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Suppression of cyclic 
guanosine monophos- 
phate formation in rat 
cerebellar slices by 
propofol, ketamine and 
midazolam 

Pu_,lxme: The nitric oxide (NO)/c),clic guanosine monophosphate (cGMP) system is involved in glutamatergic neu- 
rotransmlssion. The current study determined the effects of propofol, ketamine and midazolam on rat cerebellar 
cGMP formation, attempting to clarify whether the effect was due to suppression of NO<GMP system or to direct 
interaction with glutamatersic receptors. 
~ o ~ :  Cerebellar slices, obtained from six- to eight-day-old Wistar rats, were pretreated with propofol 
( I 0//M-- I mM), ketamine ( I 0-100/aM) or midazolam (I-100/aM) for 30 min. and then stimulated with L-glutamate 
(3 mM), N-meth)A-D-aspartate (NMDA, O. I mM), kainate (0. I mM) or sodium nitroprusside (SNP, 0.3 mM) 
(n = 5-1 I for each group). The levels of cGMP were determined by radioimmunoassay. 
:]Rema~13: None of the anaesthetics studied altered cGMP levels when no stimulant was given. Propofol 
(I 0/aM- I mlVl) suppressed L-glutamate-, NMDA-, kainate- and SNP stimulated cGMP formation in a concentration- 
dependent manner, the sensitivity to propofol was in the order of NMDA > kainate > L-glutamate, SNP. Ketamine 
(10-100/aM) suppressed L-glutamate- and NMDA-stimulated cGMP formation, but did not suppress kainate- or 
SNP-stimulated cGMP formation. Midazolam (10-100/aM) did not affect NMDA-, L-glutamate- or SNP-stimulated 
cGMP formation, but suppressed kainate-induced formation. 
Conclusion: The inhibitory effects of propofol, ketamine and midazolam on cGMP formation in rat cerebellar slices 
are due mainly to interaction with receptors for excitatory amines, and not due to the suppression of nitric oxide s)m- 
thase or guanylate cyclase activities. 

Object i f  -" Le systhme monoxTde d'azote (NO)/monophosphate de guanosine cydique (cGMP) participe A la neu- 
rotransmission glutamate~ique. La prEsente ~tude recherchait I'influence du propofol, de la k~tamine et du midazo- 
lam sur la formation c&~belleuse de cGMP, en essay-ant de pr~dser si cette influence r~sultait de la suppression du 
syst~me NO-cGMP ou d'une interaction directe avec les r~cepteurs glutamatergiques. 
M~dlodes : Des tranches de cenceau pr~levC~ sur des rats Wistar ~ de six A huit jours ont ~(~ pr~-ait&s ave(: 
du propofol (10/am-I ml'i), de la ~tamine (10-100/aM) ou du midazolam (I-100/aM) et ensuite stimul&-s avec 
du L-glutamate (3 mM), du N-m&h)A-D-aspartate (NMDA, 0, I mM), du kainate (0, I mM) ou du nitroprussiate de 
sodium (SNP, 0,3 raM) (n = 5 pour chaclue ~m:xJpe). Le radio-immunodosage a serai .~ d~erminer le niveau de cGMP. 
]R~ultats : En absence de stimulus, aucun des anesth~siques n'a modifl(~ les niveaux de cGMP. Le propofol 
(I 0/JM-mM) supprimait la formation de cGMP stimul~e par le L-glutamate, le NMDA, le kainate et le SNP propor- 
tionnellement A la concentration. La sensibil~ au propofol s'~,tablissait dans I'ordre suivant NMDA > kainate 
> L- glutamate > SNP. La k~Ramine (10-100/aM) supprimait la formation stimul~,e par le NMDA de L-glutamate et 
de cGMP mals ne supprimait pas la formation de cGMP stimuZae par le kainate et le SNP. Le midazolam (I 0-100/aM) 
n'affeclait pas la formation de cGMP stimulc~e par le NMD/~ le L-glutamate et le SNP mais supprimait la formation 
induite par le kainate. 
C_x)nclusion : I'influence inhibitrice du propofol, de la kL~amine et du midazolam sur la formation de cGIvlp dans les 
tranches c&~belleuses de rats est principalement caus~,e par I'interaction des r~acepteurs des amines excitateurs et 
non par la suppression de la synthase du monoxyde d'azote ou A Faction de la guan~ate cydase. 
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N 
ITRIC oxide (NO), first defined as 
endothelium-derived relaxing factor, a-s acts 
ha the central nervous system (CNS) as an 
intercellular and intracellular messenger 

