HERITABLE VARIATIONS IN NICOTYANA TABACUM L. TNDUCED BY ABNORMAL TEMPERATURES, AND THEIR EVOLUTIONARY SIGNIFICANCE ${ }^{1}$

By D. Kostofr and M. SARANA
(Witk Plates XVIII and XXX and Six Text-figures)
CONTENTS
Introduction 499
Material, methods and nomenclature 500
Meiosis in plants exposed to abnormal teruperatares . . 502
Mitosis in plants exposed to abnormal temperatures . . 503
Morphology and eytology of T_{1} plants 504
Morphology and cytology of T_{2} plants 306
Morphology and cytology of T_{3} and subsequent generations 308
Desoription of selected varianta 513
Alkatoid content of the temperature pariants . . . EPS
Dhiscussion and conolusiona 530
Summary 539
References 540
Explaiation of Plates 5 ± 6

Introduction

Aprer the appearance of Darwin's $(1859,1868)$ classical works upon the origin of species, further studies upou the problem of evolution were developed chiefly into two main directions: (1) searching for transitiond forms for the completion of phylogenetic trees in the plant and animal kingdoms, (2) investigations (chiefly experimental) upon the nature and the canses of the heritable variations. These investigations have been very fruitful, especially during the last 1.5 years, since various kinds of heritable variations have been experimentally induced by several environmental factors (X -ray and radiam irradiations, abnormal temperatures, chemical agents, etc.). There is no doubt that abnormad temperatures are one of the most powerful factors in mature for inducing beritable variations. As demonstrated by many workers, high and low temperatures interfere with the procedure of the meiotic and mitotic
${ }^{1}$ This work was started in 1930 then lhe senior anthor was working at Sofa University. It was leter continued chiefly at the Tohaco Lashitute in Emasnodar. Some variants and their hybrids were recently grown at the Aondemy of Seiences, Institute of Genetics, Moscow.

500 Heritable Y oriations in Nicotiana tabacum L.

processes, induence the frequency of the chromosome interchanges in the somatio and generative cells, and, affecting the nucleus, condition various kinds of chromosome alterations and gene mutations.

In our experiments we applied both low and high temperatures. After the successful experiments of one of us (Kostoff, 1931a) by which plants with altered chromosome sets (numerically and strnctarally) were obtained in Capsicum under the infuence of abnormal temperatures, further experiments of similar nature were designed in Nicotiana iabacum.

Materlai, methods and nommelature
Nicotiana tabacum var. wacropliylla was used for the experiments. This variety was inbred for several years at the Bussey Institution, Harvard University, before the beginaing of the experiments and no noticeable variations have since been observed over twelve generations.

Seeds of twenty capsules were collected from a single plant after self-pollination in the greenhouse. The capsules, formed in the greenhouse, contained usually $900-1100$ seeds (average content 1000), while those formed in the feld contained about 1200-1500 seeds. Collected seeds were lept at $40-43^{\circ}$ C. for 27 days. Two months later they were put for germination in small pots ($4 / 10 / 22$) with sterile soil at $38-40^{\circ} \mathrm{C}$. for 3 days, at $20-27^{\circ} \mathrm{C}$. for 4 days (greenhouse condition), and then transferred to a thermostat with glass walls at a temperature of $6-9^{\circ} \mathrm{C}$. for 20 days. The seedlings were grown on under ordinary greenhouse conditions. When the largest reached a size of about $2.5-5 \mathrm{~cm}$. all the normally developing ones were thrown away, while the smallest ones, and especially those of them that had somewhat deformed leaves, were tamsplanted. Forty-five plants of these types were selected and transplanted in pots. These plants were labelled 801 . They will be called T_{0} generation. Seeds collected from ten other capsules by self-pollination of N. tabacum var macrophytha were used for control. They were sown when the treated seeds were sown, and forty of the smallest seedlings were selected and transplanted when the transplantation of the T_{3} seedlings was carried out. Fourteen of the most morphologically outstarading T_{3} planiss (801) were each exposed three times for $23-23 \mathrm{hr}$. to a temperature of $38-41^{\circ} \mathrm{C}$. in themostats with glass walls (double) before the beginaing of the formation of floral buds. Seven of them developed further in the greeuhouse, while the other seven developed in large pots in the garden. When these fonrteen T_{0} plants formed floral buds they were exposed three times every second day to a temperature of $38-41 .^{\circ} \mathrm{C}$. in glass themostats for $6-6 \frac{1}{2}$ hr. Most of the floral buds of
seven T_{0} plants grown in the greenhonse dropped when exposed to such a temperature, while the buds of the seven T_{0} plants that grew in the garden stood the treatment; better, The very few flowers that developed from the persisting floral buds had a large percentage of abortive pollen grains ($15-70 \%$), the viable ones being unequal in size. The plants of the controls grown in the greenhouse, as well as those grown in the garden, usually formed $96-99.5 \%$ viable pollen grains.

Each flower of the fourteen treated plants was carefully self-pollinated or pollinated with pollen grains from treated $T_{0}(801)$ sister plants having the greatest percentage of abortive pollen. Some of them dropped down without setting seeds, so that very few capsules were formed. Those of the plants that had capsules were again exposed 2-3 times for $6-7 \mathrm{hr}$. at a temperature of $39-41^{\circ} \mathrm{C}$. Some of the capsules dropped down. Only six capsules with ripe seeds were collected. They had a small amount of normally developed seeds, amongst which shrunken seeds and black small orules were found. We grew a T_{1} generation from these seeds which consisted of about 300 plants, but we took about sixty (the smallest) of which thirty-six reached maturity, since a large number of the seedlings died at various stages of development. These thirty-sis plants were studied. Six of them formed viable pollen graias (ca. $96-99.5 \%$), while most of the others formed large percentages of abortive pollen grains $(15-75 \%)$. High percentages of abortive pollen grains ($35-75 \%$) were displayed by the T_{1} plants $801 / 1,801 / 2,801 / 5,801 / 7,801 / 8,801 / 10$, 801/12, 801/20, 801/21 and 801/24. These T_{1} plants were used for further investigations. We applied numerots treatments to the T_{0} plants (301), because we hoped to accumulate hereditary changes of vaxious types. For the same purpose we crossed T_{1} plant $801 / 1$ with $801 / 2$. Their T_{2} progeny were further studied ($801 / 1 / 20,801 / 1 / 34,801 / 1 / 25,801 / 1 / 26$). Plants obtained from the reciprocal cross $801 / 2 \times 801 / 1$ were further studied (T_{2}) under the following numbers: 801/3/1 to 80/2/21. From the cross $801 / 5 \times 801 / 7$ twenty-seven T plants ($801 / 5 / 1$ to $801 / 5 / 27$) were grown, while from the reciprocal cross twenty-three T_{3} plants (801/7/1 to 801/7/23) were raised. From $801 / 8$ with $801 / 7$ twenty-three T plants ($801 / 8 / 1$ to $801 / \mathrm{S} / 23$) were growa, while from the crosses $801 / 10 \times 801 / 12$ and $801 / 20 \times 801 / 24$ twenty-five and twenty-three T_{2} plants were grown (801/10/1 to 801/10/25 and 801/20/1 to 801/20/23 respectively). No further crosses between the variants were carried out. The platats were subsequently propagated by self-pollination. Crosses were also carried ont between the plands of the $T_{工}$ generabion. Every care was baken to avoid cross-pollinations and aceidental mixing of foreign

