Skip to main content
Log in

The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

Coccolithophores are one of the main groups of marine phytoplankton playing key roles in the marine eco-system as primary producers and in marine biogeochemistry. These organisms have gained considerable attention as they play a unique role in the global carbon cycle because of their combined effects on both the organic carbon and the carbonate pump. In addition to steady advances in research on coccoliths as biogeochemical agents and palaeontological proxies were obtained knowledge of the biology of these organisms has progressed considerably in recent years. It is now clear that holococcolithophores are not autonomous but stages in the life cycle of heterococcolithophores. A general introduction to the taxonomy and biology of extant coccolithophores is followed by a brief overview of the environmental parameters affecting these phytoplanktonic organisms and their biogeography. Another chapter summarizes the investigations on coccolithophores in the Arabian Sea which were conducted during the past years to produce a synthesis of the production of living coccolithophores in the photic zone, their transformation to settling assemblages, their accumulation on the seafloor, and their final burial in the Sediments. In the following, applications of coccolithophores to palaeoenvironmental analyses are provided as case studies. In particular, the usage of both ecologically restricted species, such asFlorisphaera profunda, for palaeoproductivity studies and of a new coccolithophore-based palaeother-mometry for surface-water reconstructions are presented. In addition, haptophyte-specific biomarkers (long-chain alkenones) are reviewed and their applicability for palaeoceanographical reconstructions is demonstrated.

Kurzfassung

Coccolithophoriden, einzelliges marines Phytoplankton, stellen eine der Hauptprimärproduzenten in den Ozeanen dar. Diesen Algen (Haptophyta) kommt als Karbonatproduzenten und photoautotrophe Organismen eine bedeutende Rolle im Kohlenstoffkreislauf zu, den sie sowohl über die Karbonat- als auch über die biologische Pumpe beeinflussen. Trotz der intensiven Fortschritte in der Bearbeitung als Träger biogeochemischer Informationen und ihrer steigenden Bedeutung als Paläoumweltindikatoren ist der Kenntnisstand über die Biologie von Coccolithophoriden erst in jüngster Zeit wesentlich erweitert worden. Es hat sich gezeigt, dass Holococcolithophoriden keine autonomen Organismen, sondern Phasen im Lebenszyklus von Heterococcolithophoriden sind. Nach einer Einführung in die Taxonomie und Biologie von Coccolithophoriden werden die Umweltparameter, die diese Phytoplank-tongruppe beeinflussen, vorgestellt und ihr Vorkommen sowohl geographisch als auch ökologisch beschrieben. Das folgende Kapitel stellt beispielhaft die Bildung des geologischen Signals von Coccolithophoriden dar. Hierzu wurden Planktongemeinschaften aus dem Oberflächenwasser mit Sinkgemeinschaften aus Partikelfallen sowie den unterla-gemden Oberflächensedimentgemeinschaften verglichen und bewertet. In den folgenden Fallstudien wird auf die Bedeutung von Coccolithophoriden als Paläoumweltindikatoren eingegangen. Insbesondere werden die Anwendung einzelner, ökologisch relevanter Arten, wie die in der tieferen photischen Zone lebendeFlorisphaera profunda, für Paläoproduktivitätsrekonstruktionen sowie eine neue, auf Coccolithophoridenarten basierende Rekonstruktion von Oberflächenwassertemperaturen dargestellt. In vielen paläozeanographischen Arbeiten werden Haptophyten-spezifische Biomarker (langkettige Alkenone) intensiv für Temperaturrekonstruktionen genutzt. Im Vergleich zu anderen planktischen Karbonatproduzenten zeigt sich, dass Coccolithophoriden heute und im Pleistozän einen wesentlichen Anteil am Eintrag von (anorganischen) Kohlenstoff in das geologische Archiv ausmachen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahagon, N.;Tanaka, Y. &Ujiie, H. 1993.Florisphaera profunda, a possible nannoplankton indicator of late Quatemary changes in sea-water turbidity at the northwestern margin of the Pacific. — Marine Micropaleontology22: 255–273.

    Google Scholar 

  • Andruleit, H. 1997. Coccolithophore fluxes in the Norwegian-Green-land Sea: seasonality and assemblage alterations. — Marine Micropaleontology31: 45–64.

    Google Scholar 

  • Andruleit, H.;Rogalla, U.;Stäger, S.;Bruns, A. 2005. From Irving communities to fossil assemblages: origin and fate of coccolithophores in the northern Arabian Sea. — Micropaleontology 50/1.