molecule. 4,s In the glutamatergic system, activation of 
glutamate receptors increases intracellular calcium. This 
activates NO synthase (NOS) resulting in increased pro- 
duction of NO. Nitric oxide diffuses into target cells 
where it activates guanylate cydase (GC) to increase cyclic 
guanosine monophosphate (cGMP) levels (Figure 1). 
This pathway may be involved in mechanisms such as the 
establishment of CNS plasticity, including memory and 
central sensitisation to pain perception. 6,7 Glutamate 
receptors are classified as N-methyl-D-aspartate (NMDA) 
receptors, non-NMDA receptors that include c~-amino- 
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
and kainate receptors, and metabotropic receptors. 
Activation of both NMDA and non-NMDA glutamate 
receptors activates NOS. s,9 In contrast, sodium nitro- 
prusside (SNP) does not activate NOS, but liberates NO 
or NO-related compounds to activate GC, thereby 
increasing cGMP levels (Figure 1). I~ 

General anaesthetics suppress endothelium-depen- 
dent relaxation and acetylcholine-induced, NO-mediat- 
ed, cGMP formation in the vascular system, al-x6 
Moreover, suppression of NOS and GC activity by gen- 
eral anaesthetics has been demonstrated37,I8 However, 
anaesthetics interact with glutamaterglc receptors. It 
should be clarified, therefore, whether the suppression 
of the glutamaterglc system by anaesthetics is an action 
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FIGUKE 1 The nitric oxide (NO)-cyclic guanosine monophos- 
phate (cGMP) pathway in the central nervous system. N, N- 
methyl-D-aspartate (NMDA) receptor; K, kainate receptor; M, 
metabotropic receptor; NOS, NO synthase; SNP, sodium nitro- 
prussidc; GTP, guanosine triphosphate; GC, guanylate cyclase. 

on the glutamate receptor-channel complex, or a direct 
effect on the NO-cGMP system such as suppression of 
NOS or GC. Our previous study suggested that the 
suppressive effect of thiopentone on cerebellar cGMP 
formation was mediated by suppressed GC activity. I9 
The present study examined the effects of the com- 
monly-used intravenous anaesthetics, propofol, keta- 
mine and midazolam, on L-glutamate-, NMDA-, 
kainate- and SNP-induced cGMP formation, in an 
attempt to identify the site(s) of action of these agents. 
We used cerebellar slices of infant rats because this 
tissue contains abundant glutamate receptors. 2~ 

Methods 
Wistar rats, aged six to eight days, were sacrificed 
according to the Guideline of  Animal Experiments of 
Kyoto University, and the cerebella were quickly har- 
vested. The cerebella were rinsed and then bathed in 
Krebs' bicarbonate solution at 4~ Using a bow cut- 
ter, 0.4-mm-thick slices were obtained from each cere- 
bellum. The slices were then incubated at 37~ in 
Krebs' solution, aerated with O z 95%/CO 2 5%. The 
pH of the aerated solution was 7.40 • 0.05. 

First, dose-response curves for stimulants, including 
L-glutamate, NMDA, kainate, and SNP, were con- 
structed to determine the concentrations of the stimu- 
lants to be used in further studies. In other slices, after 
90 rain equilibration, one to two slices from each rat 
were left untreated (control) and other slices 
were pretreated for 30 rain with either propofol 
(10 pM-1 mM), ketamine (10-100 }aM) or midazolam 
(1-100 pM). The slices were then exposed to 
L-glutamate (3 mM) for two minutes, NMDA 
(0.1 raM), kainate (0.1 raM), or SNP (0.3 mM) for 
three minutes, and then quick-fi'ozen in liquid nitrogen. 
Since propofol was in the form of an aqueous emulsion 
(propofol 1%, soya bean oil 10%, glycerol 2.25%, and 
egg phosphatide 1.2%), 18 slices were treated with 
Intrafat which contained soya bean oil 10%, glycerol 
2.5%, and egg phosphatide 1.2%, at a concentration 
equivalent to that contained in the propofol emulsion. 
The levels of cGMP in the slices were measured by 
radioimmunoassay, using a Yamasa cyclic GMP assay kit 
(Yamasa Shoyu Co., Chiba, Japan), and protein levels 
were measured with the Lowry method. Forty-two 
slices were pretreated with bicuculline methiodide 
(BMI, 1 mM), a y-aminobutyric acid (GABA)A recep- 
tor antagonist, alone, or with BMI and propofol, before 
stimulation with L-glutamate, NMDA and SNP. 