502 Herilable Variations in Nicotiana tabacum L.

seeds. Seeds were sown in sterile soll or germinated in Petri dishes and then trasplanted. Acetocarmine smear preparations and permanent paraffin and smear preparations were used for cytological investigations. Material for cytologieal studies were fixed in Bouin's fixative as modified by Allen, in a modification of Lewitaky's chromic acid (o parts 2.5%) + formalin (5 parts 25%) fxative, in S . Navashin's fuative (1.0 parts 1% chromic acid, 4 parts 40% formalin and 1 part glacial acetic acid) and in La Cour 2 BE. Chromic acid-formalin fixative was used for fixing root tips, while Navashin's fixative and La Cour 2 BE were chie 1 y used for fixation of floral buds. The latter were killed first in Carnoy's fixative for $30-60 \mathrm{sec}$. and then transferred to Navashin's fixative. Allen's modifcation of Bouin's fixative was used for fixing both root tips and floral buds. Permanent preparations were stained by Heidenhain's haematoxylin and gentian violet.

Measurements of morphological characters were made at the forescence period in the feld under practically equal environmental conditions. All leaves (upper, middle and lower) were collected for chemical analysis.

Drawings of the chromosomes were made with the Abbe drawing apparatus. Magnification ca. $\times 3000$.

Biochemical analyses were carmied out in the Biochemical Laboratory of the Tobacco Institute in Krasnodar by M. Khmura under the direction of A. A. Schmock, for which we wish to express to them our gratitude. I. F. Zbiltzov painted the colour plate.

Meiosis in mants exposed to abnormal temperatures (T_{0})

The plants exposed to low and high temperature showed abnormal meiosis, classifiable as follows:
(l) Reduction in chiasmata.
(2) Appearance of univalents.
(3) Laggards on the spindtes during the first meiosis and oceasionally during the second division.
(4) Formation of multivalents (rarely).
(5) Division of the lagging univalents during the first anaphase (rarely).
(6) Formation of chromatin bridges during the meiotic anaphase occasionally accompanied with small fragments (rarely).
(7) Appearance of fragments (rarely).
(8) Formation of restitution nuclei.
(9) Formation of micronuclei during the interkinesis on the spindle and during the second division.
(10) Appearance of second metaphases with unequal chromosome numbers due to non-conjunction and perhaps to non-disjunction. In a few cases the multivalents might be also responsible for this phenomenon.
(11) Formation of dyads, triads, unequal tetrads, pentads, ete.
(12) Formation of various numbers of abortive pollen and viable pollen, unequal in size.

Abnormal meiosis has been fully described in Nicotiana (Rostoff, 1930a, 1931a), in Capsicam (Kostoff, 1931b), in fruit trees (Heilborn, 1930; Kostoff, 1931c), and in wheat (Bieier, 1930; Sarana, 1930; and unpublished). Consequently therefore we have only briefly mentioned such characteristics of the meiosis in our treated plants of N. tabacum as suffice to explain the results obtained in selfing or crossing fowers with such meiosis.

Mimosis in plants exposed to abnormal temperatures $\left(T_{0}\right)$
The experiments of zumerous investigators, and especially those of Kozhuchov (1928), Kostof (1931b), Randolph (1932) and Peto (1935), showed that obnormal temperatures induce euploid and aneuploid chromosome alterations in the soma as well as exchanges of chromosome parts. It was of importance for the further development of our studies to find out whether the high temperatures applied in our experiments also induce such somatic alterations.

By exposing (2-4) small tobacco seedlings to a temperature of $38-42^{\circ} \mathrm{C}$ several times for various periods ($3-48 \mathrm{hr}$) it was found that: (1) Polyploid sectors were formed in some root tips. (2) Chromatin bridges ocasionally appeared during the anaphases (on longitudinal sections) which could be interpreted as a result of exchanges of chromosome parts leading to formation of bicentric chromatids. In afew instances chromatid exchonges in the root tips were found, like those described by Peto (1985) in Horderm, and by Sax (1937) in Tradescantia, (3) Chromosome fragments were also found in a few instances. Such fragments were also reported by Sax (1937) in Tradescantia. (4) Aneuploid chromosome numbers were found in two instances.

Such irregwarities in mitosis as well as in meiosis indicate that abnormal lemperatures are a powerful tactor in the induction of heritable variation.

504

The few seeds obtained from T_{0} plants (801) exposed to abnormal temperatures were growa in sterile soil. Gemination was poor and spread over a long period ($4-21$ days), while the control seeds germinated (ca. 98\%) within 3-8 days.

We obtained about 200 seedlings in T_{1} from which we selected about sixty (the smallest and those that had somewhat deformed leaves) and transplanted them into small pots. Some died at various stages of development, only thirty-six reaching maturity. The morphological appearance of six plants, $801 / 1,801 / 2,801 / 7,801 / 8,801 / 10$ and $801 / 20$, was strikingly different from that of the other thirty and of the controls,

Texthing. l. Leaves from four extreme variants and on the right one leaf from N. tabuctom var. macrophylla (the original form).
the latter thirty plants being like the controls of normal N. iabacum var. macophylla. Six of these thirty plats had completely normal neiosis and formed about $96-99.5 \%$ of viable pollen grains, while the others bad various linds of irregularities in meiosis and diferent percentages ($10-75$) of abortive pollen. Details of the creiosis and the percentages of abortive polled are given in Table I.
N. tabacmm var. macrophylla has large broad leaves (Text-fig. I) with intermediate basis and carmine-red fowers (Pl. XVICT, Gg. 1). Plant 801/1 had somewhat narrower leaves with small petioles, longer internodes, and elongated flowers of darli red colour. Plant 801/2 had sessile broader leaves, strunted growth, broader but shorter Hower tubes and dark red (carmine) corolla colour. Plant 801/7 was dwarf with somewhat elongated petioles; flowers macrophylla-like, but lighter in colour. Plant
D. Kostofe and M. Sapana
505

TABLE I
Cytological charactersitics of the T_{1} plants, grown in the green 7 wuse