  • Andruleit, H. &Rogalla, U. 2002. Coccolithophores in surface Sediments of the Arabian Sea in relation to environmental gradients in surface waters. — Marine Geology186:505–526.

    Google Scholar 

  • Andruleit, H.;Stäger, S.;Rogalla, U. &Cepek, P. 2003. Living coccolithophores in the northern Arabian Sea: ecological tolerances and environmental control. — Marine Micropaleontology49: 157–181.

    Google Scholar 

  • Andruleit, H.A.;von Rad, U.;Bruns, A. &Ittekkot, V. 2000. Coccolithophore fluxes from Sediment traps in the northeastern Arabian Sea off Pakistan. — Marine Micropaleontology38: 285–308.

    Google Scholar 

  • Archer, D.E. 1996. An atlas of the distribution of calcium carbonate in Sediments of the deep sea. — Global Biogeochem Cycles10 (1): 159–174.

    Google Scholar 

  • Banse, K. &McClain, CR. 1986. Winter blooms of phytoplankton in the Arabian Sea as observed by the coastal zone color Scanner. —Marine Ecology, Progress Series34: 201–211.

    Google Scholar 

  • Bassinot, F.C.;Beufort, L.;Vincent, E. &Labeyrie, L. 1997. Changes in the dynamics of western equatorial Atlantic surface currents and biogenic productivity at the “Mid-Pleistocene Revolution” (930 ka). — In:Shackleton, N.J.;Curry, W.B.;Richter, C. &Bralower, T. J., eds., Proceedings of the Ocean Drilling Program, Scientific Results: 269–284, College Station, TX (Ocean Drilling Program).

    Google Scholar 

  • Baumann, K.-H. 1995. Morphometry of QuatemaryCoccolithus pelagicus coccoliths from northern North Atlantic and its paleocea-nographical consequences. — In:FLORES, J.A. &Sierro, F.J., eds., 5th International Nannoplankton Association Conference in Salamanca Proceedings: 11–21.

  • Baumann, K.-H. &Freitag, T. 2004. Pleistocene fluctuations in the northern Benguela Current System as revealed by coccolith assemblages. — Marine Micropaleontology.

  • Baumann K.-H.;Andruleit, H. &Samtleben, C. 2000. Coccolithophores in the Nordic Seas: Comparison of living communities with surface Sediment assemblages. — Deep-Sea Research II47: 1743–1772.

    Google Scholar 

  • Baumann, K.-H.;Böckel, B. &Frenz, M. 2004b. Coccolith contribution to South Atlantic carbonate Sedimentation. — In:Thierstein, H.R. &Young, J.r., eds., Coccolithophores — From molecular processes to global impact: 367–102, Berlin (Springer).

    Google Scholar 

  • Baumann, K.-H.;Cepek, M. &Kinkel, H. 1999. Coccolithophores as indicators of ocean water masses, surface-water temperature, and paleoproductivity — Examples from the South Atlantic. — In:Fischer, G. &Wefer, G., eds., Use of proxies in paleoceanography: Examples from the South Atlantic: 117–144, Berlin (Springer).

    Google Scholar 

  • Baumann, K.-H.;Böckel, B.;Donner, B.;Gerhardt, S.;Henrich, R.;Vink, A.;Volbers, A.;Willems, H. &Zonneveld, K.A.F. 2004a. Contribution of calcareous plankton groups to the carbon-ate budget of South Atlantic surface Sediments. — In:Wefer, G.;Mulitza, S. &Ratmeyer, V., eds., The South Atlantic in the Late Quaternary: reconstructions of material budget and current Systems: 81–99, Berlin (Springer).

    Google Scholar 

  • Beaufort, L.;Lancelot, Y.;Camberlin, P.;Cayre, O.;Vincent, E.;Bassinot, F. &Labeyrie, L. 1997. Insolation cycles as a major control of Equatorial Indian Ocean Prymary Production. — Science278:1451–1454.

    Google Scholar 

  • Beaufort, L. &Heussner, S. 1999. Coccolithophorids on the Continental slope of the Bay of Biscay — production, transport and contribution to mass fluxes. — Deep-Sea Research II46:2147–2174.

    Google Scholar 

  • Benthien, A. &Müller, P.J. 2000. Anomalously low alkenone temperatures caused by lateral particle and Sediment transport in the Malvinas Current region, western Argentine Basin. — Deep-Sea Research147:2369–2393.

