VENTILATION AND BLOOD GASES IN ANAESTHETIZED PATIENTS*

MARTIN I. GOLD, M.D., AND MARTIN HELRICH, M.D.[†]

RECENTLY the safety of intermittent positive pressure breathing (IPPB) from the standpoint of oxygenation has been questioned. An increase in physiologic dead space (VD (phys)) and ventilation-perfusion inequality have been demonstrated during IPPB in both awake and anaesthetized subjects.¹⁻¹¹ An anatomical shunt with venous admixture may result from ventilation with constant volumes. The degree of this disturbance, the time relationships between onset and maximum hypoxaemia, and its clinical significance remain to be evaluated.

The purpose of this study was to evaluate the significance of blood gas changes during anaesthesia and IPPB. Although evidence is available to the contrary, we wanted to test the validity of the assumption that during the awake, spontaneously breathing state and the anaesthetized IPPB state similar inhaled oxygen tensions (PI_{0_2}) , tidal volumes (VT), and respiratory rates (f) should provide similar blood gas values in the same patient. Results proved that the assumption was not valid, although in many instances higher arterial oxygen tensions occurred at tidal volumes considerably less than are used during the management of clinical anaesthesia.

EXPERIMENTAL METHOD

Surgical patients were placed on the operating table one hour after the intramuscular injection of 100 mg. pentobarbital and 0.5 mg. atropine. A Cournand needle was placed in the brachial artery and an intravenous infusion of 5 per cent dextrose and water initiated. A mouthpiece was inserted and a nose clip applied. After a tight seal was ensured, a recently calibrated Wright respirometer was attached to measure expiratory VT and minute volume ($\dot{V}E$). Two arterial samples were withdrawn in the conscious state, the first while the patient was breathing air. A non-rebreathing valve and reservoir bag with 100 per cent oxygen were then attached. This was followed by 5 minutes of denitrogenation and, in turn, succeeded by 5 minutes of inhalation of 50 per cent oxygen in nitrogen through the same breathing system. The second arterial sample (the awake control) was then withdrawn while $\dot{V}E$ and f were again measured.

Thiopental was then injected intravenously followed by succinylcholine. The trachea was then intubated. Fifty per cent O_2 in N₂O-halothane was inhaled and the patients' respirations were controlled with the same pressure-regulated ventilator during all subsequent measurements. This O_2 concentration was maintained and monitored at a point distal to the inspiratory valve in a circle CO_2 absorption

Can. Anaes. Soc. J., vol. 14, no. 5, September, 1967

^oThis investigation was supported by Public Health Service Research Grant HE-06429 from the National Institutes of Health.

[†]Department of Anesthesiology, University of Maryland School of Medicine and Hospital, Baltimore, Maryland.

system by means of a Beckman D-2 paramagnetic analyser. The patient was given periodic injections of d-tubocurarine to ensure apnoea while on the ventilator with the same VT and f as his awake control. In a few patients either VT or f was varied, after which arterial samples were withdrawn and volume measurements made.

Blood samples were withdrawn at 15-minute intervals after the ventilator was set to inflate the lungs at the control values. Surgery lasted from 30 minutes to five hours in the 13 patients studied. The arterial blood was placed in heparinized syringes and iced for analysis of arterial oxygen tension (Pa_{0_2}) by means of an Astrup radiometer unit and an oxygen electrode calibrated with gases. The pH meter and equilibration technique were used to analyse arterial carbon dioxide tension (Pa_{CO_2}) . Calibration gases were analysed by the Scholander method; all arterial samples were analysed three times.

Results

In Table I the physiologic information regarding the 13 patients is shown. Tables II, III, and IV display the individual Pa_{0_2} , Pa_{CO_2} and $\dot{V}E$ data of each patient breathing air and 50 per cent O_2 in N_2 awake and, subsequently, anaesthetized. Samples were withdrawn each 15 minutes after IPPB was initiated. Pa_{CO_2} was determined each 30 minutes. Those 22 samples withdrawn at VT and/or f not identical to the awake control are indicated by an asterisk (*).

