CARDIOVASCULAR AND RESPIRATORY RESPONSES TO SEVERE HYPOXAEMIA DURING ANAESTHESIA

1. The Effect of Various Concentrations of Three Anaesthetic Agents Upon the Cardiovascular Response and Oxygen Transport

H.I.A. NISBET, M.B., CH.B., F.F.A.R.C.S., C.R.C.P. (C);
I.G. GRAY, M.B., CH.B., F.F.A.R.C.S.;
P.M.Olley, M.B., B.S., M.R.C.P. (LOND.), F.R.C.P.(C);
AND A.E. JOHNSTON, M.D., F.R.C.P. (C),
with the technical assistance of G. Volgyesi

INTRODUCTION

INEVITABLY, the anaesthetist will continue to encounter hypoxaemia in the course of his practice. The cardiovascular response to hypoxaemia in anaesthetised subjects may depend upon the anaesthetic agent and the depth of anaesthesia. To study this response we subjected dogs to severe arterial hypoxaemia at various depths of anaesthesia with halothane, trichlorethylene and methoxyflurane and measured the changes in oxygen transport, cardiac output, stroke volume and systemic blood pressure during controlled ventilation at constant arterial carbon dioxide tension. Also, in some dogs, we studied changes in myocardial contractility and the effect of beta adrenergic blockade.

Method

Beagle dogs 10 to 12 kg in weight were used in the experiments. Anaesthesia was induced with barbiturate (30 mg/kg). Each dog was intubated with a cuffed endotracheal tube. Anaesthesia was maintained with:

(1) halothane at end-tidal concentrations (ETH %) of 1 per cent[•] (4 dogs), 1.43 per cent[†] (3 dogs) and 2 per cent[‡] (2 dogs);

(2) trichlorethylene at inspired concentrations (IC %) of 0.9 per cent* (3 dogs) and 1.5 per cent† (4 dogs);

(3) methoxyflurane at end-tidal concentrations (ETM %) of 0.30 per cent^{\circ} (7 dogs), 0.45 per cent^{\dagger} (7 dogs) and 0.60 per cent^{\ddagger} (7 dogs).

From the Departments of Anaesthesia and Cardiology, The Research Institute, The Hospital for Sick Children and the Departments of Anaesthesia and Paediatrics, University of Toronto, Toronto, Ontario.

Supported in part by a grant from the Canadian Red Cross Youth (Ontario).

Paper read by Dr. H.I.A. Nisbet at the Canadian Anaesthetists' Society Meeting in Quebec, June 1971.

*Light anaesthesia.

Moderately deep anaesthesia.

Deep anaesthesia.

Canad. Anaesth. Soc. J., vol. 19, no. 4, July 1972

CANADIAN ANAESTHETISTS' SOCIETY JOURNAL

These concentrations were monitored by repeatedly analysing end-tidal samples with the Mayo volatile anaesthetic analyser§ (for halothane and methoxyflurane) and by using a calibrated vaporiser for trichlorethylene. The dogs were ventilated in such a manner as to maintain end-tidal carbon dioxide concentration $(ETCO_2)$ constant and close to normal limits; ETCO₂ was monitored by analysing end-tidal samples from the trachea with a Beckmann LBI analyser. || Under fluoroscopy catheters were placed in the aorta and either the right atrium or the pulmonary artery. After anaesthesia had been maintained with the appropriate agent and at the appropriate concentration for at least one hour, we measured the cardiac output (Q) by dye dilution, the mean aortic blood pressure (MABP), the heart rate (HR) and the body temperature (by rectal thermometer). Arterial oxygen tension (PaO₂), carbon dioxide tension (PaCO₂) and pH were measured and the results corrected for changes in body temperature. In some dogs anaesthetised with methoxyflurane at 0.46 per cent ET, myocardial contractility was calculated by means of an integrated circuit differentiator and Clark pressure transducer**. These measurements, made after one hour of ventilation with air and the appropriate anaesthetic agent, are called the controls (C) throughout this paper.