The Krebs' bicarbonate solution contained (mM): 
NaCI 118.2, KC1 4.6, CaC12 2.5, KI-IzPO 4 1.2, MgSO 4 
1.2, NaI-IC03 24.8, and dextrose 10. Drugs studied 
were ketamine (Sigma, St. Louis, MO, USA), midazolam 
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(Yanlanouchi Pharmaceutical Co., Osaka, Japan), Intrafat 
(Nihon Pharmaceutical Co., Osaka, Japan), NMDA 
(Nacalai Tesque, Kyoto, Japan), kainate (Nacalai Tesque), 
L-glutamate (Nacalai Tesque), SNP (Nacalai Tesque), 
and BMI (Sigma). Propofol was supplied by Zeneca 
Pharmaceutical Co. (Osaka, Japan). All drugs were 
dissolved and diluted with distilled water, and added 
directly to the bathing fluid; the volume added was < 1% 
of the bath. 

Data were analysed by Student's t test for unpaired 
data, or analysis of variance and Fisher's test when 
appropriate. Data in the text and figures are expressed 
as means • standard error (SE). Differences at 
P < 0.05 were considered significant. 

Results 
Dose response curves of the effect of L-glutamate, 
NMDA, kainate and SNP on cGMP production are 
shown in Figure 2. L-glutamate (3 mM), NMDA 
(0.1 mM) and kainate (0.1 mM), which induced a 
submaximal but significant increase in cGMP, were 
used in the following study. Sodium nitroprusside 
(0.3 mM) was used in the following study because this 
concentration increased cGMP level to the same 
extent with NMDA (0.1 mM). 

In the absence of agonists, the maximum concentra- 
tion of anaesthetics studied did not affect cGMP levels 
(Figure 3). In contrast, agonist-stinattlated levels of 
cGMP were suppressed by propofol concentration- 
dependently. NMDA (0.1 mM)-induced cGMP produc- 
tion was suppressed by propofol, 10 pM-1 mM, 
(P < 0.05-0.01), kainate (0.1 mM)-induced production 
by 100 pM-1 mM (P < 0.01), and L-glutamate 
(3 mM)- and SNP (0.3 mM)- induced productions by 
1 mM (P < 0.05, Figure 4, 5). Ketanaine, 10 -100 jaM, 
strongly suppressed L-glutamate (3 raM)- and NMDA 
(0.1 mM)-induced eGMP production (P< 0.01 ) but did 
not affect kainate (0.1 mM)- and SNP (0.3 mM)-induced 
productions (Figures 4, 5). Midazolam, 10-100 pM, 
suppressed kainate (0.1 mM)-induced cGMP production 
(P < 0.05-0.01), but did not affect L-glutanaate (3 raM), 
NMDA (0.1 raM)- or SNP (0.3 mM)-stimulated cGMP 
levels (Figure 4, 5). Intrafat, the solvent ofpropofol, at a 
concentration equivalent to 1 mM propofol, had no 
effect on cGMP levels (data not shown). Treatment with 
BMI did not alter the L-glutanaate (3 raM)-, NMDA 
(0.1 mM)- and SNP (0.3 mM)-stimulated levels of 
cGMP in this experiment, and propofol (1 raM) sup- 
pressed cGMP levels to the same extent in the absence 
and presence of BMI (see Table on page 1304). 
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F I G U R E  2 The cyclic guanosine monophosphate (cGMP) levels 
o f  rat cerebellar slices exposed to glutamate, NMDA, kainate and 
SNE O = glutamate; �9 = NMDA; �9 = kainate; �9 = SNP; (n = 5-8). 
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F I G U R E  3 The effect ofpropofol (1000 }aM), ketamine (100 
pM) and midazolam (100 FM) on cyclic guanosine monophosphate 
(cGMP) levels o f  rat cerebellar slices in the absence of  stimulants. 
I-I = control; �9 = propofol; ~ = ketamlne; ,% = midazolam; (n = 5). 
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F I G U R E  4 The effect ofpropofol (10-1000 pM), ketamine 
(10-100 pM) and midazolam (1-100 pM) on cyclic guanosine 
monophosphate (cGMP) levels of cerebellar slices stimulated 
with L-glutamate (3 mM, A), N-methyl-D-aspartate (NMDA, 0.1 
mM, B) and Kainate (0.1 mM, C). 

[] = control; �9 = propofol; ~ = ketamine; ,~ = midazolam; 
*P < 0.05, tp  < 0.01 from the corresponding value without 
prctreatment with anaesthetics (control); (n = 5-11). 
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FIGURE 5 The effect ofpropofol (10-1000 pM), ketamine 
(100 pM) and midazolam (100 pM) on cyclic gu:mosine 
monophosphate (cGMP) levels ofcerebellar slices stimulated with 
sodium nitroprusside (SNP, 0.3 raM). 