$\begin{aligned} & \text { Plent } \\ & \text { no. } \end{aligned}$	Sonatio chromesome no.	Nommal merosis (n)	Unyivalents	MattiFalents	Tragments	Chromatin bridges	Amormal dis. tribution of the chromosomes claring the first melosis	'letrad slage
$801 / 1$	50-51	--	1-3	$1-2$	Rarely	Oecasionally	Abnormal	m., di, tri, tetr., pul
$801 / 3$	52	-	2-4	1-2		Oecasiomally	Abnownat	m., di., tri, tetr., pol
801/4	-	4 n	-	-	-	-	--	tetr.
501/5	49	-	1	1	-	-	Abnormal	li, pol.
801/6		2	-	-	-	-		tetr.
801/7	50 止 1	-	-3	1	Ruwely	Oecessionally	Abnormal	in., d., th., tetr, prol
S01/8	52	-	2-d	1-2	Often	Often	Abnormal	d., tetre, pol.
$801 / 9$ $801 / 10$	48	-		I	Jinely	Rarely	Abnormal	tetr., poil.
801/11	+0, 1 .	-	1	$\stackrel{1}{2}$	Les	-	Abmormad	teler, poi.
801/12	47 fl fr ,	-	2	-	Often	-	Abnormal	tetre, pal.
S01/23	-	-	-	1	Rarciy	-	Abnormal	tetr.
801/14		-		1	-	-	Abmormal	telt.
$801 / 15$	-	n	-					
$801 / 10$	\cdots	-	1	-	-	\cdots	Abnormal	tebre, poil
801/17	\square	-	\cdots	1	--	Rarely	Abnomal	tetr., pol.
801/18	48	-	2	\cdots	--	-	Abuormal	tetr., pol.
801/19	\cdots	-	1	1	-	--	Abnormal	tetr., pol.
S01/20	49	-	1	1	Rarely	-	Abucrmal	tebr, pol.
801/21	$48+1 \mathrm{fr}$	-	1	I	--	-	Abmomal	tetre, pol.
$801 / 23$		-	1	1	Ies	Rarely	Abnomal	tote, pol.
801/P4	$43+1 \mathrm{fr}$	-	1-3	1	-	Earcly	Admormal	tetr., pol.
801/25	48	-	-	-	Rarely	Rarcly	-	d., tere.
$301 / 20$	--	-	1-2	1	-	-		tetr.
$801 / 27$	48	-		-		-		
801/28				1		-	-	tetr.
801/9	-	\cdots	-	1	-	Rarely	-	tetr.
$801 / 80$	-	$\underline{1}$	-	\cdots		-	Abagrmal	tetr.
801/31	-	--	-	1	Rurely	-	Abnomal	tetre, pal.
801/32	-	-	-	1	-		Abnormal	teters.
801/33	48	-	-	-	-		-	trete.
801/34	48	-	-	-	-	-	-	tetir.
801/35	-	-	-	-	ᄃ	-	Abnomma	Letre, pol.
801/36	48	-	-	--	-	-		tetr:

801/8 had corragated sessile leaves and larser dark pink fowers. Plant 801/10 had deformed leaves with exceedingly short petioles and small red flowers reminding those of the variety N. tabacum var. samguinea. Plant 801/20 had relatively small, somewhat petiolated leaves and lighter flowers. It was smailer than the others but somewhat larger than the dward one.

The data given in Table I show that a series of aneuploid plants was produced in T_{1}, some having even fragments as a sequence of chromosome rearrangements. The formation of chromatin bridges, no matter how rare, also indicates that chromosome rearrangements (inversions) have taken place. Some of the polyvaleuts, especially quadrivalents in plants with $2 n=48$ and $2 n=49$, could be also interpreted by postulating chromosome dislocations.

Monads, dyads, and triads resulted from restitution nuclei. They gave rise further to abnormally large pollen grains.

Meiosis in some of the plants, as for arample in nos. $801 / 33,801 / 34$, $801 / 35$ and $801 / 36$, was not thoroughly investigated, but these plants, as well as all others, having about 15% and more than 15% of abortive pollen grains, had lagging chromosomes during the first as well as during the second divisions.

Fertility of T_{1} plants was closely correlated with the percentage of viable pollen grains. Plant 801/1. set the smallest amount of seeds per capsule, while all of the plants having about 90% and more than 90% of viable pollen were partially or highly fertile when self-pollinated.

In order to obtain plants with increased cytological abnormalities Which might give rise further to new variations the nore abnormal T_{1} plants were crossed, and from them a. T_{2} generation was raised.

Morphology and cymology of T_{2} plants

T_{2} families consisted of plants produced by selfug T_{1} plants and by crossing varions plants of T_{1}. The labter ouly were more thoroughly studied and subsequently propagated further. In this T_{2} generation a series of variants appeared. Amongst mocrophylla types variants were obtained reminiscent of already existing vanieties of the species Nieotionco twoccum. Plants with new combinations of characters and even with new characters were also obtained. There were dwarf plants as well as some with deformed orgaus (leaves, corolla, anthers, etc.). Details of T_{a} plants whose progeny was further studied are given in Table II. They all differed morphologically from the original parental form
N. tabacum vac. matorophylla, in respect to one or several characters. (Leaves: elongated, narrow, broad, petiolated, sessile, etc.; flowers: shortex or longer, narrower or broader flower tube, larger or smaller opening of the corolla with lighter or darker colour, the position of the style and anthers in respect to the opening of the corolia; the size of the plant, etc.) Most of the T_{2} plants resembling the original N. tabactum var. macrophydla were fully fertile or almost so; some of the variants were also bighly

TABLE II
 Cytological characteristics of some T_{2} plants

No.	Plant no.	$\begin{aligned} & \text { Somatic } \\ & \text { chromosome } \\ & \text { nos. } \end{aligned}$	Meiosis
1	801/1/20	-	Irregular meiosis, univalents anc multivalents laggards, occasionally fragments, only in two instances chromatin bridges
2	S01/1/24	52-53	Irregular meiosis, univalents, multivalents and lagcards, one fragment regularly appeared
3	301/1/25	48	Slightly irregular mifosis, one quadrivalent, occasionally laggards
4	501/1/26	50-51	Heteromorphic pair, univalenta, trivalents and quadrivalents, tarely chromatin bridges
5	801/3/20	49-50	Univalents, multivalents, laggerds
6	801/2/21	з0	Univalents, muitivalents, laggards, occasionally one cheromatin bridge and one fragment
7	801/5/25	-	Slight irregularities, laggards
8	801/5/26		Univalents, laggards, zarely trivalent
9	801/5/27	ca. 5.5	Univalents, multivalents, rarely fragoments and chromation briciges
10	801/7/22	$48 \div$ fr.	Heteromorphic bivalent, anivalent, polyvalent, fragment, laggards
11	801/7/93	48 -49	Univalent, multivalent, laggards
12	501/8/23	ca. 50	Univalents, multivalents, fragments and chromatin bridges
13	801/10/23	$48(+1$? $)$	Abnormal meiosis (it was not thoroughly studied)
1.4	801/10/24	$50(+1$? $)$	Univalents, multivalents, Iagrards
1.5	801/10/25	-	Heteromorphic pair, univalent, fingment, laggeards
1.6	801/20/30	49	Univaleat, trivalent, laggards
17	S01/20/23	4.8	Quadrivalent, rarely laggarcls
18	17. tobacoum var. thacrophylla	48	Normal meiosis

fertile, while the majority of the new variants and several marophyylla types were partielly fertile. One dwarf and one with deformed fowers, the anthers of which did not open when the pollen grains were ripe, were self-sterile. They set a few seeds when they were artificially selfpollinated with a large amount of pollen. All seventeen T_{a} plants given in Table II were partially fertile, some setting more, others fower seeds.