The oxygen content of the inspired gas was then reduced and the dogs were subjected to 20 minutes of hypoxaemia. Between the 10th and 20th minutes we repeated all the measurements, reporting them as hypoxaemia values (H). The collected data revealed the changes in cardiac output, heart rate and mean arterial pressure in response to hypoxaemia and enabled us to calculate stroke volume (SV), total systemic vascular resistance (TSVR) and oxygen transport (TaO_2) . The significance of the changes due to hypoxaemia was assessed by means of the paired t test.

We then administered propranolol by intravenous injection (0.2 mg/kg) to the hypoxaemic dogs anaesthetised with methoxyflurane at moderate depth and repeated all the measurements.

RESULTS

The results of the measurements for controls and during hypoxaemia are shown in Tables I to VII.

Figure 1 illustrates the effect of hypoxaemia on oxygen transport, cardiac output and stroke volume in dogs anaesthetised with the three different agents at various depths of anaesthesia.

During hypoxaemia oxygen transport fell below control values in all the dogs except those moderately deeply anaesthetised with methoxyflurane; in them it rose slightly. The lowest values were seen with deep methoxyflurane anaesthesia and with both depths of trichlorethylene anaesthesia.

Under light anaesthesia cardiac output rose significantly during hypoxaemia whatever the anaesthetic agent. Under deep anaesthesia with methoxyflurane the rise in cardiac output during hypoxaemia was not significant. Under deep anaes-

§@Model 1350, Ohio Medical Products, Madison, Wisconsin 53701.

[@Tritec Type B, Cyprane Ltd., Keighley, England, U.K.

10 Beckman Instruments Ltd., Electronics Instruments Div., Schiller Park, Ill. 60176.

* OClark Physiological Pressure Transducer Type 4-327-0109 CEC/Transducer Division, Monovia, California 91016.

340

ł

	E	ETH %	Ó (L/mir	Ó (in	AM M	MABP (mm Hg)	HR (per min)	R (nin	SV (ml)	>=	d	Hq	PaCO ₁ (mm Hg)	$_{\rm g)}^{\rm O_3}$	Pa (mn	PaO ₂ (mm Hg)	Ta (ml/	TaO ^s (ml/min)	TS (dy sec c	TSVR (dynes sec cm ⁻⁵)
Dog	ပ	H	υ	Н	υ	H	ပ	н	v	H	ပ	H	ပ	H	υ	н	ပ	H	ပ	н
I	1.0	1.0	1.0 1.67		83	110	132	148	12.6	21.6	7.36	7.37	43	40		21.5	307	270	3976	2750
0	1.0	0.0	1.63		8	107	128	136	12.7	16.4	7.38	7,39	37	8		8 8	301	273	4564	3839
80 8	1.0	1.0	1.75		8	ŝ	120	144	14.6	16.7	7.33	7.35	35	R		21	267	169	3794	300
4	1.0	6.0	3.00	4.70	100	130	110	168	27.3	28.0	7.27	7,28	35	35	77	28	579	584	2667	2213
Mean	1.0	0.95	2.00		68	109	122	149	16.8	20.7	7.33	7.35	37.5	36	80	26	363	324	3750	2950
₽ SD #	•	0.06	0.66		00	16	10	14	7.1	5.4	0.05	0.05	4	0	9	9	145	180	793	677
			۷ ط	0.05	P < (< 0.05	ns'		ũ	10	S	φû	115 US		₽ <	p < 0.001	E	ns	Ч	0.02
		:																		

*ns = not significant.

TABLE 11

Cardiovascular Response to Hypoxaemia During Moderately Deep Halothane Anaesthesia

