 
for the 188 compounds, and the 'active' class for the 42 compounds. This 
convention is in variance with that adopted in Ref. 13), where the authors learn 
rules for the 'active' class only. Figures 19 and 20 tabulate the comparative 
performance of the two forms of learning for the sets of data. Figures 21 and'22 
give a summary description of the theory resulting from each method. There is 
no significant loss in accuracy (P = 0.05) in using Progol on the subset known 
to be well-suited for propositional learning. In contrast, as expected, linear 
regression performs significantly worse than either of the logic-based learners on 
the subset of 42 compounds. 

The Progol SAR does have the advantage that it did not need the use of 
any specially tailored 'indicator' variables to include structural information. In 
contrast, these were crucial for the regression analysis. Figures 23 and 24 
tabulate the comparative performance of the two forms of learning for the sets 

Method Estimated Accuracy 
Progol 0.84 
Regression 0.89 
CART 0.88 

Fig. 19 Estimated accuracy of theories for mutagenicity. Data are the 188 compounds known to be 
adequately explained by a regression analysis. Accuracy is esti'rnated from a ten-fold cross- 
validation. 

Fig. 20 

Method Estimated Accuracy 
Progol 0.83 
Regression 0.69 
CART 0.83 

Estimated accuracy of theories for mutagenicity. Data are the 42 compounds known to be 
unsuitable for a regression analysis. Accuracy is estimated from a leave-one-out procedure. 

Fig. 21 

Method Description of theory 
Progol 4 clause Prolog program 
Regression Equation with 4 independent variables 
CART Classification tree with 3 leaves 

Description of theories produced for mutagenicity. Data are 188 compounds known to be 
adequately explained by a regression analysis. 

Method Description of theory 
Progol 1 clause Prolog program 
Regression Equation with 4 independent variables 
CART Classification tree with 2 leaves 

Fig. 22 Description of theories produced for mutagenicity. Data are 42 compounds known to be 
unsuitable for a regression analysis. 
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Method Estimated Accuracy 
Progol 0.84 
Regression 0,83 
CART 0.82 

Fig. 23 Estimated accuracy of theories for mutagenicity. Data are the 188 compounds known to be 
adequately explained by a regression analysis. Indicator variables have been masked out for 
Regression and CART. Accuracy is estimated from a ten-fold cross-validation. 

Fig. 24 

Method Estimated Accuracy 
Progol 0.83 
Regression 0,71 
CART 0.83 

Estimated accuracy of theories for mutagenicity. Data are the 42 compounds known to be 
unsuitable for a regression analysis. Indicator variables have been masked out for Regression 
and CART. Accuracy is estimated from a leave-one-out procedure. 

Fig. 25 

inactive (A):- 
atm(A, C, c, 10, D), 
Iogp(A, B), Iteq(B, 2.070). 

A compound is not mutagenic if 
it has an aliphatic carbon atom (QUANTA type 10); and 
a hydrophobicity value of at most 2.070 

A Progol SAR rule for mutagenic (in)activity, and its English translation. 

Regression: 

Ac t i v i t y  = - 2.94( _+ 0.33) + 0.10( +_O.08)logP - 1.42( _+0.16)LUMO 
-- 2.36(_+0.50) 1a + 2.38(0.23)11 (2) 

CART: 
II = I: Active 
II = 0 :  
[ LUMO < --2.141: Active 
I LUMO > = --2.14h Inactive 

Fig. 26 Propositional theories for mutagenic activity. 

U 

V ~  y - -  Z 

W X 

Fig. 27 Structural alert for mutagenicity found by Progol. Data are 42 compounds known to be 
unsuitable for a regression analysis. 
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of  data, when the non ILP learners have been denied access to the indicator 
variables. 

Figure 25 shows an example of a Progol rule obtained on the set of  188 
compounds. Figure 26 shows the corresponding theories constructed by the 
propositional learners. 

There appears to be little to choose in accuracy or simplicity between 
Progol and CART. The definition of inequalities (lteq/2, gteq/2) provided'as 
background knowledge to Progol confines comparisons of  hydrophobici ty and 
energy values to constants that actually appear in the data. CART's  comparisons 
are not restricted in this fashion. This appears to give it a certain robustness in 
obtaining good numerical thresholds. Of course, it is possible that numerical 
features like hydrophobici ty and molecular energies may not always be avail- 
able for new or complex molecular structures. In such cases, a Progol theory 
conveys much more information to a chemist, as it is readily visualised from 
atomic and bonding relationships. A case in point is the different SARs 
obtained by Progol and CART for the 42 'regression unfriendly' compounds. 
The Progol SAR identifies the structure shown in Fig. 27 as being mutagenic. 
This appears to be a new structural alert for mutagenicity. Contrast this with the 
SAR extracted by C A R T  in Fig. 28. 

hydrophobicity < 1.195: Active 
hydrophobicity > = I. 195: Inactive 

Fig. 28 Classification tree for mutagenicity found by CART.  Data are 42 compounds known to be 
unsuitable for a regression analysis, 

w Future Work 
We believe that the ability to use atom and bond connectivities give ILP 

programs an edge over other simple structural analysis methods. We are current- 
ly looking to consolidate and extend the use of  such information to problem 
involving heterogeneous compounds. To this end we plan to participate in an 
international competit ion to predict chemical carcinogenesis in rodents 1). The 
test compounds are currently being assayed in mice and rats. The compounds are 
very heterogeneous and should suit our a tom/bond  connectivities methodology. 