A T, generation was grown from seeds obtained by selfing the plants recorded in Table II. All precautions were taken for avoiding cross-

508
 Heritable Variations in Nicotiana tabacum L.

pollination (except for the plauts 801/5/25, 801/5/26, and 801/5/27, in which it might be possible, though not very probable, that crosspollination has taken place).

Morpholggy amd cxtology ot T_{3} and subsequent gentrations
Large numbers of variants were investigated up to T_{5}, and several lines were bred and studied up to T_{7}. Certain morphological results together with the chromosome numbers of some aberrant plants are summarized in Tables IUI-TX. Morphological appearance of the leaf and flower of the original variety N. labacam macrophylla are given in Textfig. 1 and in PI. XVIII, fig, 1 , together with leaves and flowers of some extreme temperature variants. We shall point out here tbat N. tabacum $(n=24)$ is an amphidiploid of N. silvestris $(n=12)$ and N. tomentosiformas ($n=12$), as suggested by Clausen (1928) and synthetically produced by Kostoff (1938b). This explains the appearance of aseries of viable chromosome aberrants, having characters like those of the ancestral species. It may also be mentioned here that F_{1} hybrids N. siluestris $\times N$. tomentosiformis usually formed $0-5$ bivalents in the pollen mother cell during the first meiosis (Text-fg. 6). This indicates that some of the single chromosomes in the monosomics, trisomics and tetrasomics may occasionally conjugate (as indeed they do) with the paired ones, exchanging parts and giving rise to $n \in w$ variants.

Details of the progeny of seventeen T_{2} plants (i.e. T_{3} generation) are given in Thble III.
N. tabacum var. macrophyllua has almost sessile leaves, i.e leaves with extremely short petioles, while N. siluestris has sessile leaves. The variants of $T_{3}, T_{4}, T_{5}, T_{6}$ and T_{7} were roughly divided invo three groups in respect to the shape of the leaf basis, namely, into plants with: (1) sessile leaves, (2) petiolate leaves, and (3) intermediate basis, the latter resembling those of \bar{N}. tabacum macrophylla. The degree of the expression of the characters "sessile" and "petiolate" varied greatly (cf. Tables III, VI and VII, and Text-fig, 1). There were variants with. sessile leaves, ilize those of N. silvestris, as well as some with long naked petioles, Tike those of N. tabacum var, fruticosa.

Eech T_{3} family segregated in respect of the basal shape of the leaves, giving various ratios. These ratios cannot be evaluated in a strict Mendelian sense, because the T_{2} plants were partially sterile, which moeans that many types of gamete have not participated in the fertilization process, and that a large number of zygotes has been eliminated.

T_{3} plants showed varying degrees of fertility. They were divided into Give groups in respect of the number of the seeds they set when grown in the field: (1) fully fertile plants setting about 1200 seeds per capsule ($\times \times \times \times$), (2) highly fertile plants setting about 600 seeds per oapsule ($\times \times \times$) , (3) partially fertile plauts, setting about 150 seeds per cipsule $(x \times),(t)$ highly sterile ones seting less than fifty seeds per capsule (x), and (5) completely sterile (-) setting no seeds. Plants of intermediate fertility were placed in the class to which they approximated most closely.
$1 T_{4}$ and T_{5} plants were also classified into these five fertility groups (Tables VI and IX).

Temperature variants differed from each other in respect of the size of the plants, hahit of growth and flower shapes and colours. It should be mentioned here that N. silvestris, one of the ancestors of N. tabacwn, bas long white flowers, of which the upper part of the styles and of the longest anthers reach the opening of the floral tube. N. tomentosiformis, on the other hand, the otber ancestor of N. tabactin, has relatively short pink reddish flowers, the anthers and the styles of which project several millimetres (4-7) above the opening of the corolla. The flowers of the temperature variants had various corolla colours, flower size and shape as well as various lengths of anthers and styles. Some were darik red colour, others almost white, while a large number had pink flowers of various intensity (cf. Plate figures and Tables III, VI and IX).

The position of the stigma and the anthers with respect to the opening of the corolla varied greatiy; in some the anthers and styles projected as far as the opening of Hower tubes (as in N. tobucum var. macrophyllo and in N. silvestris), in others they projected somewhat above the opening (as in N. tonemtosiformis) (cf. Pl. XVIII and Tables JII, VI and IX). The segregation ratios for fiower colour in T_{3}, T_{4} and T_{5} are given in Tlables III, VI and IX. These data cannot be used for determining the mode of inheritance of flower colour, since the parental plants had abnormal meiosis and were not fully fertile, but there is a definite tendency for certain variants with pink flowers to segregate into red, pink and light piak.

Partially ferbile temperature variants gave rise occasionally to plants with deformed leaves or/and flowers. The morphological appearance of the variants was not necessarily correlated with fertility, since there Were macrophylla types with reduced fertility as well as highly fertile new types which produced fully fertile variants in subsequent generations (up to T_{7}). The plants considered in Tables ITI, VI and IX were chiefly

510 Heritable V ariations in Nicotiana tabacum L.

progenies of the most extreme variants. They nsually showed marked cytological anomalies, which naturally conditioned reduced fertility.

The degree of fertility of some of the variants of the subsequent generations was not always necessarily correlated with the percentage of the viable pollen grains, since there were variants that had almost normal pollen grains, though the number of seeds per capsule was greatly reduced.

Some of the variants were sterile when self-pollinated; they set, however, as many seeds as N. tabacum nacrophylla, when pollinated with pollen of this variety (i.e. ca. 1200-1500 per capsule). These observations suggest that the velocity of the pollen-tube growth of some variants was significantly reduced, though an alternative cause is also possible, viz. elongation of the styles, as was the case with some variants.

With regard to the size of T_{3} and T_{4} variants (Tables IV and VII) as compared with that of the original form (macrophylla) the following two statements can be made: (1) the plants of a series of families were more variable in size than those of the original form, and (2) the size of single plants as well as the average size of a series of families were rauch larger than N. tabacum macrophylla. There were also single plants and average values of whole families that were smaller than those of N. tabacum macrophylla.

The number of the leaves per plant is a character of great agricultural importance. Grown under the same conditions N. tabacum var. macrophylla averaged twenty leaves per plant as against twenty-six for the T_{3} family $801 / 1 / 24$. There were, however, families with a much smaller average number, namely fifteen (801/1/26) and sixteen (801/8/23). Extreme plus variants of macrophylla had 24-25 leaves per plant, while some of the temperature variants had as many as $50-51$ leaves per plant (801/2/20) (Table V).
T_{1} temperature variants bebaved in a similar way (Table VIIT). In the same environmental conditions in which macroppyylle plants had nineteen leaves per plant, T_{4} family 801/1/24/28 had twenty-seven leaves per plant, single plants of which had $39-40$ leaves. Some T_{4} families had more variable numbers of leaves per plant than macrophylla, while a few families had less variable numbers.