		828 29			
TSVR (dynes sec cm ⁻⁶)	Ξ.	2933 4757 4632 4632 1019			
TS (d)	υ	3906 7000 5000 1569	•		
TaO _t (ml/min)	н	174 403 127 235 148	2		
Ta (ml/	С	252 351 200 71 71	1		
PaO ₂ (mm Hg)	Н	80 18.5 72 27 80 19 5 4.8 6 001	+>>		
a m	C	828 t ° °	/ 		
PaCO ₂ (mm Hg)	Н	38 38 38 38 38 38 38 38 38 38 38	3		
Pa(mm	c	35 36 59 39 39	•		
н	H	7.35 7.30 7.35 0.05	,		
Hq	С	7.36 7.35 7.37 0.04	•		
/ (i	Н	220.3 11.9 5.4			
SV (m])	υ	14.2 15.1 11.8 13.7 1.7	1		
R min)	H	148 160 150 150 150			
HR (per min)	ပ	1120 1132 118	p < 0.05		
MABP (mm Hg)	Н	110 220 110 63 63 0 01	< 0.01		
MA (mm)	C	83 175 75 111 55 85	,		
Ç nin)	Н	3.0 3.7 0.9 0.9 0.9 0.9 0.9			
Ó (L/mi	b	1.7 2.0 1.2 0.4	, 1		
%	Н	1.5 1.4 0.06			
ETH %	J	1.4 1.4 1.43 0.06			
	Dog	5 6 1 ± SD			

*ns = not significant.

			000	~~
	TSVR (dynes sec cm ⁻⁶)	H	6000 4166 3086	4417 1473
	tC Sec o	υ	8727 4632 3636	5665 2698
	TaO ₂ (ml/min)	H	123 143 238	168 61
(%6'	Ta (nl/	υ	163 301 363	276 102
SIA (IC (PaO ₁ (mm Hg)	H	22 17	19 2.5
VESTHE		C	666	80
RESPONSE TO HYPOXAEMIA DURING LIGHT TRICHLORETHYLENE ANAESTHESIA (IC 0.9%)	PaCO ₂ (mm Hg)	Н	8 85	36 3.8
ORETHY	Pal (mr	υ	355 355 36	35 0.6
TRICHL	Hq	H	7.32 7.36 7.41	$7.36 \\ 0.05$
ve Licht		ပ	7.39 7.35 7.38	$7.37 \\ 0.02$
IA DURB	>=	Н	9.1 14.1 18.4	13.9 4.7
(POXAEM	SV (Im)	ပ	8.5 17.7 14.8	13.7 4.7
se to Hy	HR (per min)	H	176 170 190	178 10
RESPON	(ber H	υ	130 124 148	134 12
SCULAR	MABP am Hg)	Н	120 125 135	127 7
RDIOVA	MM Mm)	υ	120 120	113 11
Ũ	Ó (L/min)	н	1.6 2.4 3.5	$2.5 \\ 0.95$
	(T/	ပ	$\begin{array}{c} 1.1 \\ 2.2 \\ 2.2 \\ 2.2 \\ 3.5 \\ 3.5 \end{array}$	$1.83 \\ 0.63$
-		Dog	933	Mean ± SD

TABLE III

Cardiovascular Response to Hypoxaemia During Deep Trichlorethylene Anarsthesia (ic 1.5%) TABLE IV

		and the second se																
	(L)	Q (L/min)	M M)	MABP nm Hg)	i bei	HR (per min)	SV (ml)	>=		Hq	Pa(mm	PaCO ₁ (mm Hg)	PaO ₂ (mm Hg)	Hg)	(ml/i	TaOs (ml/min)	TSI (dy	TSVR (dynes sec cm ⁻⁶)
Dog	υ	H	ပ	 H	ç	н	Ŷ	H	ပ	H	υ	H	U	H	υ	Н	υ	H
13	1.7			0 8	136	168	12.5	19.6	7.37	7.36	34	36	78	19	261	210	3294	1939
14	8°.1			22	144	192	12.5	12.5	7.32	7.25	90 08	4	83	2	260	100	3644	2400
15	2.0			0 6	150	160	13.3	15.6	7.35	7.32	39	42	20	22	304	170	2720	2880
16	8. 73	3.6	33	90	132	148	21.2	24.3	7.37	7.37	34	35	56	16	446	196	2429	2000
Mean	2.07			83.0	140	167	14.9	18	7.35	7.32	36.5	38.5	67	19	317	169	3022	2305
± SD	0.5		Ľ۵.	8.7	90 90	18.6	4.2	5.0	0.02	0.05	რ	ক	თ	ო	88	49	549	435
	d d	p < 0.05	ä	ns*	-	08 U	us	je.	US	2	us	υż	p < 0.005	005	р < (0.05	SLI	
												ļ						

p < 0.001

缩

rs,

2

8

p < 0.005

80

2

8

*ns = not significant.