Figure 1 displays the mean ± 1 S.D. of the Pa₀₂, Pa_{C02} and VE (including VT, f, and estimated VA) for the 13 patients during the three conditions: (a) awake, spontaneously breathing air; (b) awake, spontaneously breathing 50 per cent O₂ in N₂ for five minutes after denitrogenation; and (c) anaesthetized with 50 per cent O₂ in N₂O-halothane during IPPB at VT and f almost identical to those during situation (b).

Patient	Sex	Age	Ht. (in.)	Wt. (lbs.)	Surgery	Thiopental (mg.)	d-Tubocurarine (mg.)
1. L.G.	M	43	71	150	resection		Succinvlcholine
					hand tumour	200	drip
2. M.L.	F	76	62	100	cholecystectomy		24
3. E.T.	М	45	68	150	gastrectomy	250	57
4. B.A.	F	42	63	125	expl. lap.	200	24
5. A.S.	F	63	62	140	lysis of		
					abd. adhesions	150	21
6. J.H.	Μ	66	68	130	Appendectomy &		
•					colostomy	150	24
7. L.D.	м	47	66	187	ing. herniorrhaphy	225	27
8. G.W.	F	48	62	110	hysterectomy	275	21
9. A.K.	М	78	69	160	perineal		
					prostatectomy	200	21
10. A.G.	Μ	55	70	188	radical neck		
					dissection	100	48
11. E.W.	F	65	66	176	sympathectomy	225	42
12. E.B.	F	51	64	125	cholecystectomy	175	38
13. M.S.	F	37	64	140	vein ligation		
					and stripping	175	15

TABLE I Clinical Information

						Pa,o2	(mm. H	g)							
						Ъ.	atient nc								
	I	2	3	4	5	9	2	8	6	10	11	12	13	Mean	S.D.
Awake air 50% O2 in N2	94 277	$\begin{array}{c} 75\\210\end{array}$		87 271		11	83 198	78 179	79 221	78 197	71 135	81 188	93 202	82 208	7 40
Minutes after initiation of IPPB 15	235	151	ł	261	217	[]	104	ł	200 188	207	121	201	210	190	45
30	224	l	286	250	176	168 150	95	I	191	175	118	199	196	186	50
45	238	93	1	240	167	146	82	68	193	165	122	191	$212 \\ 207$	165	53
60		۱	254	ł	113	147	85	82	187	166	118	183	206	154	53
75 90		8	238	234 245		145 143	70 68		183 159	147 146	117	185	203 214	152 168	52 57
105		<u>98</u>	263	231			8			141	136	$183 \\ 140$	194	164	55
		ł				161	1		174					1))
120		108	!	238		170	95*		184	143	134	186		168	34
135		109	251*	254			•26		167	146	140	177*		163	49
150		127	247*				102*		171	164*	161	183*		153	19
165		136	249*						186	166*	166			163	21
180		151	253*							169*					
195		141	263*							162*					
210		130	263*							185*					
225			1							179*					
240			276*							178*					
255			273*							174*					
270			265*							152					
285										158					
300										156					
315										163					
mean	232	121	260	244	168	154	85	86	182	160	133	184	205		
*Sampled at VT a	nd/or f oth	er than a	wake, co	ntrol. T	hese datz	a not inc	luded in	calculati	ing mear	ls.					
H									J						

						T/ Pace	ABLE I 94 (mm.	II Hg)							
						H	atient n	lo.							
		12	33	4	5	9	2	×	6	10	11	12	13	Mean	S.D.
Awake air 50% O2 in N2	42 41	43		8	11		13	16	188	46	21	36 36	80.00	39 42	0.4
Minutes after initiation of TPPR															
30	38 42	44	33		31	32			28	46	53	41	40 38	39	7
60	46							42	30		51	40	35 35	40	9
00		1	67	5		20	00			2	02	00	41 40 80	97	01
120		5	1	3 13		1 0	ne		36	5	20	43 6	47	39	101
150		46					30*			56* 56*	48	44 * 42*		50	4
180			26*								50				
210		48	24*							69 *					
240			24*							9					
2/0			202							40 58					
300 330										60					
mean	42	48	38	21	31	33	30	42	32	55	50	40	40		
*Sampled at VT an	d/or f oth	er than	awake, c	ontrol.	These da	ta not in	cluded in	n calcula	ting mea	ans.	l				