[] = control; �9 = propofol; ~ = ketamine; ,~ = midazolam 
*P < 0.05 for difference from the corresponding value without 
pretreatment with anaesthetics (control); (n = 6-10). 

Discussion 
The present study showed that, in the absence of indi- 
vidual receptor ligand or NO donor drug, cGMP pro- 
duction was not affected by any of the aalaesthetic 
agents studied. Propofol at concentrations 210 pM 
suppressed the NMDA-induced response, at concen- 
r_rations 2100 pM the kainate-induced response, and 
at a high concentration of 1 mM suppressed the 
L-glutamate- and SNP-induced responses. Ketamine 
(10-100 pM) suppressed the L-glutamate- and 
NMDA-induced responses, but did not affect those 
induced by kainate or SNP. Midazolam did not affect 
the responses induced by L-glutamate, NMDA or 
S N P ,  b u t ,  a t  h i g h  c o n c e n t r a t i o n s  ( 1 0 - 1 0 0  p M ) ,  sup -  

pressed the kainate-induced response. 

TABLE The cyclic guanosine monophosphate (cGMP) levels in 
cerebellar slices stimulated with L-glutamatc (3 raM), N-met3,1-D- 
aspartate (NMDA, 0.1 mM) and sodium nitroprusside (SNP, 0.3 
mM) in the presence of bicuculline methiodide (BMI, 1 mM), 
with or without propofol (1 raM) 

B M I  alone B M I  and propofol 

L-glutamate (n = 6) 64.8 • 7.4 25.5 • 7.6t 
NMDA (n = 9) 141.0 • 20.0 49.0 • 12.6 t 
SNP (n = 6) 172.4 • 33.6 88.0 • 10.9" 

Values are mean • SE 
*P < 0.05, tp  < 0.01 from the corresponding value without propofol. 
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When used clinically for the induction of anaesthesia, 
the plasma concentrations of propofol, ketamine and 
midazolam are 20-30 /aM, 100 gM, and 1-2 gM, 
respectively. 21-2a More than 95% of the propofol and 
midazolam,21,23 and < 5 0% of the ketamine 24 are bound 
to plasma proteins. The present study therefore demon- 
strated that the concentration of ketamine in the bath 
solution required to suppress the NMDA-srimulated 
response was in a clinically-relevant range, and the con- 
centrations of propofol and midazolam were somewhat 
higher than the range. 

The brain, in vivo, has continuous, ongoing, back- 
grotmd activity even during sleep and deep anaesthe- 
sia. 2s In contrast, brain slices in vitro have only 
occasional slow EEG activity resulting from dendritic 
electrical oscillation, and have little if any background 
nerve cell activity. This implies that transmitter release is 
much less frequent in the slices than in the brain, in vivo. 
Thus, in the present study, we needed to add relatively 
high concentrations of the exogenous ligands, L-gluta- 
mate, NMDA or kainate, to the fluid bathing the slices 
(Figure 2). It is likely that, under physiological condi- 
tions, the actions of these anaesthetics will be different 
from those seen in the present in vitro study. 

Glutamatergic system is regulated by GABAA-medi- 
ated inhibition in vivo; suppression of GABA activity by 
GABA A antagonists, such as BMI, increases glutamater- 
gic activity, 26 and activation of GABAergic system by 
naidazolam, all agonist at the benzodiazepine site of 
GABA A receptor, suppresses the glutamatergic effect. 
However, in the present experimental conditions, nei- 
ther BMI, at a high concentration of 1 mM, nor mida- 
zolam, up to 100/aM, affected NMDA-induced cGMP 
formation. It suggests that the GABAergic system was 
not activated significantly in cerebellar slices under the 
present condition. 

Propofol is also known to enhance the GABA recep- 
tor complex. 27 However, the suppression of gluta- 
matergic cGMP formation by propofol, shown in this 
experiment, was not affected by BMI, indicating that 
this effect ofpropofol was not mediated by activation of 
the GABAergic system. We speculate that, in cerebel- 
lum in vivo, where the GABAergic cells are active, the 
suppressive effect of propofol on glutamatergic activity 
may be much stronger than that observed in cerebellar 
slices and that midazolam may suppress NMDA- 
induced effect strongly. 