*ns = not significant.

TABLE V	CARDIOVASCULAR RESPONSE TO HYPOXAEMIA DURING LIGHT METHOXYFLURANE ANAESTHESIA
---------	---

															,		I		TS!	TSVR
					MA	BP	ΗF	بر	ίΩ	>			PaC	ğ	PaO		TaO.	_ ⁶⁴	(dyr	lės ,
	ធ	ETM %	(L/m̃i	nin)		mm Hg)	(per min)	(uiu	([E	() ()	d	н	(mm Hg)	Hg)	(mm Hg)	(gH	5 m)	(ii	Sec	(°
Dog	0	H	0	H	ပ	H	ပ	H	υ	н	ບ	H	U	H	ပ	н	ပ	H	ပ	H
17	0.8	0.32	1.4	2.0	100	100	110	140	12.7	14.3	7.33	7.29	38	40	99	8	231	138	5714	4000
. 00		08.0		9 2	120	150	116	148	12.9	17.6	7. 4 0	7.38	37	8	99	ន	271	224	640	4615
₽₫	000	0.31) 	5.6	19	130	96	116	15.6	22.4	7,30	7.35	2	8	89	52	켫	279	5333	6 00
25		18			2 <u>0</u>	120	<u>8</u>	120	27.0	30.0	4	7.37	\$	35	92	83	502	395	3200	2667
6) c > ⊂		с і с		127	127	14	156	15.3	20.0	7.34	7.29	35	68	101	89 89	366	3 44	4618	3277
15		0.00	10 1-		18	8	120	144	15.8	22.9	7.34	7.34	40	37	98	8	329	369	3789	2618
ន	0,00	0.32	1	50	88	10	12	180	14.2	14.4	7.34	7.30	36	4	8	88	277	316	3906	3292
Moon	0	0 31	- 0	a ¢	104	190	115	142	16.2	20.2	7.35	7.33	36	38	8	30	320	205	4709	3496
#SD #	0	0.0	0.47	0.54	16	11	9	ន្ត	6.4	ъ ъ	0.04	0.04	4	51	17.6	5.8	62	06	1157	742
			ч Ч	0	p < 0.02	0.02	p < 0.005	.005	p < 0.01	0.01	a		50	5	۲ م	< 0.001	SU		0 V 0 V	100
= 5U*	∎ not 8	ns = not significant	L.																	
									TA	TABLE V	I									

ANAESTHESIA
JETHOXYFLURANE /
MODERATELY DEEP]
XAEMIA DURING]
RESPONSE TO HYPO
CARDIOVASCULAR R

																-			TST	R
	ETN	ETM %	Ŀ,	Ò L/min)	MM m	MABP (mm Hg)	H iad	HR (per min)	N S S S	28	٦ م	μd	Pa((mm	PaCO ₁ (mm Hg)	Pa mm	PaO: (mm Hg)	TaO _t (ml/min)	, (nin	(dynes sec cm ⁻⁶)	nes n^6)
D00	υ	H	U	H	ပ	Ħ	U	H	υ	H	υ	H	ں ا	H	υ	H	υ	H	υ	H
77	0 48	0.45	1 56	3.70	8	38	8	180	8.7	18.0	7.34	7.38	36	35	8	34	236	402	4102	2054
15	9 8 8 8	0.45	141	2,40	80	110	19	160	8	15.0	7.38	7.41	4	35	8	39	241	335	5680	3660
8	0.45	0.45	1.00	1.40	112	120	140	140		10.01	7.38	7.38	4	41	8	쳤	164	165	8960	6860
2	0.45	0.45	1.62	2.85	136	162	160	0 81	10.1	15.8	7.28	7.33	45	41	25	8	in Si	ĝ	6720	4550
X	0.45	0.45	1.42	2.26	8	123	160	180	8.9	13.4	7.32	7.32	\$	41	8	23	331	8	5070	4348
8	0.45	0.45	1.54	2.17	1.	140	1 40	160	11.0	13.5	7.32	7.32	1	4 3	22	ģ	250	255	6	5170
8	0.47	0.45	1.01	1.51	85	8	140	140	7.2	10.1	7.37	7.34	43	47	8	8	179	190	6732	5296
Mean	0.46	0.45	1.37	2,33	28	121	154	163	00 00	13.7	7.34	7.35	41	40.5	8	34.7	222	269	5895	4563
l S H	0.01	0	0.26	0.79	5	8	15	18	1.4	2,9	0.04	0.04	60 90	4.3	3.8		35	8	1745	1491
			ч Ч	0.01) < b <	0 < 0.025	p < 0.1	0.1	p < 0.005	.006	ä	•	c	ns	p < 0	< 0.001	SI		p < 0.05	8.0
*ns	= not si	gnifican	L.									1								