1 2 000 600 6900 600 6300 6900 600 6300 7000 70000 7000 7000 70000 70000 7000 70000 70000 7000 70000 70000 70000	3 3 3 3 3 3 3 5 5 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 3 0 6 5 9 5 9 5 9 6 9 0 6 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1	4 6138 8344 8344 8400 9375 8400 8400 8400 8400	5 9450 9000 10500 10725	Pat 8 8 8 8 8 8 8 8 8 8 8 8 8	ient num 7 8556 8349 9100 8760 8280 8280 8448 8448 8448 8448 8448 844	ber 8 7581 7448 7942 7942	9 6474 7620 7800 7800 8004 7848 8148 7848 7848 7848 7848 7848 784	10 10603 8358 8358 8358 83560 8260 8300 7940 7900 7900 7900 7900 7800 7900 7900 70088 7088 7	11 4970 5400 5595 5595 5400 5450 5400 5400 540	12 5650 5700 5700 5700 5700 5700 5700 6500 6000 6100 10000*	13 13 13 9800 6600 6900 7200 7200 7200 7200 7200 7200	Mean 7534 7178 7608 7857 7829 7826 7826 6894 7826 6894 7300 6698 6698 6675	S.D. 1847 1032 1565 11288 1102 1102 1102 1231 857 901 1065
6905	6212	8753	9619	9427	8602	7695	8149	8240 8240 8240 8111	5489	5919	7125		

FIGURE 1. Volumes and gas tensions during spontaneous and intermittent positive pressure breathing.

 \overline{Pa}_{0_2} with air was 82 mm. Hg, 208 mm. during 50 per cent O_2 and 167 mm. during IPPB and anaesthesia (mean value from 99 blood samples). This represents a drop of 41 mm. Hg (p < .05). \overline{Pa}_{CO_2} during conditions (a), (b), and (c) was 39, 42, and 42 mm. Hg respectively. \overline{Ve} was 7.53, 7.18 and 7.59 L./min. during conditions (a), (b), and (c). There was, therefore, a significant drop in \overline{Pa}_{O_2} despite almost identical \overline{Ve} , \overline{VT} , \overline{f} , \overline{Pi}_{O_2} and \overline{Pa}_{CO_2} .

Figure 2 plots the average Pa_{0_2} and Ve at 15-minute intervals and Pa_{CO_2} at 30-minute intervals in the 13 patients (see Table II). The data were plotted up to 165 minutes of IPPB. Not all patients had measurements during each 15-minute interval. While Ve and Pa_{CO_2} remained at levels close to the awake control, the Pa_{O_2} gradually fell, reaching its lowest levels at 60 and 75 minutes.

DISCUSSION

It is accepted that hypoxaemia may occur during anaesthesia and IPPB and that: (a) VD (phys) increases and (b) a physiologic shunt occurs.¹⁻¹¹ Further, pulmonary mechanics during IPPB are different from those during spontaneous

429

FIGURE 2. Variation in blood gases with time during intermittent positive pressure breathing.

breathing.¹² A decrease in pulmonary compliance (CL) in both awake and anaesthetized states occurs.^{5,8,13,14} The magnitude and incidence of these abnormalities and therefore their significances are not known. It is well to realize that during anaesthesia and spontaneous breathing, an increase in venous admixture and a decrease in CL also occur.^{14,15}

In this study, the reduction of $\overline{P}a_{0_2}$ from 208 to 167 mm. Hg (p < .05) in the passage from the awake to the anaesthetized state during IPPB, despite similar $P_{I_{0_2}}$, VT, and f, indicates the existence of some abnormality. This cannot be explained on the basis of decreased effective VA since $\overline{P}a_{CO_2}$ did not change from the awake to the anaesthetized state during IPPB.

In addition to the lowered Pa_{0_2} under these conditions, there was a wide variation in individual Pa_{0_2} and Pa_{CO_2} response. Of the 13 normals, three patients (#2, 7, and 8) had Pa_{0_2} values below 100 mm. Hg at some time during anaesthesia, and of these only patient #2 had concomitant hypercarbia. None of the low Pa_{0_2} values was significantly lower than the awake control Pa_{0_2} on room air.

