The effect of nitrous oxide on the oxyhaemoglobin dissociation curve

Louis Fournier MD FRCP(C), DIANE MAJOR B SC

The influence of nitrous oxide on the oxyhaemoglobin dissociation curve (ODC) was studied using blood from twenty healthy patients. When the blood samples were exposed to 50 per cent N_2O during the determination of the ODC, a left shift was observed and the P_{50} was decreased by 1.06 kPa (8 mmHg). This shift cannot be explained by temperature, pH, PCO₂, or 2,3-DPG effects. Following exposure of the blood to N_2O -free gases, the shift disappeared rapidly, and a normal P_{50} (3.46 kPa) (26 mmHg) was reobtained. In keeping with this reversibility, blood samples taken before and during 45 minutes of N_2O -curare anaesthesia showed identical dissociation curves to those which had been obtained during the in vitto N_2O exposure experiment.

Key words

BLOOD: oxyhemoglobin dissociation, P₅₀; ANAESTHETICS, GASES: nitrous oxide.

Nitrous oxide is probably the most popular anaesthetic agent used during general anaesthesia, even if it is not very potent. We use it because of its analgesic properties and because it was believed to be innocuous to the patient. Recently this innocuousness has been questioned. $^{1-4}$ Furthermore, the presence of nitrous oxide in human blood interferes with polarographic O_2 measurements $^{5-6}$ and with the oxyhaemoglobin dissociation curve. 7

With reference to the last two observations, we

From the Department of Anesthesiology, Laval University Hospital Center, Quebec, Que.

Address correspondence to: Louis Fournier MD, Department of Anesthesiology, Laval University Hospital Center, 2705 blvd Laurier, Quebec, Que. G1V 4G2.

Paper presented in part at the annual meeting of the Canadian Society of Anesthesiologists, May 1982.

noticed systematic discrepancies between the blood PO_2 and oxygen saturation in patients receiving N_2O anaesthesia, but not in patients who were in the intensive care unit, even after the usual corrections for temperature, pH and PCO_2 had been made.

Such a discordance between blood PO₂ and saturation can be explained in two ways. First, one of the readings can be wrong because of a technical error. Second, there might be a shift in the oxyhaemoglobin dissociation curve. We decided to examine these two possibilities in order to find the basis for the discrepancies noted in patients receiving nitrous oxide during general anaesthesia.

Methods

We selected 20 patients, ASA physical status 1, who were to receive an O₂-N₂O-curare anesthetic without any other inhalation agent.

Two venous blood samples were withdrawn from each patient: one prior to induction of anaesthesia and the other after 45-60 minutes of anaesthesia with O_2 - N_2O .

For each sample we obtained two oxyhaemoglobin dissociation curves using an Hem-O-Scan° analyzer (American Instrument Co., Silver Spring).

This instrument generates an HbO₂ dissociation curve by equilibrating two microliters of blood with a gas mixture of controlled PO₂. During analysis the PO₂ in the mixture is increased within five minutes from 0 to ca. 23.94 kPa (180 mmHg) by automatically mixing an O₂-free gas (zero gas) with a gas of known O₂ (span gas). The PO₂ in the equilibrating mixture is continuously monitored with a Clarktype oxygen electrode. The electrode, which has an Au cathode, is polarized at 0.78 V. Standard O₂ electrolyte (half saturated KCl at pH 5.9) and Teflon° membranes (Yellow Springs Instrument Co., Yellow Springs) were used. The HbO₂ saturation of a blood sample tested in the Hem-O-Scan is

TABLE I Data for P₅₀; PCO₂; pH; 2,3-DPG

	Pre-op		Per-op	
P ₅₀ , without N ₂ O in the equilibrating gases	3.5 ± 0.1 kPa	26.4 ± 1.0 mmHg	25.9 ± 1.5 mmHg	3.4 ± 0.2 kPa
P ₅₀ , with 50% in the equilibrating gases	$2.4 \pm 0.2 \mathrm{kPa}$	18.4 ± 1.4 mmHg	$18.3 \pm 1.6 \mathrm{mmHg}$	2.4 ± 0.2 kPa
PCO₂	$5.1 \pm 0.5 \text{kPa}$	38.6 ± 4.1 mmHg	$33.4 \pm 7.5 \text{mmHg}$	$4.4 \pm 1.0 \text{kPa}$
pH 2,3-DPG (μmol·ml of blood)	7.37 ± 0.03 1.65 ± 0.33		7.43 ± 0.07 1.44 ± 0.26	

^{*}Values are means ± SD.

also measured on a continuous basis from the absorbance ratio at 560 and 576 nm.