TSVR (dynes sec cm ^{-s})	H	4000	3035	4240	5143	3091	3164	3899	000	ସ
TS (dy sec o	ပ			••				3944		•
TaO ₂ (ml/min)	H	215	275	98	178	189	165	170 88 A		
Tal (m]/r	ပ	162 231						538 738		ns
PaO, (mm Hg)	н	33 38	R	89 79	۲,	24	ន	75 25.4 3 0 3 9	2	0.001
, Pa	с С	88						75	0.0	ЪЧ
PaCO ₁ (mm Hg)	н	98 98	30	32	8	80	30	33.1 23.1	2.2	ns
Pa(mm)	υ		ඝ					35.4 9	4	1
.	Н	7.35	7.33	7.45	7.38	7.39	7.36	7.37	5.2	\$
Hq	ບ	7.35	7.30	7.44	7.35	7.38	7.35	7.36	5.5	Φ\$
SV [II]	н	15.0 8.0	18.6	7.0	11,7	12.2	14.1	12.4	2	
ίςĒ	ບ	9.6 9.6	13.1	12.5	10.7	13.9	12.5	12.0	-	\$a
R min)	H	160 112	156	142	180	180	156	155 93 A	H. 23	cn .
HR (per min)	ບ	120 128	132	128	168	108	120	129	4	5
MABP (mm Hg)	H	81	101	53	135	85 85	87	88	2	2
W	ပ	96 22	8	22	8	8	00	74	;	
Ó (L/min)	H	2.40 0.90	2.90	1.00	2.10	2.20	2.20	1.96		50
(L/)	ပ	1.15	1.60	1.60	1.80	1.50	1.50	32 1	3	с
ETM %	н	0.61	0,60	0.65	0.60	0.60	0.60	0.62	30.0	
ETA	ပ	0.0	09.0	0.62	0.60	0.60	0.60	0.0 9.0	>	
	1	1								

	METHOXYFLURANE ANAESTHESIA
	DEEP]
TABLE VII	DURING
TAB	HYPOXAEMIA
	TO H
	RESPONSE
	CARDIOVASCULAR

.....

*ns = not significant.

X 3388888333

Dog

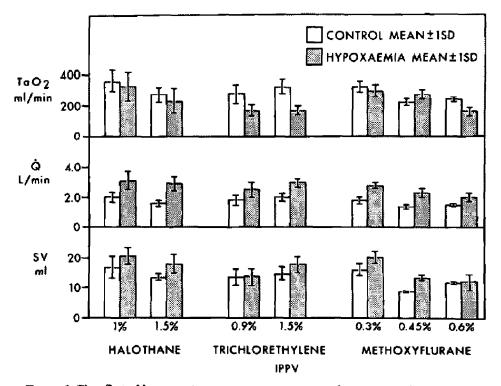


FIGURE 1. The effect of hypoxaemia upon oxygen transport, cardiac output and stroke volume under halothane, trichlorethylene and methoxyflurane.

thesia with halothane the dogs (Nos. 8 and 9) died rapidly during hypoxaemia and are therefore not represented in Figure 1, or in the Tables.

Under light anaesthesia stroke volume rose in the dogs anaesthetised with halothane and methoxyflurane. Hypoxaemia during deep anaesthesia with methoxyflurane and light anaesthesia with trichlorethylene caused an insignificant change in stroke volume.

Changes in total systemic vascular resistance, mean aortic blood pressure and heart rate are illustrated in Figure 2.