    Google Scholar 

  • Benthien, A.;Andersen, N.;Schulte, S.;Müller, P.J.;Schneider, R ,R. &Wefer ,G. 2002. Carbon isotopic composition of the C37:2 alkenone in core top Sediments of the south atlantic ocean. Effects of C02 and nutrient concentrations. — Global Biogeochemical Cycles16 (1): 1012, doi: 10.1029/2001GB001433.

    Google Scholar 

  • Bljma,J.;Altabet.M.;Conte,M.;Kinkel, H.;Versteegh,G.J.M.;Volkman, J.K.;Wakeham, S.G. &Weaver, P.P.E. 2001. Primary signal: Ecological and environmental factors. — Report from Working Group 2, Geochemistry, Geophysics, Geosystems2: 2000GC000051.

  • Billard, C. 1994. Life cycles. — In:Green, J.C. &Leadbeater, B.S.C., eds., The Haptophyte Algae: 167–186, Oxford (Clarendon Press).

    Google Scholar 

  • Billard, C. &Innouye, I. 2004. What is new in coccolithophore biology? — In:Thierstein, H.R. &Young, J.R., eds., Coccolithophores — From molecular processes to global impact: 1–29, Berlin (Springer).

    Google Scholar 

  • Bollmann, J.; Henderiks, J. & Brabec, B. 2002. Global calibration ofGephyrocapsa coccolith abundance in Holocene Sediments for paleotemperature assessment. — Paleoceanography17:10.1029/

  • Boon, J.j.;Van Der Meer, F.W.;Schuyl, P.j.w.;DE Leeuw, J.w.;Schenk, P.A. &Burlingame, A.L. 1978. Organic geochemical analysis of core samples from Site 362, Walvis Ridge, DSDP Leg 40. — In:Bolli, H.M. &Ryan, W.B.F., eds., Initial Reports DSDP Leg40: 627–637, Washington D.C. (U.S. Government Printing Office).

    Google Scholar 

  • Bown, P.R. 1998. Calcareous nannofossil biostratigraphy. — 315 pp., London (Chapman & Hall).

    Google Scholar 

  • Bown, P.;Lees, J.A. &Young, J.R. 2004. calcareous nannoplankton evolution and diversity through time. — In:Thierstein, H.R. &Young, J.R., eds., Coccolithophores — From molecular processes to global impact: 481–508, Berlin (Springer).

    Google Scholar 

  • Brand, L.E. 1981. Genetic variability in reproduction rates in marine phytoplankton populations. — Evolution38: 1117–1127.

    Google Scholar 

  • Brand, L.E. 1982. Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophoresEmiliania huxleyi andGephyrocapsa oceanica. — Limnology and Oceanography27:236–245.

    Google Scholar 

  • Brand, L.E. 1994. Physiological ecology of marine coccolithophores. — In:Winter, A. &Siesser, W.G., eds., Coccolithophores: 39–49, Cambridge (Cambridge University Press).

    Google Scholar 

  • Brassell, S.C.;Eglinton, G.;Pflaumann U. &Sarnthein, M. 1986. Molecular stratigraphy: a new tool for climatic assessment. — Nature320: 129–133.

    Google Scholar 

  • Conte, M.H.;Thompson, A.;Eglinton, G. &Green, J.C. 1995. Lipid biomarker diversity in the coccolithophoridEmiliania huxleyi (Prymnesiophyceae) and the related speciesGephyrocapsa oceanica. — Journal of Phycology31: 272–282.

    Google Scholar 

  • Conte, M.H.;Thompson, A.;Lesley, D. &Harris, R.P. 1998. Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship inEmiliania huxleyi andGephyrocapsa oceanica. — Geochimica et Cosmochimica Acta62(1): 51–68.

    Google Scholar 

  • Cortés, M.Y. (2000). Further evidence for the heterococcolith-holococcolith combinationCalcidiscus leptoporus-Crystallolithus rigidus. — Marine Micropaleontology39: 35–37.

    Google Scholar 

  • Cros, L.;Kleijne, A.;Zeltner, A.;Billard, C. &Young, J. R. 2000. New examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. — Marine Micropaleontology39: 1–34.

    Google Scholar 

  • Dudley, W.C.;Blackwelder, P.;Brand, L. &Duplessy, J.C. 1986. Stable isotopic composition of coccoliths. — Marine Micropaleontology10:1–8.

    Google Scholar 

  • Edvardsen, B.;Eikrem, W.;Green, J.C;Andersen, R.A.;Yeo Moon-van der Staay, S. &Medlin, L.K. 2000. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. — Phycologia39: 19–35.