A first curve was drawn using the standard zero (0 per cent O_2 : 5.6 per cent O_2 : 94.4 per cent N_2) and span (25 per cent O_2 : 5.6 per cent CO_2 : 69.4 per cent CO

In all cases, the temperature was maintained at 37°C and the PCO₂ was kept at 5.32 kPa (40 mmHg). The acid-base status of each sample was established with an acid-base analyzer (model PHM71, Radiometer, Copenhagen).

The $\rm O_2$ response of the Hem-O-Scan was checked by equilibrating the electrode in the instrument with gases of constant $\rm PO_2$. These were obtained by mixing the zero and the span gases with external flowmeters. The $\rm O_2$ concentration in the gas mixtures was continuously monitored with a paramagnetic analyzer (model E2, Beckman Instruments Inc., Palo Alto) and a Scholander gas analyzer. The Scholander technique was found unreliable with $\rm N_2O$ -containing mixtures.

The oxyhaemoglobin saturation given by the Hem-O-Scan was compared with the O₂ saturation of an external blood sample which was equilibrated with the same gas mixture as the internal sample. The O₂ saturation of the external blood sample was calculated from its Hb content as measured by the Van Slyke manometric technique.⁹

The 2,3-DPG levels were measured by an ultraviolet enzymatic method (Sigma Chemical Co., Saint Louis) using a recording spectrophotometer (model SP 800, Pye Unicam Ltd, Cambridge).

Results

The preoperative P_{50} was 26.4 ± 1.0 mmHg $(3.5 \pm 0.1$ kPa) (mean \pm S.D., n=20) as determined from oxyhaemoglobin dissociation curves obtained using blood samples equilibrated with standard nitrous oxide-free gases (Table I). When 50 per cent N_2O was present in the equilibrating gases, the P_{50} value for the same blood samples decreased to 18.4 ± 1.4 mmHg $(2.4 \pm 0.2$ kPa) (Fig. 1). Blood taken from the patients after 45-60 minutes of N_2O anaesthesia gave similar results. The P_{50} was 25.9 ± 1.5 and 18.3 ± 1.6 mmHg $(3.4 \pm 0.2$ and 2.4 ± 0.2 kPa) respectively when measured in the absence and presence of N_2O . In both series of samples the decrease in P_{50} due to N_2O was highly significant (Student's t-test; p < 0.001).

The shift of the HbO_2 curve to the left was rapidly and completely reversible, and it could be induced or removed at will by switching N_2O -free and N_2O -containing gases.

All blood samples had normal acid-base characteristics. The pH was somewhat higher during operation (7.43 \pm 0.07) than before (7.37 \pm 0.03) and this was related to a decrease in PCO₂ of about 5 mmHg as anesthetized patients were slightly hyperventilated (Table 1).

Since the Hem-O-Scan was imposing a constant PCO_2 (40 mmHg or 5.32 kPa) to all samples, pH and PCO_2 should not have any systematic influence on the observed P_{50} . This assumption is supported by the normality of the P_{50} measured in the absence of N_2O . It should equally apply to the P_{50} deter-

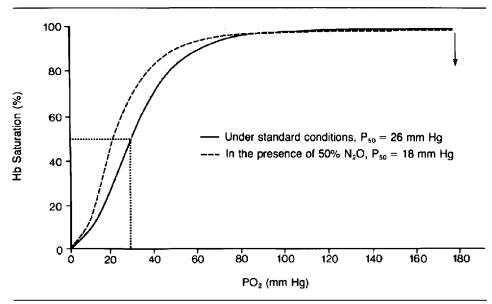


FIGURE 1 Typical haemoglobin dissociation curves obtained from same blood sample with the Hem-O-Scan.

mined in the presence of N_2O since both P_{50} measurements were performed on the same sample and since N_2O is not known to alter the acid-base status of the blood.

The concentration of 2,3-DPG in the preoperative blood samples was within normal limits (Table I). The intraoperative values were diminished by 13 per cent, but this decrease, although statistically significant (Student's t-test; p < 0.01), appears too small to measurably affect the P_{50} .