Total systemic vascular resistance decreased most during hypoxaemia under light anaesthesia. Significant reductions were measured at light and moderate depths of methoxyflurane anaesthesia but not with deep methoxyflurane and trichlorethylene anaesthesia, where the control values were already low.

In all the dogs the heart rate rose during hypoxaemia, the most significant rise being in those under light trichlorethylene anaesthesia.

Hypoxaemia caused the left ventricular dP/dt to increase by 93 per cent under moderately deep methoxyflurane anaesthesia. Under deep anaesthesia with the same agent the mean increase was only 38 per cent. At this depth, however, the response was variable and in some dogs decreases in dP/dt were recorded.

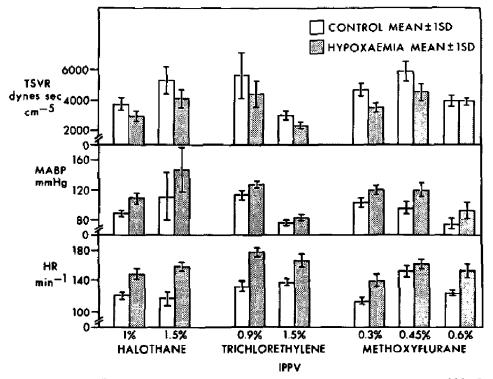


FIGURE 2. The effect of hypoxaemia upon total systemic vascular resistance, mean arterial blood pressure and heart rate under halothane, trichlorethylene and methoxyflurane.

Propranolol caused cardiac output, mean aortic blood pressure and oxygen transport to fall during hypoxaemia and total systemic vascular resistance to increase.

Figure 3 illustrates the degree of arterial hypoxaemia for each agent and level of anaesthesia and shows that under controlled ventilation variations in arterial CO_2 tension were prevented and changes in pH were insignificant.

DISCUSSION

End-tidal concentrations of 0.30 per cent, 0.46 per cent and 0.60 per cent methoxyflurane and 1.00 per cent, 1.43 per cent and 2.00 per cent halothane are approximately equivalent to minimum alveolar concentration (MAC) values of 1.3, 1.9 and 2.5 respectively.¹ Normocarbic hypoxia may reduce MAC values to 76 per cent of control values² and this would indicate that our measurements in the hypoxaemic dogs were made at levels of anaesthesia slightly deeper than those indicated by the above MAC values. However, the effects of hypoxaemia with methoxyflurane and halothane anaesthesia appear to have been measured at comparable depths. No MAC values are available for different concentrations of trichlorethylene.

Cullen and Eger³ found that severe hypoxaemia ($PaO_2 = 30 \text{ mm Hg}$) during anaesthesia with halothane (0.75-1.25 per cent end-tidal) stimulated ventilation

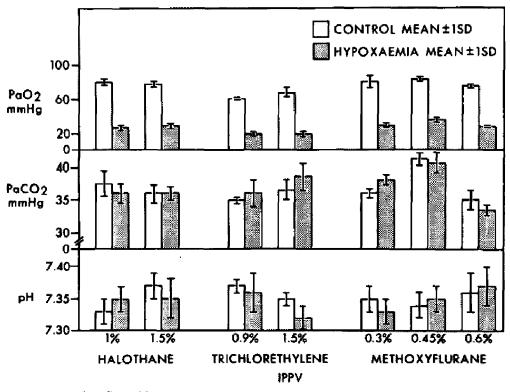


FIGURE 3. The effect of hypoxaemia upon arterial oxygen and carbon dioxide tension and pH under halothane, trichlorethylene and methoxyflurane.

and increased cardiac output, but with end-tidal concentrations of 1 to 1.5 per cent respiratory or cardiac arrest occurred, oxygen transport became inadequate and metabolic acidosis developed. Our results agree with their conclusion that hypoxaemia under light halothane anaesthesia stimulates a significant increase in cardiac output so that an insignificant fall in oxygen transport occurs. In our dogs, however, this response was maintained under moderate depths of anaesthesia and only became inadequate at 2.5 MAC. Our results during light anaesthesia are also in general agreement with those of Gorlin and Lewis⁴ who showed that under pentobarbitone anaesthesia dogs could survive severe hypoxaemia for prolonged periods.