In $T_{3}, T_{4}, T_{5}, T_{6}$ and T_{7} we forud variants witt $47,48,49,50$ and 51 somatic chromosomes. Some of them had one, or more than one, fragment, i.e. exccedingly small chromosomes (cf. Tables III, VT and LX and PI. XIX).

Some of the variants were highly constant in subsequent generations,

while the others segregated, giving rise to plants with chatacters existing in other varieties in the species N, tabacom or with new characters. In the majority of the cases the deviations from the original form and further divergencies conld be more readily expressed in "degrees", "sizes" and "numbers", some of which were further heritable (degree of Hower colour, wanges between extreme petiolation and sessileness of the leaves, position of anthers and styles, size of the plants, size of the flowers, etc., number of the leaves, etc.).

Some of the fragments, or rather the extremely short chromosomes, resulting from temperatike treatments were often regularly transmitted up to T_{i}, which means that plants with new karyotypes have been produced.

Studying a large number of temperature variants of different generations and families, a series of interesting data was collected throwing light on the nature and behaviour of the experimentally produced variants and indicating that the same processes can also occur in nature.

Descriftion of selectid wapants

We shall describe here (so far as space permits) the cytogenetic behaviour of a series of variants which will serve as a besis for elucidation of their mode of origin and evolutionary significance.

Variant 801/2/21 $p 3$ is a T_{3} plant from family 801/2/21. The latter was very uniform and morphologically was lile N. tabacum nacrophylla (habit of growth, Hower shape and colour, leaves), the flowers being only somewhat smaller than those of macrophylla. The majority of the plants had reduced ferility. Plant 3 of this family had 48 somatic chromosomes and was partially fertile ($\times \times$). The large chromosome number (48) presents great difficulties for identifying minute chromosome dislocations in comparing the karyotype of $801 / 2 / 21$ p 3 with the karyotype of macrophylla. But in studying the procedure of the meiotic processes in this plant, a trivalent chromosome group and one univalent were occasionally found. One chromosome pair was heteromorphic, one carowosome being longer than the other. One, and occasionally two laggards have been found in some pollen mother cells during the first meosis. The second division proceeded normally. The plant formed tubout 97.5% viatble pollen but was partially sterile $(x \times)$. The cytological bebaviour of this plant indlicates that reduced fortility is probably due to an unequal exchange of parts, or to a simple trauslocation which most probably conditions a retardation of the pollen-tube growth. The progeny of this platil were also macrophylla-like, but aggan

为

Namber of leaves per plant of T_{4} generation
Rentark. Plants of T_{3} family $801 / 10 / 24$ were grown together with the families of T_{4} generation for comparing their behaviour.

516 Heritable Variations in Nicotiana tabacum L.

with reduced fertility. Three T_{4} plants were studied cytologically. They lad 48 somatic chromosomes.

Variant $801 / 20 / 20 p 2$ diverged greatly from the original form, having petiolate leaves with small wings, fower tubes becoming gradually broader and forming a fumel at the upper end; corolla red; tips of the

Text-fig. \because

Text-fig. 4.

Text-fig. 3.

Text-fig. 5 .

Testig. 2. Somolie plate of variand $801 / 1 / 25 p$, baving 48 chromosomes.
'Cent-fig. 3. Somatio plate of variant $301 / 20 / 20 \mathrm{p} 2$ having th chromosbues.
Text-fg. 4 . Somatio plate of vaniant $301 / 1 / 26 / 18 p 97$ lenving 48 chmomosomes.
Text fig. 5. Somatic plate of variant $801 / 10 / 24 \rho 2$ having 49 ohromosomes.
petals with a very small angle; styles reaching the upper end of the Hloral tubes; anthers situated below the stigma. Although forming about 98% of viable pollen grains, seeds were set only on artificial selfpollination owing to "heterostily". It had 48 somatic chromosomes (Text-fig. 3). During diakinesis a strikiagly heteromorphie bivalent was found. Trivalents and univalents (ef. PI. XIX, Gig. 2) were also
occasionally found. Laggards were rarely observed. Socond division proceeded normally. The plant set about 600 seeds per capsule when artificially self-pollinated.

Variant 801/1/25 $p 5$ was one of the most extreme forms obtained. Leaves elongated, ovoid, with long petioles, markedly different froms

Text-fg. 6. Diagram showing the frectuency of the bivalents in F_{1} hybrid Nicotiana siluestris $\times 1$. . omentasiformis. Abscissa, number of bivalents; ordinate, number of polien mother celds studied.
those of macrophylla. Calyx and flomal tube narrower, but longer than in macropziolla, corolla red, bat somewhat lighter than ia macrophytlat with yellowish shades, petals very long and somewhat turned down; style projecting above the opening of the tube; anthers situated somewhat below stigma. Looking over the world collection of N. tabacum varieties in the Tobacco Institute we have found no variety like this strange type. It formed about $94 \cdot 2 \%$ of viable pollen unequal in size,

518 Heritable Tariations in Nicotiana tabacum L.

but was nevertheless self-sterile. This plant had 48 somatic chromosones. Meiosis was not studied because the plant was broken at the beginning of the florescence period.

Variant 501/1/26/10 p 16. This T_{4} plant had macrophylla-like leaves, but pink fowers. It had 48 somatic chromosomes, and in both together second metaphases in the pollen mother cells (p.m.c.). In studying the diplotene stage, we found undoubted pairs with unequally long chromosomes. A large chromomere was missing (deficiency) in one of the partners. There were also bivaleats that bad in some regions morphologically different chromomeres. The heteromorphic pair was also to be distinguished during diakinesis. Trivalents and mivalents were also found. The latter appeared as laggarils during the finst anaphase. Second meiosis proceeded almost normally. The plant formed about 91.5% of viable pollen, but had very low fertility (\times).

Variant $801 / 10 / 24$ p 10 had sessile leaves and pink flowers. It was a monosomic laving 47 chromosomes. During the first metaphase one univalent (A) and 23 bivalents were usually found, but in some p.a.c. one trivalent $(A B B)$ and 22 bivalents were found, which means that an tupaired chromosome (A) conjugates and forms chiasma (or chiasmata) with the chromosomes of another pair ($B B$), exohanging parts with one of them. The conjugation and chiasma formation between A and. B chromosomes in the trivalent group proceeds between homologous segments of A and B chromosomes (if such were present) or between beterocbromatic regions of the non-homologous chromosomes (A and B) (cf. Kostoff, $1938 a$). The monosomic plant was partially fertile.