The observed decrease in the blood P_{50} could be explained by an error in PO_2 measurement, an error in the determination of HbO_2 saturation, both being due to N_2O , and/or by a reduced O_2 affinity of Hb in the presence of N_2O .

Since O_2 electrodes, especially those built with an Au cathode, were known to be sensitive to N_2O , $^{5.6}$ we conducted a careful check of the electrode which measures the PO_2 in the Hem-O-Scan analyzer. In the absence of N_2O , determinations made with our electrode agreed perfectly with those made with both the Scholander and the paramagnetic analyzer. However, when calibrated with N_2O -free gases and used in the presence of N_2O , the electrode exhibited a strong background

interference. For example, an O₂-free gas containing 50 per cent N₂O gave a reading equivalent to a PO₂ of 30–50 mmHg. The zero control of the electrode did not allow such a high background value to be nulled and the starting point of most dissociation curves made in the presence of N₂O was offset to the right by some 40 mm. In spite of this offset, the O₂ response of the electrode was found to be very linear between the zero and span gases and, once corrected with a simple equation, to agree closely with paramagnetic determination. Figure 2 shows a typical calibration of the O₂ electrode in the presence of N₂O. Each sample, however, was read from its own calibration curve drawn between the prevailing zero and span PO₂.

The HbO₂ saturation given by the Hem-O-Scan in the presence of N_2O agreed with that measured by the Van Slyke technique as described in the Methods section. Furthermore the effect of 50 per cent N_2O on the absorbance ratio (560/576 nm) used by the Hem-O-Scan to measure HbO₂ was found to be negligible (<2 per cent).

Since the shift of HbO₂ dissociation curve to the left cannot be explained by the common affinity regulators or by methodological errors, we con-

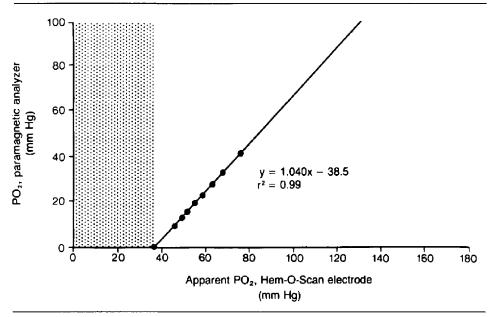


FIGURE 2 Typical calibration of the Hem-O-Scan O₂ electrode in the presence of 50 per cent N₂O. Y-axis: paramagnetic analyzer readings. X-axis: uncorrected readings from the Hem-O-Scan scale. The matched area shows the magnitude of the background error on PO₂.

clude that N_2O increases the affinity of Hb for oxygen and thus reduces the O_2 available to the tissues.

Discussion

Our data indicate that exposure of a blood sample to N_2O causes a leftward shift of the oxyhaemoglobin dissociation curve. This shift, which reduces the P_{50} by 1.06 kPa (8 mmHg) in the presence of 50 per cent N_2O cannot be explained by temperature, pH, PCO_2 or 2,3-DPG effects. The normal O_2 affinity of Hb is rapidly restored whenever the blood is exposed to N_2O -free gas.

Our results are at variance with those previously published by Prime in 1951,¹¹ who found no effect of N_2O (FN₂O = 0.70) on the haemoglobin dissociation curve, leaving the P_{50} in the 24–25 mmHg range. In addition to the possibility that the blood from the single subject investigated by Prime may have been atypical, methodological differences can contribute to the discrepancy between his results and ours. Since both his and our studies rely on the Van Slyke analysis as the primary measurement of

the hacmoglobin saturation, the variance is likely to stem from the PO₂ determination. Either he overestimated the PO₂ or we underestimated it. In order to analyze his experimental gases, Prime used a modified Haldane apparatus. He carefully showed that N₂O was not absorbed by the O₂-trapping reagent. ¹² However, he apparently did not, as we did with the paramagnetic analysis, specifically check for the accuracy of O₂ determination by an independent method having a low sensitivity to N₂O. For these reasons, we think that our results may be more accurate.