The dogs anaesthetised with trichlorethylene should perhaps be considered separately as MAC values are not known and hypoxaemia was of slightly greater severity than in the other groups. A significant fall in oxygen transport occurred in these dogs despite a striking rise in cardiac output. This may be because the oxygen dissociation curve of the dog becomes less steep at an oxygen tension of 20 mm Hg. In Figure 4 oxygen transport and cardiac output are plotted in relation to PaO₂ in dogs under light anaesthesia. Above 25 mm Hg oxygen transport remains relatively constant with declining PaO₂. Below 25 mm Hg a rise in cardiac output is not associated with maintained oxygen transport.

The investigations of Cullen and Eger³ involved repeated exposure of each dog to hypoxaemic episodes at varying levels of halothane anaesthesia. Respiratory and

347

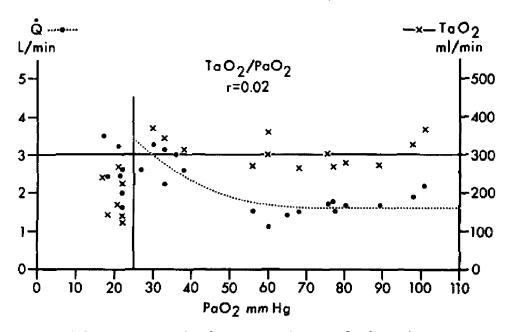


FIGURE 4. Oxygen transport and cardiac output in relation to reduced arterial oxygen tensions under light anaesthesia.

cardiac arrest occasionally occurred at light anaesthetic levels (for example, 0.75 per cent end-tidal halothane). Changes in pH and arterial carbon dioxide tension may alter the response to hypoxia significantly, as may oligaemia. It would be unjustifiable to apply our results to conditions where more severe hypoxaemia, acidosis or oligaemia predominate.

Adrenalectomy and splanchnic ectomy destroy, although not completely, the humoral response to systemic hypoxia.⁵ The effect of propranolol which we observed is consistent with the blockade of a predominantly β -adrenergic response.

Cullen and Eger³ were concerned about the extent to which depth of anaesthesia masks the cardiovascular signs of hypoxaemia in clinical practice. Our investigations show that hypertension, peripheral vasodilation and increase in heart rate are prominent signs during light anaesthesia.

In deep anaesthesia, changes in blood pressure and peripheral circulation in response to hypoxaemia are not dramatic. Changes in cardiac rate and, with trichlorethylene, changes in rhythm seem better guides to the presence of hypoxaemia in ventilated subjects. Since the respiratory response to severe hypoxaemia appears to be prominent even with deep methoxyflurane anaesthesia,⁶ it is perhaps fortunate that most patients subjected to deep anaesthesia are allowed to breathe spontaneously.

CONCLUSIONS

Under light and moderate anaesthesia hypoxaemia causes a rise in cardiac output due to increased stroke volume and heart rate. This response is similar whether halothane or methoxyflurane anaesthesia is used, and prevents a severe fall in oxygen transport provided the arterial oxygen tension remains above 25 mm Hg. At lower arterial oxygen tensions the oxygen transport falls despite a significant increase in cardiac output. The clinical signs of hypoxaemia are clear, and, under trichlorethylene anaesthesia, arrhythmias are likely to occur. Peripheral vasodilation accompanies the hypoxaemia. The over-riding response in artificially ventilated dogs anaesthetised with methoxyflurane is sympathetic as it is largely blocked by propranolol.

Under deep anaesthesia, the rise in cardiac output during hypoxaemia is not significant and is unlikely to maintain oxygen transport. Myocardial contractility (as measured by left ventricular dP/dt) rises much less than under light anaesthesia. There is little evidence of additional peripheral vasodilation and some important signs of hypoxaemia are masked in the artificially ventilated subject. Mortality and morbidity rates are significantly high in dogs under deep anaesthesia, in contrast to good recovery rates in dogs under light anaesthesia.