Yariant 801/1/26/18 p 27 had sessile elongated leaves and narrow flower tubes ending at the top with a funnei-like opening. The flowers were pink and smaller than in mocrophyllo (Pl. XVIII, fig. 9). This variant has 48 chromosomes. It has reorganized chromosomes, since heteromorphic bivalents were found during the early propbase. Trivalents (and possibly some multivalents) were occasionally formed. The plant formed ca, 89.5% of viable pollen and was partially fertile.

Foriant 801/7/23 p 3 bad sessile leaves and red, macrophylla-Hike howers; both anthers and stigmas were projecting several millimetres above the corolla, It had 50 somatic chromosomes, and their behaviour during diakinesis and. first metaphase suggested strongly that it was a tetrasomic with some chromosome dislocations (cf. Pl. XIX, figs. 3-6). It formed a variable number of bivalents, univalents, trivalents, and quadrivalents. Heteromorphic pairs were also found during diakinesis and first metaphase, one chromosome being significantly longer than
the other. In counting the numbers of the ohromatiu bodies during the first metaphase (polar view) the following data were obtained:

The nos. of the chromatin bodies	34	25	26	27	Total
ramc.	13	35	11	1	60

These chromatin bodies were bivalents, univalents, trivalents and quadrivalents. The most peculiar phemomenon observed in this plant was the ring trivalent which suggests a conjugation of chromosomes with ends:

An interesting cytological phenomenon observed in this plant is the occurrence of one or two fragments cluriag diakinesis and early metaphase (PI. XIX, figs. 4, 5). During the anaphases one, and occasionally two chromatin bridges were observed (Pl. XIX, fg. 5). Since fragments have not been found in the somatic plates, and since chromatin bridges are formed during the meiotic anaphases, it seems very probroble that the small fragments observed during diakinesis and the fust meiotio metaphase resulted from crossing-over in inverted regions and precocious terminalization. The fragments resulting from crossing-over in inverted regions separate precociously so that the bridges formed during the first anaphases are not usually accompanied with fragments lagging on the spindles (Pl. XIX, fig. 6). Precociously separated fragments ustally joined the groups of the chromosomes situated at the poles during the first anaphase, and can be easily seen during the subsequent phases of the meiosis. Chromosome distribution cluring the first meiosis has occurred abnormally; therefore, second metaphases with $93,24,35,26$ and 27 eblemosomes were found (Pl. XIX, figs. 7, 8). Slight abuormalities were also noticed during the second meiosis. The plant formed about 96% of viable pollen and was partially fertile $(\times \times)$. The progeny of this plath had sessile leaves and red flowers. Most of the plants had anthers and stigmas above the opening of the flowers. Those studied cytologically had 48, 49 and 50 chromosomes. Plant $801 / 7 / 23 / 3 p 3$ of this family had 48 chromosomes, and its anthers and stigmas reached the opening of the flower tube. It had relatively slight meiotic abnormalities (laggards) and was highly fertile.

Another plant of the same family, namely $801 / 7 / 23 / 3 p \mathrm{I}$, had also 48 chromosomes, but its anthers and stigmas projected some what above the opening of the floral bubes. Meiosis was relatively regular, occasionally one or two laggards were found. It formed about 95% of viable pollen,
nevertheless, it was partially fertile ($x \times$), showing lower fertility than a trisomic plant ($2 n=49$) of the same family which had occasionally up to five or six laggards, but was highly fertile ($x \times \times$). The latter plant had sessile leaves, red fowers and anthers and stigmas situated above the openings of the foral tribes.

Two more plants of this family will be considered here, namely 801/7/33/3 $p 5$ and $801 / 7 / 23 / 3 p 11$, both having anthers and stigmas above the operings of the floral tnbes, but the former hed 50 somatic chrornosomes, the latter 48. Both bad laggards during meiosis and were partially fertile.

Variont 801/1/24 p 28 had ovoid leaves with macrophyllot-like basis, the lower part of the flower and corolla colour were macrophylla-like, while the corolla was much larger than in macrophylla, the ends of the petals being somewhat turned down. Anthers and stigmas projected several millimetres above the corolla.

The somatic chromosome number of this plant was $2 n=49$. Meiosis was somewhat irregular. This plant was not simply a trisomic, becanse it formed during the first meiotic metaphase 23 bivalents and 3 wivalents as well as 23 bivalents and . 1 trivalent.

Trivalents often appeared as a closed ring, especially during diakinesis. During this phase, as well as during metaphase, th heteromorphic bivalent appeared with a relatively larger partner. In a few p.s.c., even a quadrivalent was fownd. Laggards together with one, and in some cells more than one, chromatin bridge were also observed. The latter were occasionally accompanied with small fragments. Fragments were also observed during the second metaphase.

The formation of chromatin bridges and the appearance of second metaphases with $25+24$ chromosomes with additional fragment is good evidence for inversion in this variant. The chromosome nuobers of the second metaphases varied from 23 up to 26 . The plant formed about 95% viable pollen but was partially fertile $(x \times)$.

Voriant $801 / 10 / 24$ p 2 differed from the above, having sessile leaves, red cimabar flower colour, somewhat narrower opening of the upper end of the floral tube and smaller petals, though it had also 49 somatic chromosomes (Text-fg. 5). In studying the meiosis of this plant (Pl. XIX, fig. 9) one, and sometimes two, univalents were found. It also formed one trivaleut and one heteromorphic bivalent. Laggards werc also seen during both meioses. Althongh it formed a relatively high percentage of viable pollen it was partially fertile.

In studying cytologically seven plants of the progeny of plant

801/1/24 $p 28$, the following chromosome numbers were found: (1) 47 , (2) 48 , (3) 49 , (4) two plants, 50, (5) one plant, 51, and (6) one lad 48 chromosomes plus 2 fragments (very small chromosomes).

We shall consider here ove representative of each of these sir types.
Fariant 801/1/24/28 p 15. Leaves sessile, flowers red, stigma and anthers above the corolla. Chromosome number 47. Meiosis irregular, forming $23^{I I}+1^{I}$ and even $2 g^{I I}+1^{I I I}$. Viable pollen 84%. Ferality low.

Tanont 801/1/24/28p33. Leaves ovoid with intermediate basis that can be rather classified to "petiolate". Pink flowers. Chromosome number 43. Meiosis regular. Laggards were rarely faund. It formed usually 24 bivalents and was highly fertile ($\times \times \times$).

Variant 801/1/24/28p14 was a very vigorous plant. Leaves ovoid with intermediate basis. Red 母lowers. Chromosome number 49. Meiosis (Pl. XIX, figs. 10, 11) resembled in many respects that of the parentai plant 801/1/24/28. It formed trivalents and univalents. Second metaphase with more than 49 chromosomes in both plates was occasionally found, resulting from division of waivalent chromosomes during the first meiosis (Pl. XIX., fig. 11).