    Google Scholar 

  • Fujiwara, S.;Tsuzuki, M.;Kawachi, M.;Minaka, N. &Inouye, I. 2001. Molecular phylogeny of the haptophyta based on therbcL gene and sequence Variation in the spacer region of the RUBISCO Operon. — Journal of Phycology37: 121–129.

    Google Scholar 

  • Geisen, M.;Billard, C.;Broerse, A.T.C.;Cros, L.;Probert, I. &Young, J.R. 2002. Life-cycle associations involving pairs of holococcolithophorid species: intraspecific Variation or cryptic speciation? — European Journal of Phycology37: 531–550.

    Google Scholar 

  • Geisen, M.;Young, J.R.;Probert, I.;Sáez, A.G.;Baumann, K.-H.;Bollmann, J.;Cros, L.;de Vargas, C;Medlin, L.K. &Sprengel, C. 2004. Species level Variation in coccolithophores. — In:Thierstein, H.R. &Young, J.R., eds., Coccolithophores — From molecular processes to global impact: 327–366, Berlin (Springer).

    Google Scholar 

  • Geitzenauer, K.R.;Roche, M.B. &McIntyre, A. 1977. Coccolith biogeography from North Atlantic and Pacific surface Sediments. — In:Ramsay, A.T.S., ed., Oceanic Micropalaeontology: 973–1008, London (Academic Press).

    Google Scholar 

  • Giraüdeau, J. 1992. Distribution of Recent nannofossil beneath the Benguela System: southwest African Continental margin. — Marine Geology108:219–237.

    Google Scholar 

  • Giraüdeau, J.;Bailey, G.W. &Pujol, C. 2000. A high-resolution time-series analses of particle fluxes in the northern Benguela coastal upwelling system: carbonate record of changes in production and particle transfer processes. — Deep-Sea Research II47:1999–2028.

    Google Scholar 

  • Harris, R.P. 1994. Zooplankton grazing on the coccolithophoreEmiliania huxleyi and its role in inorganic carbon flux. — Marine Biology119:431–439.

    Google Scholar 

  • Hay, W.W. 2004. Carbonate fluxes and cacareous nannoplankton. — In:Thierstein, H.R. &Young, J.R., eds., Coccolithophores — From molecular processes to global impact: 509–528, Berlin (Springer).

    Google Scholar 

  • Hendericks, J. &Bollmann, J. 2004. TheGephyrocapsa sea surface palaeothermometer put to the test: comparison with alkenone and foraminifera proxies off NW Africa. — Marine Micropaleontology50:161–184.

    Google Scholar 

  • Henrikson, A.S. 2000. Coccolithophore response to oceanographic changes in the equatorial Atlantic during the last 200,000 years. — Palaeogeography, Palaeoclimatology, Palaeoecology156:161–173.

    Google Scholar 

  • Herbert, T.D.;Schuffert, J.D.;Thomas, D.;Lange, C.;Weinhe-Imer, A.;Peleo-alampay, A. &Herguera, J.-c. 1998. Depth and seasonality of alkenone production along the California margin inferred from a core top transect. — Paleoceanography13 (3): 263–271.

    Google Scholar 

  • Hoefs, M.J.L.;Versteegh, G.J.M.;Rijpstra, W.I.C.;de Leeuw, J.W. &Sinninghe Daamste, J.S. 1998. Postdepositional oxic degradation of alkenones: Implications for the measurements of paleo sea surface temperatures. — Paleoceanography13 (1): 42–49.

    Google Scholar 

  • Houdan, A.;Billard, C;Marie, D.;Not, F.;Sáez, A.G.;Young, J.R. &Probert, I. 2003. Flow cytometric analysis of relative ploidy levels in holococcolithophore-heterococcolithophore (Hapto-phyta) life cycles. — Systematics and Biodiversity1 (4): 453–165.

    Google Scholar 

  • Honjo, S. 1976. Coccoliths: production, transportation and Sedimentation. — Marine Micropaleontology1: 65–79.

    Google Scholar 

  • Honjo, S. 1980. Material fluxes and modes of Sedimentation in the mesopelagic and bathypelagic zones. — Journal of Marine Research38 (1): 53–97.

    Google Scholar 

  • Houghton, S.D. 1988. Thermocline control on coccolith diversity and abundance in recent Sediments from the Celtic Sea and English Channel. — Marine Geology83:313–319.