Conflicting results have been reported on the effects 
of intravenous anaesthetics on NOS activity. Tobin and 
co-workers, I7 demonstrated that intravenous anaesthet- 
ics such as ketamine, midazolana, pentobarbitone and 
fentanyl, did not modify the activity of NOS obtained 
from rat cerebellar homogenate. In contrast, Galley and 

Webster demonstrated that ketamine, naidazolam, 
thiopentone and etomidate suppressed activity of NOS 
isolated from rat whole braha, js 

Interaction of propofol with glutamatergic receptors 
has been reported by several investigators. An in vivo 
study using nfice showed enhancement of convulsive 
property of kainate and quisqualate by propofol) 8 
However, in vitro studies demonstrated suppressive 
effects of propofol on glutamatergic responses. Bianchi 
and co-workers showed suppression of glutamate- 
dependent Ca 2+ entry into rat synaptosomes b,y propo- 
fol. 29 Yamakura and co-workers showed, using glutanlate 
receptors expressed in Xenopus oocytes, a stronger sup- 
pressive effect of propofol on NMDA receptors than on 
the kainate receptor. 3~ 

The different sensitivities to propofol between the 
NMDA- and kainate-induced responses in the present 
study cannot be explained by the suppression of NOS 
nor GC activity, but indicate an interaction with 
NMDA receptor. Although a high concentration of 
propofol suppressed the SNP-induced response indi- 
caring modification of GC activity, the effect ofpropo- 
fol on GC did not play a role in the CNS. These 
results are in contrast to those in the vascular system, 3~ 
probably because propofol exerted stronger effects on 
NMDA receptors than on vascular endothelial acetyl- 
choline receptors. 

Gonzales and co-workers demonstrated a selective 
action of ketamine on NMDA- and AMPA-induced 
responses, using a primary culture of rat cortical neu- 
rons. s2 The present result with NMDA and k,'finate is 
in agreement with this finding, but we could not test 
the effect on AMPA because AMPA receptor is less 
abundant in cerebellum of infant rats than in that of 
adult rats. 2~ Our results indicated that the suppressed 
formation ofcGMP was a result of the action of keta- 
mine on the NMDA receptor, and not due to the 
direct suppression of the NO-cGMP system. 

Surprisingly, midazolam, although at the concen- 
tration out of the clinically-relevant range, exerted a 
stronger suppressive effect on the kainate-induced 
response than on NMDA-induced response. This 
clearly indicates an interaction of midazolam with 
kainate receptors, being in agreement with in vitro 
findings of Zorumski and co- workers. 33 The effect of 
midazolam on L-glutamate-induced effect was not 
significant, probably because the contribution of 
NMDA-receptor activation was larger than kainate- 
receptor activation in L-glutamate-induced cGMP 
production. 

Our previous ~9 and present results revealed that 
anaesthetic agents suppress glutamatergic receptor- 
linked cGMP formation by mechanisms different from 
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NOS inhibitors. This implies that anaesthetics and NOS 
inhibitors might act synergistically to suppress excitato- 
ry transmission, potentially reducing anaesthetic 
requirements. Johns and co-workers demonstrated a 
reduction of  minimum alveolar concentration (MAC) 
of  halothane in rats treated with a NO synthase 
inhibitor, s4 and Pajewski and co-workers 3s and Ichinose 
and co-workers s6 extended this finding to isoflurane. 

However, Adachi and co-workers sz,ss challenged 
the above hypothesis. In their experiments, the MAC 
of  halothane was not reduced by NOS inactivation, 
even when the cerebellar cGMP level was suppressed by 
chronic intraperitoneal and acute intravenous NOS 
inhibitor administrations in rats. Moreover, Ichinose 
mad co-workers demonstrated that the isoflurane MAC 
is not  different in mice congenitally deficient in neu- 
ronal NOS (knockout mice), s6 

The NO-cGMP pathway has been reported to be 
involved in the plasticity of  CNS functions. 6,7 Central 
sensitisation to pain perception is one of  the manifes- 
tations o f  CNS plasticity, and pre-emptive analgesia is 
thought  to act by obtunding or blocking establish- 
ment o f  this plasticity. Investigations have not  always 
succeeded, however, in demonstrating the efficacy of  
the combined use of  intraoperative epidural block to 
reduce postoperative pain in patients receiving gener- 
al anaesthesia, s9 This difficulty may be understood by 
the assumption that general anaesthetics have their 
own pre-emptive effects 4~ that nullify the effects of  
local anaesthesia. The suppression of  cerebellar cGMP 
formation by anaesthetics, shown in our previous 19 
and present studies, may support the above assump- 
tion, although no direct evidence was obtained. 

In summary, NMDA-induced formation o f  cGMP 
in rat cerebellar slices was suppressed by propofol and 
ketamine, and kainate-induced cGMP formation was 
suppressed by propofol and midazolam. These effects 
are probably due to an interaction with receptors for 
excitatory amines, and not  to a direct interaction o f  
the drugs with the NO-cGMP system. 
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