Variant 801/1/24/28 p 9. Leaves ovoid, flowers red, much smaller than in macrophylla. Aathers and stigmas above the corolla. Chromosome number 50. It formed multivalents and heteromorphic bivalents during the meiosis. It also formed about 82% of viable pollen grains and very small shrunken capsules. Ahmost normal capsules were produced with an amount of seeds that normal tabacum plants form, when it was pollinated with polleu from normal N. tabacwn plants. Pollen grains formed by this plant have usually more than 24 chromosomes (m). Back-cross experiments showed that the pollen tubes of these pollen grains grow slowly and a very small perceatage reach the ovary, thus conditioning a low fertility after self-polliuation.

Tariant $801 / 1 / 24 / 28 p 17$. Dwarl. Ovoid sessile leaves. Red flowers. Chromosome number 51. It formed a variable number of bivalents, trivalents, tetravalents, and univalents: Occasionally a pentavalent was also found. Heteromorphic bivalents were also observed. Small fragments were seen during diakinesis, metaphase and anaphase (Pl. XIX, figs. 19, 15). Univaleat chromosomes, lagging on the spindle during the furst, meiosis, occasionally undergo longitudinal division. The plant formed about 80% of viable polien and was self-sterile. Selfstevility of this variant can also be interpreted by slow growth of the pollen tubes, all of them having hyperploid chromosome numbers.

522
 Heritable Fariations in Nicotiana tabaoum L.

Fariant 501/1/24/28 p 2. Oyoid leaves with mucrophylla like basis. Flowers (Pl. XVIII, fig. B) dark pink, more sleader than in macrophylla, with longer calyx; suthers and stigmas situated several millimetres above the corolla. Ohromosome number $48+2$ "fragments". The "fragments" are in reality exceedingly small chromosomes, one haviag almost median constriction (centromere). It usually formed 21 bivalents aturing the meiosis, both fragmeats remaining as univalents. Tn some P.m.c. only 34 chromatin bodies were found. It was difficult to decide whether the small chromosomes were eliminated during the previous cell divisions, or whether they conjugated with some bivalents (forming trivalents). The plant formed ca. 89% of viable pollen and was partially fertile $(\times \times)$.

Five plants of the progeny of variant $801 / 1 / 24 / 28 p 2$ were studied cytologicully. One had 48 chromosomes, two had $43+1$ fragment, two had $48+2$ fragments and one had $49+1$ fragment.

V ariant 801/1/34/28/2 p 2 had sessile leaves, red flowers and 48 chromosomes. During the first meiosis usually 24 bivalents were seen. Laggards also appeared occasionally. The plant was higkly fertile ($\times \times \times$).

Fariant 501/1/24/38/2 $p 12$ had sessile leaves, red Alowers, stigma elevated above the corolia, while the anthers were situated just in the opening of the latter. The chromosome number of this plant was $48+1$ fragment. The fragment appeared usually as a univalent chromosome during the first meiosis. This variant was highly fertile ($\times \times \times \times$).

Toriant $801 / 1 / 24 / 28 / 2 p 1$ had leaves with macrophyplla-like basis, and light red (dark pink) flowers, with both anthers and stigmas projecting above the corolia. The chromosome number of this variant was $48+2$ fragments. The fragments often occurred as uivalent chromosomes during the first meiosis. In some p.M.c. they may remain in the cytoplasm, so that second metaphases with $24+24$ chromosomes were found. The plant had reduced fertility $(x \times)$.

Varian 801/1/24/28/2 $p 4$ had sessile leaves and red flowers. Anthers and stigmas were situated above the corolla. The chromosome number was $49+1$ fragment. In stadying the meiosis (cf. Pl. XIX, fige. 14-16) we found that a fragment (or rather a small chromosome) appeared uswally as a univalent. A trivalent occurred quite often in the shape of a ring ($-a b-b c-c a-$) or as a chain. The small chromosome that appeared as a univalent often split during the first anapliase (Pl. XTX, fig. 15). One or two laggards (sometimes including the swall chromosome) occurred during the first, as well as during the second metaphase. Delayed terminalizations in the trivalent group as well as chromatin bridges were also observed.

It bas already been mentioned that in T_{3}, T_{1} and further generations some of the variants had certain characters resembling those of N. silvestris, one of the ancestors of N. Eaboum. The most typical variants wore nos. $801 / 1 / 25$ p 18 and $801 / 20 / 20$ p 12 . Botiz had a similar appearance in respect to the habit of growth, and shepe and colour of the flowers and leaves. Wlower tubes in both ended gradually in a funnel-like opening, the flowers being pale pink. The flowers of variant 801/20/20/12 p 34 (cf. PI. XVIII, fig. 8), is very much like the lowers of these two variants. In both $2 n=48$. Plant $801 / 1 / 15 p 18$ was partially fertile $(\times \times)$, while $801 / 20 / 20 p 12$ was bighly fertile $(x \times x)$. The progenies of these two plants were relatively uniform. Segregation was noticed in leaf basis and in flower colour. A few T_{4} offspring had almost ivory flower colour. Marked segregation was found in fertility (cf. Table VI). Four X_{4} plants obtained by self-polfination of 801/1/25/18 had the following somatic chromosome numbers: 49,50 and 48 (twice.) The offspring $\left(T_{\overline{5}}\right)$ of the plant 801/1/25/18 p 10 having 48 somatic chromosomes were very uniform. morphologically.

Plaats obtained in crossing variant 801/1/25/18 p 10 with N. tabcocum var. mitucroptylla were not uniform in leaf basis (cf. Table IX). Hower colour of all these plants was lighter than in macrophylla, i.e. diluted red (dark pink).
x_{4}, variant 801/1/25/18 p 44 (Pl. XVIII, fig. 10), had light green leaves and very pale (almost ivory) pink Howers. It had $2 n=48$. Slight irregularities (lagging chromosomes on the spindles) in the meiosis were noticed. The plant was partially fertile when self-pollinated ($\times \times$) and fully fertile Whea pollinated with N. tabacum macrophylla. Most of the T_{s} plants produced by self-polination had aimost ivory (pale pink) flower colour.

The hybrids grown from the cross-variant 801/1/25/1.8 $p 44 \times N$. tabacum var, macrophyllat were not uniform. Two plants had petiolate leaves with small wings on the petioles, and one plant had pink flowers (cf. Table LX).

In the next gencration of variant $801 / 20 / 20 p 12$ three plants were studied cytologically, one having 49 and two 48 somatic chromosomes. Plant 801/20/20/12 p 34 had $3 n=48$ (RI. XVIII, fig. 8).

Variant $801 / 20 / 20 / 3$ p 7 (PI. XVILI, fig. 7) also bad characters resembling those of N. sibestris. The family in which this plant appeared was very much like the families grown from variants 801/1/25/18 and 801/20/20/12. The chromosome number of $801 / 30 / 20 / 3$ was not studied, but its progeny from self-pollination varied very greatly (unlke 501/1/25/18 and 801/20/20/12 frmilies) (cf. Table VI), differing in leaf basis, flower shape

524 Heritable V ariations in Nicotiana tabacama L.

and colour. Three of them had 47,48 and 49 chromosomes. Variant $801 / 20 / 20 / 3 p 7$, having 49 chromosomes, had very vigorous growth, large sessile leaves and very large pink flowers. It was partially fertile after self-pollination.