    Google Scholar 

  • Houghton, S.D. 1991. Coccolith Sedimentation and transport in the North Sea. — Marine Geology99:267–274.

    Google Scholar 

  • Inouye, I. 1997. Systematics of haptophyte algae in Asia-Pacific waters. — Algae (The Korean Journal of Phycology)12:247–261.

    Google Scholar 

  • Jordan, R.W. &Chamberlain, A.H.L. 1997. Biodiversity among haptophyte algae. — Biodiversity and Conservation6: 131–152.

    Google Scholar 

  • Kamptner, E. 1927. Beitrag zur Kenntnis adriatischer Coccolithophoriden. — Archiv für Protistenkunde58:173–184.

    Google Scholar 

  • Kinkel, H.;Baumann, K.-H. &Cepek, M. 2000. Coccolithophores in the equatorial Atlantic Ocean: Response to seasonal and Late Quaternary surface water variability. — Marine Micropaleontology39:87–112.

    Google Scholar 

  • Kleijne, A.;Kroon, D. &Zevenboom, W. 1989. Phytoplankton and foraminiferal frequencies in Northern Indian Ocean and Red Sea surface waters. — Netherlands Journal of Sea Research24:531–539.

    Google Scholar 

  • Lohmann, H. 1902. Die Coccolithophoridae, eine Monographie der Coccolithen bildenden Flagellaten, zugleich ein Beitrag zur Kenntnis des Mittelmeerauftriebs. — Archiv für Protistenkunde1: 89–165.

    Google Scholar 

  • Marlow, J.R.;Lange, C.B.;Wefer, G. &Rosell-Melé, A. 2000. Upwelling intensification as part of the Pliocene-Pleistocene climate transition. — Science290:2288–2291.

    Google Scholar 

  • Marlowe, LT.;Green, J.C.;Brassell, S.C.;Eglinton, G. &Course, P.a. 1984. Long chain (n-C37-C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. — British Phycological Journal19 (3): 203–216.

    Google Scholar 

  • McIntyre, A. 1967. Coccoliths as paleoclimatic indicators of Pleistocene glaciation. — Science158:1314–1317.

    Google Scholar 

  • McIntyre, A. &Bé, A. 1967. Modern Coccolithophoridae in the Atlantic Ocean. I. Placoliths and crytholiths. — Deep-Sea Research14:561–597.

    Google Scholar 

  • McIntyre, A. &Molfino, B. 1996. Forcing of Atlantic equatorial and subpolar millenial cycles by presession. — Science274:1867–1870.

    Google Scholar 

  • Medlin, L.K.;Kooistra, W.H.C.F.;Potter, D.;Saunders, J.B. &Andersen, R.A. 1997. Phylogenetic relationships of the “golden algae” (haptophytes, heterokont chromophytes) and their plastids. — Plant Systematics and Evolution, Supplement11:187–219.

    Google Scholar 

  • Milliman, J.D. 1993. Production and accumulation of calcium carbonate in the ocean: budget of a non steady State. — Global Biogeochemical Cycles7 (4): 927–957.

    Google Scholar 

  • Milliman, J.D.;Troy, P.J.;Balch, W.M.;Adams, A.K.;Li, Y.-H. &Mackenzie, F.t. 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? — Deep-Sea Research146: 1653–1669.

    Google Scholar 

  • Mix, A.;Bard, E. &Schneider, R.R. 2001. Environmental processes of the Ice Age: Land, Oceans, Glaciers (EPILOG). — Quaternary Science Reviews20:627–657.

    Google Scholar 

  • Molfino, B. &McIntyre, A. 1990. Precessional forcing of nutricline dynamics in the equatorial Atlantic. — Science249:766–769.

    Google Scholar 

  • Müller, P.J.;Cepek, M.;Schneider, R. &Ruhland, G. 1997. Alkenone and coccolithophorid changes in Late Quaternary Sediments from the Walvis Ridge: Implications for the alkenone paleotemperature method. — Palaeogeography, Palaeoclimatology, Palaeoecology135:71–96.

    Google Scholar 

  • Müller, P.J.;Kirst, G.;Ruhland, G.;von Storch, I. &Rosell-Melé, A. 1998. Calibration of the alkenone paleotemperature index U37 K based on core-tops from the eastern South Atlantic the global ocean (60°N-60°S). — Geochimica et Cosmochimica Acta62 (10):1757–1772.

    Google Scholar 

  • Murray, G. &Blackman, V.H. 1898. On the nature of the coccospheres and rhabdospheres. — Philosophical Transactions of the Royal Society (B)190:427–441.