Our results are also in disagreement with those reported by Smith et al. in 1970. These authors concluded that N₂O (at unspecified concentration) was responsible for a right shift of the oxyhaemoglobin dissociation curve, resulting in a 0.36 kPa (2.7 mmHg) increase of the P₅₀. Again, the discrepancy between their results and ours may arise from a difference in the determination of PO₂. Although Smith et al. also used O₂ electrodes, they were likely to neglect the positive interference of N₂O on polarographic measurements of O₂, since it

was unreported at that time. This interference will lead to an overestimation of the PO_2 and thus of the P_{50} . When measuring an oxyhaemoglobin dissociation curve, overestimating the PO_2 can possibly transform a left shift into a right shift.

The issue discussed above is more than academic. When using N_2O anaesthesia, ignorance of a significant decrease in the P_{50} , combined with a possible overestimation of PO_2 due to N_2O effect on O_2 electrodes may have dire consequences in certain of our borderline patients. The oxygen available to their tissues would be much lower than what we estimate from the measured PO_2 which is our guideline for a good oxygenation of our patients.

Acknowledgements

The authors thank Dr. Jacques Larochelle, D.Sc. for his important collaboration during this work, the anesthesiologists from the CHUL for their helpful professional participation and Mrs. Angeline Lafontaine for her technical assistance.

References

- 1 Nunn JF, Chanarin I. Nitrous oxide and vitamin B₁₂. Br J Anaesth 1978; 50: 1089-90.
- Wynne J, Mann T, Alpert JS, Green LH, Grossman W. Hemodynamic effects of nitrous oxide administered during cardiac catheterization. JAMA 1980; 243: 1440-3.
- 3 Ngai SH, Finck AD. Prolonged exposure to nitrous oxide decreases opiate receptor density in rat brainstern. Anesthesiology 1982; 57: 26-30.
- 4 Artru AA. Nitrous oxide plays a direct role in the development of tension pneumocephalus intraoperatively. Anesthesiology 1982; 57: 59-61.
- 5 Evans MC, Cameron IR. Oxygen electrodes sensitive to nitrous oxide. Lancet 1978; 2(8104-5): 1371.
- 6 Alberry WJ, Brooks WN, Gibson SP, Hahn CEW. An electrode for PN₂O and PO₂ analysis in blood and gas. J Appl Physiol 1978; 45: 637-43.
- 7 Smith TC, Colton ET, Behar MG. Does anesthesia alter hemoglobin dissociation? Anesthesiology 1970; 32: 5-12.
- 8 Scholander PF. Analyzer for accurate estimation of respiratory gases in one-half cubic centimeter samples. J Biol Chem 1947; 167: 235-50.
- Oser BL (editor). Hawk's physiological chemistry.
 New York: McGraw-Hill Book Co., 1965.

- 10 Oak FA, Gottlieb AJ, Miller WW, Delivoria-Papapoulos M. The effects of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-diphosphoglycerate and its in vivo consequences. J Clin Invest 1970; 49: 400.
- 11 Prime FJ. Oxygen dissociation curves of whole blood in the presence of anaesthetic gases. Br J Anaesth 1951; 23: 171-9.
- 12 Prime FJ. Volumetric determination of ether or cyclopropane, carbon dioxide, nitrous oxide and oxygen in anaesthetic mixtures. Br J Anaesth 1950; 22: 162-70.

Résumé

Nous avons observé, à partir de courbes de dissociation de l'oxyhémoglobine (CDO), que le protoxyde d'azote (N2O) augmente l'affinité de l'hémoglobine pour l'oxygène. L'exposition d'échantillons de sang prélevé chez vingt sujets normaux (risque anesthésique ASA-I) à un mélange de gaz contenant 50 pour cent N2O déplace la CDO vers la gauche, entraînant une baisse de la P50 de 3.46 kPa (26 mmHg) à 2.39 kPa (18 mmHg). Cette baisse n'a pu être expliquée par des effets de température, de PCO2, de pH ou de 2,3-DPG. L'effet du N2O est toutefois réversible et disparaît rapidement en exposant par la suite les échantillons de sang à des mélanges gazeux sans N₂O. Ces observations contredisent les publications antérieures qui concluaient que le protoxyde avait peu d'influence sur la P50. Notre propre conclusion est que les influences du protoxyde sur la courbe de dissociation de l'oxyhémoglobine et sur les lectures de la PO2 peuvent avoir des conséquences néfastes chez les patients à risque