We also intend to take advantage of  Progol's ability to use arbitrary 
Prolog programs as background knowledge. This allows us to give Progol more 
knowledge about higher level structural features, building on our simple a tom/  
bond connectivities. For  example, this could be Prolog programs encoding 
knowledge of aromatic and non-aromatic ring systems and how they can be 
connected. This information is generic and so can be reused in different SAR 
problems. 

The next logical step in representing chemical structure is to add three- 
dimensional information for the compounds studied. We are studying the use of  
three-dimensional Cartesian co-ordinates for atoms. To test this new representa- 
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t ion we intend to study a series Chloroflurocarbons (CFCs) in an international 
comparative trial on the dataset. The data consists of ~ 50 compounds.  For 
each compound the most stable conformations are given, giving in total around 
200 structures. We intend applying Progol to this database. The atom and bond 
predicates previously used are extended to by adding a predicate that computes 
the distance in 3-D space between stoms, and a predicate that computes the angle 
between any three atoms. If this approach proves successful, it eliminates the 
need to explicitly align compounds, since in effect, this is automatically accom- 
plished by the induction procedure. 

A distant extension to our SAR work is to use CoMFA type representa- 
tions. This would be similar to the proposed representation using distance and 
angle predicates, but would involve a more regular coverage of  space. 

w Conclusions 
The advantages ILP has demonstrated as a SAR method are its ability to 

deal efficiently with inductive problems concerning complicated molecular 
structures, and its ability to produce rules that are readily comprehensible by 
chemists and translatable into the language of  normal chemical discourse. 

Four  application problems are reviewed in this paper: inhibit ion of 
dihydrofolate reductase by pyrimidines, inhibit ion of dihydrofolate reductase by 
triazines, design of tacrine analogues, and the mutagenesis prediction of nitro- 
aromatic and heteroaromatic compounds. The reasons for this ordering of  the 
problems is both historical reflects an increasing diversity of molecules. In our 
first work on pyrimidine analogous, the basic structural representation was a 
simple sequence. In the triazine analogues, the representation was a simple 
branched tree. For  the mutagens, the compounds were represented as arbitrary 
graphs. 

While the case studies in this paper represent almost four years of  ILP 
research into chemical SAR problems, we are still far from establishing ILP as 
a standard SAR method in chemistry laboratories. However, we believe that 
these studies have fulfilled an important role: professional SAR chemists, with 
no direct Machine Learning have started to take an interest in the method. We 
have collaborated with Professor Harris (Institute of  Molecular Medicine, 
University of Oxford), on improvements of  suramin analogues. There is also 
active interest in ILP at the pharmaceutical companies Rhone-Poulenc Rorer 
and Pfizer. 

At various stages of  this research, it was suggested that proposit ional 
representation schemes are sufficient for all the problems considered. Our aim 
here was to show that while this is true for simple template-based structures, 
with arbitrarily complex chemical structures and background knowledge, 
propositional representations become unmanageable. Admittedly, our study has 
been limited to fairly simple encodings for propositional learners that use 
fixed-length attribute lists. A class of proposit ional learners that could poten- 
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tially be o f  interest is that  which al low for propos i t ional  learning in infinite 

attr ibute spaces. Fo r  such learners, problems such as those in Section 6 should 
be tractable. In that  problem,  on average, a c o m p o u n d  only  has 9 different a tom 

types, 3 different b o n d  types, and 8 different charge constants. On average, 
therefore a learner capable  o f  variable length at tr ibute lists would  require only  
9 + 3 + 92 + 9 z + 8 + 8 + l = 191 attributes for each compound .  Whi le  we 

are unaware  o f  any implementa t ions  o f  such learners, we believe that  they c,ruld 

potent ia l ly  construct  useful theories. 
The advent o f  an efficient I L P  program Progol that  is capable  o f  utilising 

non-determinate,  n o n - g r o u n d  background  knowledge  has opened up the possi- 
bili ty o f  analysing arbi t rary chemical  structures. With  the generic representat ion 
scheme based on a toms and their bond  connectivit ies,  we believe that  we are 

now in a posi t ion to employ  fully the power  o f  first-order learning to find 
principles that relate chemical  activity to structure. 
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