    Google Scholar 

  • Nürnberg, D.;Müller, P. &Schneider, R.R. 2000. Paleo sea-surface temperature calculations in the equatorial East Atlantic from Mg/Ca ratios in planktic foraminifera; a comparison to sea-sur-face temperature estimates from U37 K, oxygen isotopes, and foraminifera; transfer function. — Paleoceanography15 (1): 124–134.

    Google Scholar 

  • Okada, H. &Honjo, S. 1973. The distribution of oceanic coccolithophorids in the Pacific. — Deep-Sea Research20:355–374.

    Google Scholar 

  • Okada, H. &Matsuoka, M. 1996. Lower-photic nannoflora as an indicator of the late Quaternary monsoonal paleo-record in the trop-ical Indian Ocean. — In:Moguilevsky, A. &Whatley, A.M., eds., Microfossils and Oceanic Environments: 231–245, Aberystwyth (Aberystwyth Press).

    Google Scholar 

  • Ohkouchi, N.;Eglinton, T.I.;Keigwin, L.D. &Hayes, J.M. 2002. Spatial and temporal offsets between proxy records in a Sediment drift. — Science298:1224–1227.

    Google Scholar 

  • Pagani, M.;Arthur, M.A. &Freeman, K.H. 1999. Miocene evolution of atmospheric carbon dioxide. — Paleoceanography14 (3): 273–292.

    Google Scholar 

  • Parke, M. &Adams, I. 1960. The motile(Crystallolithus hyalinus Gaarder & Markali) and non-motile phases in the life history ofCoccolithus pelagicus (Wallich) Schiller. — Journal of the Marine Biological Association39:263–274.

    Google Scholar 

  • Pelejero, C. &Grimalt, J.O. 1997. The correlation between the U37 k index and sea surface temperatures in the warm boundary; the South China Sea. — Geochimica et Cosmochimica Acta61 (22): 4789–4797.

    Google Scholar 

  • Pelejero, C;Grimalt, J.O.;Heilig, S.;Kienast, M. &Wang, L. 1999. High-resolution U37 K temperature reconstructions in the South China Sea over the past 220 kyr. — Paleoceanography14 (2): 224–231.

    Google Scholar 

  • Pienaar, R.N. 1994. Ultrastructure and calcification of coccolithophores. — In:Winter, A. &Siesser, W.G., eds., Coccolithophore: 13–37, Cambridge (Cambridge University Press).

    Google Scholar 

  • Prahl, F.G. &Wakeham, S.G. 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. — Nature330:367–369.

    Google Scholar 

  • Quinn, P.;Thierstein, H.R.;Brand, L.E. &Winter, A. 2003. Experimental evidence for the species character ofCalcidiscus leptoporusmorphotypes.— Journal of Paleontology77 (5): 825–830.

    Google Scholar 

  • Riebesell, U.;Zondervan, I.;Rost, B.;Tortell, P.D.;Zeebe, R.E. &Morel, F.M.M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. — Nature407:364–367.

    Google Scholar 

  • Rlegman, R.;Stolte, W. &Noordeloos, A.a.m. 1998. A model System approach to biological climate forcing: the example ofEmiliania huxleyi. — Netherlands Institute for Sea Research, NIOZ-Rapport8: 1–32.

    Google Scholar 

  • Rosell-melé, A.;Eglinton, G.;Pflaumann, U. &Sarnthein, M. 1995. Atlantic core-top calibration of the U37 index as a sea-surface palaeotemperature indicator. — Geochimica et Cosmochimica Acta59:3099–3107.

    Google Scholar 

  • Rosell-Melé, A.;Jansen, E. &Weinelt, M. 2002. Appraisal of a molecular approach to infer variations in surface ocean freshwater inputs into the North Atlantic during the last glacial. From process studies to reconstruction of the palaeoenvironment. — Advances in Palaeoceanography34:143–152, Amsterdam (Elsevier).

    Google Scholar 

  • Roth, P.h. &Coulbourn, W.T. 1982. Floral and Solution patterns of coccoliths in surface Sediments of the North Pacific. — Marine Micropaleontology7: 1–52.

    Google Scholar 

  • Rowson, J.d.;Leadbeater, B .S ,C. &Green ,J .C. 1986. Calcium carbonate deposition in the motile(Crystallolithus) phase ofCoccolithus pelagicus (Prymnesiophyceae). — British Phycological Journal21:359–370.