Since N_2 is less soluble than N_2O and might effectively prevent absorption atelectasis, it might be believed that the difference in background gases (N_2 vs. N_2O) from the awake control to the anaesthetized state could have contributed to the lower Pa_{O_2} during anaesthesia and IPPB. In a preliminary report, Webb and Nunn¹⁶ studied venous admixture in two groups of patients, one inhaling N_2 and the other N_2O ; both groups breathed both spontaneously and mechanically but did not develop hypercarbia. A greater per cent admixture with N_2 than N_2O was found, and we must therefore presume that N_2O did not contribute to a lower Pa_{O_2} during IPPB in this study.

Despite the variety of Pa_{0_2} responses, the remaining ten patients who did not develop any degree of hypoxaemia maintained Pa_{0_2} values between 150 and 250 mm. Hg. These patients were ventilated at a VT and f almost identical to their awake control values with 50 per cent O₂ inhalation. Patients #1, 7, 9, 11, and 13 had, on occasion, a "low" VT or f. Patient 5 was an exception since his Pa_{0_2} began to fall but never reached hypoxic levels. The surgery lasted one hour and further data are lacking.

The Pa_{CO_2} information yielded a variety of patient responses. In general, values were equal to or lower than their respective awake controls. Patient #10 had an elevated Pa_{CO_2} in the presence of a Pa_{O_2} at the 150 mm. Hg level. When the VT was increased to 1000 ml. (2½ times control), and the f dropped from 20 to 12, the Pa_{CO_2} also dropped. The Pa_{O_2} changed little in either case. Patient #11 also had slightly elevated Pa_{CO_2} , but his control value was 52 mm. Hg.

The magnitude of the alveolar-arterial carbon dioxide gradient $(A-aDco_2)$ is considerably smaller than the alveolar-arterial oxygen gradient $(A-aDo_2)^{17}$ partly because of the more linear dissociation curve at the normal physiological level and partly because of the smaller difference between the mixed venous and arterial carbon dioxide tensions. With respect to large shunts, one might therefore predict a smaller change in the A-aDco₂ than A-aDo₂. For example, with a normal venous to arterial Pco₂ difference of 5 mm. Hg, a 10 per cent shunt will yield only a 0.5 mm. Hg A-aDco₂ but an A-aDo₂ of approximately 150 mm. Hg when 50 per cent O₂ is inhaled.¹⁸ The approximately 40 mm. Hg drop in Pao₂ from 50 per cent O₂ in N₂ to 50 per cent O₂ in N₂O-halothane is equivalent to an increase in shunt of about 3 per cent (Fig. 1).

Figure 2 is a chronologic plot of the mean data at 15-minute intervals. At 60 and 75 minutes after the initiation of IPPB, during anaesthesia at a VT and f determined by the patient when awake, the lowest Pa_{0_2} values occurred. After 75 minutes no further decrease developed and an upward trend was noted. Others have noted a similar progressive decline in Pa_{0_2} during IPPB.^{5,6} We may conjecture that homeostatic mechanisms, perhaps reflex in nature during such constant volume ventilation, become manifest at approximately one hour and cause a reversal of the probable physiologic shunt.¹⁹

SUMMARY AND CONCLUSIONS

Blood gases, tidal volumes, and respiratory rates were measured preoperatively and during surgery with intermittent positive pressure breathing of 50 per cent oxygen. The ventilator was set to provide a tidal volume and rate closely approximating that in the awake state.

Pao₂ dropped significantly during IPPB despite the similar PIO₃, VT, f, and VE. $\overline{P}a_{CO_2}$ remained the same. As time elapsed, a progressive fall in $\overline{P}a_{O_2}$ occurred. The \overline{Pa}_{0_2} reached its minimum at approximately one hour after the initiation of IPPB. Individual patient responses varied considerably for both changes in Pa_{0_2} and Pa_{0_2} . Although three patients developed Pa_{0_2} values below 100 mm. Hg, none was considered hypoxaemic since the respective Pa_{0_2} was at a level above the air control. Some Pao2 values dropped approximately 150 mm. Hg below the awake control while others remained at the 250 mm. Hg level. It should be realized that the tidal volumes used were lower than that during the usual clinical administration of anaesthesia. Changes in Paco2 were not usually related to changes in Pa_{0_2} , and hypocarbia and acceptable estimated VA were frequently associated with a Pa_{0} , lower than during the control. Therefore, under the same conditions, it is concluded that if the tidal volume and respiratory rate used during IPPB are identical to those of the awake control, then during the inhalation of 50 per cent O₂ patients are able to maintain normal Pa_{CO2} and slightly lower Pa₀₂.