The conclusions are applicable only in the absence of oligaemia, acidosis, anaemia, asphyxia or more severe hypoxia, all of which may significantly alter the response. The role of these factors requires further study.

Summary

Beagle dogs were anaesthetised with halothane, trichlorethylene or methoxyflurane, at various end-tidal concentrations and were ventilated to maintain arterial carbon dioxide tension constant.

Under light anaesthesia, severe arterial hypoxaemia caused significant increases in cardiac output, stroke volume and heart rate and a decrease in total systemic vascular resistance. Oxygen transport values during hypoxaemia remained close to control levels measured when the dogs were breathing air, unless the arterial oxygen tension fell below 25 mm Hg. Then the oxygen transport values fell despite significant increases in cardiac output. The clinical signs of hypoxaemia were clear in the lightly anaesthetised dogs.

Under deep anaesthesia, the rise in cardiac output during hypoxaemia was not significant and the total systemic vascular resistance did not fall. Oxygen transport values decreased from the control levels. Some clinical signs of hypoxaemia were less striking than in the lightly anaesthetised hypoxaemic dogs. Morbidity and mortality rates were high in this group.

We conclude that the cardiovascular response to hypoxaemia was well maintained only in those dogs under light anaesthesia with the agents studied.

Résumé

Nous avons anesthésié des chiens Beagle avec de l'halothane, du trichlorethylene ou du méthoxyflurane, à diverses concentrations expiratoires et nous les avons ventilés de façon à garder constant le CO₂ artériel.

Sous anesthésie légère, une hypoxhémie artérielle marquée a entraîné des augmentations du débit cardiaque, du volume systolique, de la fréquence cardiaque et

350 CANADIAN ANAESTHETISTS' SOCIETY JOURNAL

une diminution de la résistance vasculaire totale systémique. Durant l'hypoxhémie, les données du transport d'oxygène sont demeurées voisines des taux, chez les témoins, lorsque les chiens respiraient de l'air, à moins que la PaO2 ait été inférieure à 25 mm Hg. Alors les données du transport d'oxygène ont diminué malgré les augmentations importantes du débit cardiaque. Les signes cliniques d'hypoxhémie étaient évidents chez les chiens sons anesthésie légère.

Sous anesthésie profonde, l'augmentation du débit cardiaque durant l'hypoxhémie n'a pas été très marquée et la résistance vasculaire totale systémique n'a pas diminué. Les données du transport d'oxygène ont diminué par rapport aux données trouvées chez les témoins. Quelques uns des signes cliniques d'hypoxhémie étaient moins évidents que chez les chiens hypoxhémiques sous anesthésie légère. Dans ce dernier groupe le taux de morbidité et de mortalité a été élevé.

Avec les agents employés, nous en venons à la conclusion que la réponse cardiovasculaire à l'hypoxhémie ne s'est maintenue que chez les chiens sous anesthésie légère.

REFERENCES

- 1. REGAN, M.J. & EGER, E.I., II. Effect of hypothermia in dogs on anaesthetising and apneic doses of inhalation agents. Determination of the anesthetic index (Apnea/MAC). Anesthesiology, 28: 689 (1967). 2. Cullen, D.J. & Eger, E.I., II.
- The effects of hypoxia and isovolemic anemia on the halothane requirement (MAC) of dogs. 3. The effects of hypoxia. Anesthesiology, 32: 28 (1970)
- 3. CULLEN, D.J. & EGER, E.I., II. The effects of halothane on respiratory and cardiovascular responses to hypoxia in dogs. A dose-response study. Anesthesiology, 33: 487 (1970). 4. GORLIN, R. & LEWIS, B.M. Circulatory adjustments to hypoxia in dogs. J. Appl. Physiol. 7:
- 180 (1954)
- 5. HATCHER, J.D. & JENNINGS, D.B. Evidence for the Role of Humoral Mechanisms in the Cardiovascular Responses to Hypoxia and Anaemia in International Symposium on Cardiovascular and Respiratory Effects of Hypoxia. Kingston, Ontario, 1965. Proceedings. Edited by J.D. Hatcher and D.B. Jennings, Basel, Karger, 1966, pp. 174–190.
- 6. NISBET, H.I.A. Unpublished observations.