    Google Scholar 

  • Sáez, A.G.;Probert, I.;Geisen, M;Quinn, P.;Young, J.R. &Medlin, L.K. 2003. Pseudo-cryptic speciation in coccolithophores. — Proceedings of the National Academy of Sciences100:7163–7168.

    Google Scholar 

  • Sawada, K.;Handa, N.;Shiraiwa, Y.;Danbara, A. &Montani, S. 1996. Long-chain alkenones and alkyl alkenoates in the coastal and pelagic Sediments of the Northwest North Pacific, with special reference to the reconstruction ofEmiliania huxleyi andGephyrocapsa oceanica ratios. — Organic Geochemistry24 (8–9): 751–764.

    Google Scholar 

  • Schiebel, R. 2002. Planktic foraminferal Sedimentation and the marine calcite budget. — Global Biogeochemical Cycles16 (4): 13/1–1321.

    Google Scholar 

  • Sikes, E.L. &Volkman, J.k. 1993. Calibration of alkenone unsaturation ratios (U37 k) for paleotemperature estimation in cold polar waters. — Geochimica et Cosmochimica Acta57 (8): 1883–1889.

    Google Scholar 

  • Sonzogni, C.;Bard, E.;Rostek, F.;Dollfus, D.;Rosell, M.A. &Eglinton, G. 1997. Temperature and salinity effects on alkenone ratios measured in surface Sediments from the Indian Ocean. — Quaternary Research47 (3): 344–355.

    Google Scholar 

  • Sprengel, C;Baumann, K.-H. &Neuer, S. 2000. Seasonal and interannual Variation of coccolithophore fluxes and species composition in Sediment traps north of Gran Canaria (29°N 15°W). — Marine Micropaleontology39: 157–178.

    Google Scholar 

  • Stoll, H.M.;Rosenthal, Y. &Falkowski, P. 2002. Climate proxies from Sr/Ca of coccolith calcite: calibrations from continuous culture ofEmiliania huxleyi. — Geochimica et Cosmochimica Acta66:927–936.

    Google Scholar 

  • Stoll, H.M. &Ziveri, P. 2002. Separation of monospecific and restricted coccolith assemblages from Sediments using differential settling velocity. — Marine Micropaleontology46: 209–221.

    Google Scholar 

  • Stoll, H.M. &Ziveri, P. 2004. Coccolithophorid-based geochemical paleoproxies. — In:Thierstein, H.R. &Young, J.r., eds., Coccolithophores — From Molecular Processes to Global Impact: 529–563, Berlin (Springer).

    Google Scholar 

  • Takahashi, K. &Okada, H. 2000. The paleoceanography for the last 30,000 years in the southeastern Indian Ocean by means of calcareous nannofossils. — Marine Micropaleontology40: 83–103.

    Google Scholar 

  • Ternois, Y.;Sicre, M.-A.;Boireau, A.;Conte. M.H. &Eglinton, G. 1997. Evaluation of long-chain alkenones as paleo-temperature indicators in the Mediterranean Sea. — Deep-Sea Research I: 271—286

  • Townsed, D.W.;Keller, M.D.;Holligan, P.M.;Ackleson, S.G. &Balch, W.M. 1994. Blooms of the coccolithophoreEmiliania huxleyi with respect to hydrography in the Gulf of Maine. — Continental Shelf Research14: 979–1000.

    Google Scholar 

  • Tyrell, T. &Merico, A. 2004.Emiliania huxleyi: bloom observations and the conditions that induce them. — In:Thierstein, H.R. &Young, J.R., eds., Coccolithophores — From Molecular Processes to Global Impact: 75–98, Berlin (Springer).

    Google Scholar 

  • van der Wal, P.;Kempers, R.S. &Veldhuis, M.J.W. 1995. Production and downward flux of organic matter and calcite in the North Sea bloom of the coccolithophoreEmiliania huxleyi. — Marine Ecology.Progress Series126:247–265.

    Google Scholar 

  • Villanueva, J.;Flores, J.A. &Grimalt, J.o. 2002. A detailed comparison of the U37 k and coccolith records over the past 290k years; implications to the alkenone paleotemperature method. — Organic Geochemistry33 (8): 897–905.

    Google Scholar 

  • Volkman, J.K.;Barrett, S.M.;Blackburn, S.I. &Sikes, E.L. 1995. Alkenones inGephyrocapsa oceanica; implications for studies of paleoclimate. — Geochimica et Cosmochimica Acta59 (3): 513–520.