Résumé

Chez 13 malades, nous avons mesuré à toutes les 15 minutes avant et durant l'anesthésie et la chirurgie, alors que le malade respirait sous pression positive intermittente, nous avons mesuré les gaz du sang, les volumes courants et la vitesse de la respiration. Le ventilateur fournissait spécifiquement un air courant et une vitesse respiratoire indentiques à ceux du malade réveillé. Le taux d'oxygène inhalé était de 50 pour cent.

La Pa₀₂ a baissé de façon marquée durant la pression positive intermittente; la Pa_{C02} est demeurée la même. Le changement de la Pa₀₂ a été progressif et a atteint son sommet au bout d'une heure. Bien que, chez certains malades, la Pa₀₂ ait été au-dessous de 100 mm. Hg, nous n'avons pas estimé qu'il existait d'hypoxémie puisque la Pa₀₂ est demeurée au-dessus du contrôle lorsque le malade respirait de l'air. Nous avons observé des variations individuelles considérables de la Pa₀₂ et de la Pa_{C02}. Les changements de la Pa_{C02} n'étaient pas habituellement à l'opposé de ceux de la Pa₀₂ et l'hypocarbie en présence d'un volume/minute adéquat s'accompagnait généralement d'une Pa₀₂ plus basse que durant le contrôle.

ACKNOWLEDGMENTS

The authors acknowledge the enthusiastic help of Mr. F. E. Knowles III, Miss Barbara Eerligh, and Mrs. Lillian Chambliss.

ABBREVIATIONS

Vт	tidal volume
Ve	minute volume

f	respiratory rate/minute
Vа	alveolar ventilation*
Pa ₀₂	arterial oxygen tension
$Pa_{co_{2}}$	arterial carbon dioxide tension
$A-a\tilde{Do}_2$	alveolar-arterial oxygen gradient
$A-aDco_2$	alveolar-arterial carbon dioxide gradient
VD (phys)	physiologic dead space
PIO	inhaled oxygen tension
$\dot{O}s/\dot{O}t \times 100$	= Per cent physiologic shunt

 $\bullet V_A$ was estimated by: (a) multiplying the f by the combined anatomical (1 lb. body weight equals 1 ml.) and mechanical (mouthpiece, E. T. tube, connectors, Wright respirometer) dead spaces, and (b) subtracting this figure from VE.

†This was estimated by using the simplified version of the alveolar gas equation for 50 per cent O_{2} :

$$P_{A_{O_2}} = \frac{1}{2} (P_B - 47) - Pa_{O_2}.$$

Here PAO, is alveolar oxygen tension, PB is barometric pressure, and 47 is water vapour pressure.

The per cent shunt was estimated from

$$\begin{split} \dot{Q}s/\dot{Q}t &= (Cc_{O_2} - Ca_{O_2}) \div (Cc_{O_2} - C\vec{v}_{O_2}). \\ \text{Here } Cc_{O_2} &= O_2 \text{ content of blood leaving alveolar capillaries; } Ca_{O_2} &= O_2 \text{ content of arterial} \end{split}$$
blood; $Cv_{0_2} = O_2$ content of mixed venous blood. Therefore,

$$\dot{Q}s/\dot{Q}t = (PA_{0_2} - Pa_{0_2}) \ 0.0031 \div (Cc_{0_2} - Cv_{0_2}).$$

It follows then, if we assume $Cc_{0_2} - Cv_{0_2}$ equals 4.5 volumes per cent, that with a PA_{0_2} of 316 mm. Hg, and Pa_{0_2} of 200 mm. Hg,

 $\dot{Q}s/\dot{Q}t = (316 - 200) \ 0.0031/4.5 = 7.5\%$ shunt.

REFERENCES

- 1. CAMPBELL, E. J. M.; NUNN, J. F.; & PECKETT, B. W. A Comparison of Artificial Ventilation and Spontaneous Respiration with Particular Reference to Ventilation-Bloodflow Relationships. Brit. J. Anaesth. 30: 166 (1958).
- 2. NUNN, J. F. & HILL, D. W. Respiratory Dead Space and Arterial to End-Tidal CO. Tension Difference in Anesthetized Man. J. Appl. Physiol. 15: 383 (1960).
- FRUMIN, M. K. et al. Alveolar-Arterial O₂ Difference during Artificial Respiration in Man. J. Appl. Physiol. 14: 694 (1959).
- 4. STARK, D. C. C. & SMITH, H. Pulmonary Vascular Changes during Anaesthesia. Brit. J. Anaesth. 32: 460 (1960).
- 5. BENDIXEN, H. H. et al. Impaired Oxygenation in Surgical Patients during General Anes-thesia with Controlled Ventilation: A Concept of Atelectasis. New England J. Med. 269: 991 (1963).
- 6. CONWAY, E. M. & PAYNE, J. P. Hypoxaemia Associated With Anaesthesia and Controlled Respiration. Lancet 1: 12 (1964).
- Tesphaton, Lancet I: 12 (1904).
 HEDLEY-WHYTE, J.; LAVER, M. B.; & BENDIXEN, H. H. Effect of Changes in Tidal Ventilation on Physiologic Shunting. Am. J. Physiol. 206: 891 (1964).
 LAVER, M. B. et al. Lung Volume, Compliance, and Arterial Oxygen Tensions during Controlled Ventilation. J. Appl. Physiol. 19: 725 (1964).
 SYKES, M. K.; YOUNG, W. E.; & ROBINSON, B. E. Oxygenation during Anaesthesia with Controlled Ventilation. Brit. J. Anaesth. 37: 314 (1965).
 NUNN I. E.: BERGMAN N. A & COLEMAN A. L. Factors Influencing the Arterial Oxygen

- NUNN, J. F.; BERCMAN, N. A.; & COLEMAN, A. J. Factors Influencing the Arterial Oxygen Tension during Anaesthesia with Artificial Ventilation. Brit. J. Anaesth. 37: 898 (1965).
- 11. PONTOPPIDAN, H. et al. Ventilation and Oxygen Requirements during Prolonged Artificial Ventilation in Patients with Respiratory Failure. New England J. Med. 273: 401 (1965).

- 12. GOLD, M. I.; HAN, Y. A.; & HELRICH, M. Pulmonary Mechanics during Anesthesia: III. Influence of Intermittent Positive Pressure and Relation to Blood Cases. Anesth. & Analg. 45: 631 (1966).
- 13. WATSON, W. E. Observations on the Dynamic Lung Compliance of Patients with Respiratory Weakness Receiving Intermittent Positive Pressure Respiration. Brit. J. Anaesth. 34:690 (1962).
- 14. GOLD, M. I. & HELRICH, M. Pulmonary Compliance during Anesthesia. Anesthesiology. 26: 281 (1965).
- 15. NUNN, J. F. Factors Influencing the Arterial Oxygen Tension during Halothane Anaesthesia with Spontaneous Respiration. Brit. J. Anaesth. 36: 327 (1964).
- 16. WEBB, S. J. S. & NUNN, J. F. Comparison between Nitrogen and Nitrous Oxide in the
- Development of Venous Admixture during Anaesthesia. Anaesthesia. 21: 95 (1966).
 17. RAHN, H. & FARHI, L. E. Ventilation, Perfusion, and Gas Exchange: The VA/Q Concept, in W. O. Fenn and H. Rahn, Handbook of Physiology, Section 3: Respiration I. Baltimore: Williams and Wilkins (1964), chap. 3, pp. 751-54.
- NUNN, J. F. The Lung as a Black Box. Canad. Anaesth. Soc. J. 13: 81 (1966).
 BONIC, J. J. et al. Effects of Surgical Pneumothorax on Pulmonary Ventilation. Anesthesiology. 22: 955 (1961).