    Google Scholar 

  • Volkman, J.K.;Eglinton, G.;Corner, E.D.S. &Forsberg, T.E.V. 1980. Long-chain alkenes and alkenones in the marine coccolithophoridEmiliania huxleyi. — Phytochemistry19: 2619–2622.

    Google Scholar 

  • Weaver, P.P.E. &Pujol, C. 1988. History of the last deglaciation in the Alboran Sea (western Mediterranean) and adjacent north Atlantic as revealed by coccolith floras. — Palaeogeography, Palaeoclimatology, Palaeoecology64: 35–46.

    Google Scholar 

  • Westbroek, P.;Brown, C.W.;van Bleuswijk, J.;Brownlee, C;Brummer, G.J.;Conte, M.;Egge, J.;Fernandéz, E.;Jordan, R.;Knappertsbusch, M.;Stefels, J.;Veldhuis, M.;van der Waal, P. &Young, J.R. 1993. A model system approach to biological climate forcing. The example ofEmiliania huxleyi. — Global Planetary Change8: 27–46.

    Google Scholar 

  • Westbroek, P.;Young, J.R. &Linschooten, K. 1989. Coccolith production (Biomineralization) in the marine algaEmiliania huxleyi. — Journal of Protozoology36:368–373.

    Google Scholar 

  • Winter, A. &Siesser, W.G. 1994. Coccolithophores. — 242 pp., Cambridge (Cambridge University Press).

    Google Scholar 

  • Winter, A.;Reiss, Z. &Lutz, B. 1979. Distribution of living coccolithophorid assemblages in the Gulf of Elat (Aqaba). — Marine Micropaleontology4: 197–223.

    Google Scholar 

  • Yong, J. 1994. Variation inEmiliania huxleyi coccolith morphology in samples from the Norwegian EHUX experiment, 1992. — Sarsia79:417–425.

    Google Scholar 

  • Young, J.R. &Ziveri, P. 2000. Calculation of coccolith volume and its use in calbration of carbonate flux estimates. — Deep-Sea Research II47: 1679–1700.

    Google Scholar 

  • Young, J.R.;Davis, S.A.;Bown, P.R. &Mann, S. 1999. Coccolith ultrastructure and biomineralisation. — Journal of Structural Biology126: 195–215.

    Google Scholar 

  • Young, J.R.;Didymus, J.M.;Bown, P.R.;Prins, B. &Mann, S. 1992. Crystal assembly and phylogenetic evolution in heterococcoliths. — Nature356: 516–518.

    Google Scholar 

  • Young, J.R.;Geisen, M.;Cros, L.;Kleijne, A.;Sprengel, C;Probert, I. &Ostergaard, J.B. 2003. A guide to extant coccolithophore taxonomy. — Journal of Nannoplankton Research, Special Issue1: 1–125.

    Google Scholar 

  • Young, J.R.;Bergen, J.A.;Bown, P.R.;Burnett, J.A.;Fiorentino, A.;Jordan, R.W.;Kleijne, A.;van Niel, B.E.;Romein, A.J.T. &Von Salis, K. 1997. Guidelines for coccolith and Calcareous nannofossil terminology. — Palaeontology40 (4): 875–912.

    Google Scholar 

  • Ziveri, P. &Thunell, R.C. 2000. Coccolithophore export production in Guaymas Basin, Gulf of California: response to climate forcing. — Deep-Sea Research II47: 2073–2100.

    Google Scholar 

  • Ziveri, P.;Young, J.R. &van Hinte, J.E. 1999. Coccolithophore export production and accumulation rates. — GeoResearch Forum5: 41–56.

    Google Scholar 

  • Ziveri, P.;Baumann, K.-H.;Böckel, B.;Bollmann, J. &Young, J.R. 2004. Presdent-day coccolithophore biogeography in the Atlantic Ocean. — In:Thierstein, H.R. &Young, J.R., eds., Coccolithophores — From Molecular Processes to Global Impact: 403–428, Berlin (Springer).

    Google Scholar 

  • Ziveri, P.;Stoll, H.;Probert, I.;Klaas, C;Geisen, M.;Ganssen, G. &Young, J. 2003. Stable isotope ‘vital effects’ in coccolith calcite. — Earth Planetary Science Letters210 (1–2): 137–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, KH., Andruleit, H., Böckel, B. et al. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review. Paläontol Z 79, 93–112 (2005). https://doi.org/10.1007/BF03021756

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03021756

Keywords

Schlüsselwörter

Navigation