Among the progeny of plant 801/1/36 one plant was found (801/1/26 p 22) which was very much like Nicotiana tabacum var. fruticosa in habit of growth. It had a shorter vegetation period than var. macrophylla and the majority of its sister plants. Its leaves had long petioles, the wings on the leaf basis being completely reduced. Flower tubes were very narrow, ending gradually in a funnel, the ends of the petals forming very small angles, corolla colour red without the light star. (The star is characteristic for N. tabacum macrophy/la (cf. Pl. XVLXX, fig. I) and it is not present in N. tabacun fruticosa.) It had 49 somatic chromosomes, one of them being exceedingly small (fragment-like). It had 92% viable pollen, and the position of its anthers above the stigma was such as to secure a good self-pollination; nevertheless, it was highly sterile (x), setting a very small amount of seeds after self-pollination. Its progenies were relatively uniform in habit of growth, flower shape, colour and leaf shapes. Segregation occurred in the presence or absence of small wings on the relatively long petioles. Out of twenty-seven, twenty had very small wings on the petioles, four had relatively small ones, and three bad no wings. The plants also showed various degrees of fertility. Five plants were partially fertile, sixteen had very low fertility and six were completely sterile. Two of the plants studied cytologically had 48 somatic chromosomes, and two others had $48+1$ very small one. It is interesting to note that the family 801/1/26/22 was more resistant to mosaic disease than the other families of the variants studied, and than the original macrophybla variety.

We raay here call attention to the cytogenetic behaviour of two variants, viz. 801/1/26/23 p 16 and $801 / 1 / 26 / 22 p 6.801 / 1 / 26 / 22 p 16$ lad traces of anthocyanine on the petioles. The flowers of the whole family were uniform (ef. PI. XVIII, fig. 4). This variant had 49 somatic chromosomes, one of them being a very small one with median constriction. It ustally formed 94 bivalents curing the first meiosis. The small cbromosome appeared usually as univalent. There were also p.m.c. in which the small chromosome was not noticed. In these cases it probably lias conjugated with some of the normal bivalents, but the trivalent groups were diffoult to distinguish because of the very small size of the "small chromosome". Variant $801 / 1 / 26 / 22 p 16$ had very low fertility, when self-pollinated setting less than fity seeds per capsule. The capsules were very small
and shrukken. In pollinating it with N. tabacum var. macrophyllat, it formed large capsules like those of macrophylla, and set about as many seeds per capsule as the original variety. The type of the variant 801/1/26/22 $p 16$ was preserved in the subsequent generation. The plants of the farnily grown from seeds obtained by self-pollination had petiolated leaves with very small wings and flowers with narrow tubes. Theee out of eight T_{5} plants were highly fertile (cf. Tables VI and IX). One had 48 somatic chromosomes and two had $48+1$ small chromosome.
F_{1} from 801/1/36/22 p $16 \times N$. iabacum var. macrophy lla had petiolated leaves like the variant. It should be pointed out that petiolated leaf basis usually behaves as a recessive character, though it may sometimes show intermediate inheritance when various strains of N. tabocum are crossed. It is very probable that we have here a case of duplication of a segment that includes the gene for petiolate leaf basis.

Two of these hybrids were stadied cytologioally; one had 48, the other had 49 chromosomes, the additional chromosome being the small one.

Variant $801 / 1 / 36 / 22 p 6$ was a typical representative of tobacco plants with petiolate leaves having long petioles. The flowers were red and had narrow tubes, both being typical for the whole family. It had 48 somatic chromosomes. During the meiosis laggards as well as chromatin bridges were occasionally found (Pi. XIX, fig. 17). In studying the meiosis of this plant we found in two cases P.M.C. With enormously increased chromosome numbers. Univalents, bivalents, trivalents and quadrivalents were found in these cells. Such a cell, having 68 chromatin units, is given on P1. XIX, fig. 18.

This variant had very low fertility when self-pollinated but quite normal ($x \times \times \times$) when crossed with the original form.

Variant $801 / 1 / 20 / 22$, having a small additional chromosome, served for a special kind of investigation, in consequence of which we grew later on a further T_{4} family of it from seeds obtained by self-pollination. To avoid confusion we shall designate this family as $T_{4 n}$, and all the plants and their further progenies will bave an "m" in addition to their aumbers.

Twelve plants of this $T_{4 m}$ family, studied cytologically, gave the following resalts:

Fariant $801 / 1 / 86 / 22$ p 1 m had 48 sonatic chromosomes.
Fariant 801/1/26/22 p 2mb had $48+1$ small $=49$ chromosomes.
Variant 801/1/26/22 $p 3 m$ had 48 chromosomes.
Variant $801 / 1 / 26 / 22 p 4 m$ had $48+2$ small $=50$ chromosomes.

596 Heritable Variahons in Nicotiana tabacum L.

Variant 801/1/26/22 p 5m hew 48 chromosomes.
Variant 801/1/26/22 $p 6 m$ had 48 chromosomes.
Variant $801 / 1 / 26 / 22 p 7 \mathrm{~m}$ had $48+1$ small $=49$ chromosomes.
Variant 501/1/26/22 p Sm Lad $48+1$ small $=49$ chromosomes.
Variant 801/1/26/22 $p 9 m$ had 48 chromosomes.
Variant 801/1/26/22p 10 m had 48 chromosomes.
Variant 501/1/26/22plim had $48+1$ small $=49$ chromosomes.
Variant $801 / 1 / 26 / 22 p 13 \mathrm{~m}$ had $48+3$ small $=51$ chromosomes.
These data show that from the variant S01/1/26/22 plants, with 0,1 , 2 and 3 small chromosomes appeared in the subsequent generation. The Docurrence of three small chromosomes in variant 801/1/26/22p 12 mb supplied evidence that the small chromosomes can be also transmitted through the pollen tubes. The small chromosome of $T_{t n}$ plants ($p 2 n$, $p 7 m, p 8$ m usually appeared as a mivaleat during meiosis, but occasionaily it was attrohed to a bivalent, forming a beteromorphic trivalent group in about 3% of the p.m.c. studied. In a few instances (ca. 0.8%) the small chromosome coujugated with a normal one, forming a heteromorphic bivalent, while the other normal chromosome appeared as a univalent,

Meiosis in variant $801 / 1 / 26 / 22 p$ 4m, having two additional small chromosomes, was more regular. It formed 25 bivalents in about 48% of the p.N.C. 94 bivalents and 2 univaleats (the univalent chromosomes being the small ones) in $c a .47 \%$ of the P.m.c., and in about 5% of the P.M.C. the following cases were found: (1) a heteromorphic quadrivalent consisting of two normal and two short chromosomes, (2) one heteromorphic trivalent consisting of two normal and one small chromosome, and (3) a heteromorphic bivalent consisting of a normal and a small chromosone and two univalents, one being normal and the other one small. Varinnt $801 / 1 / 26 / 22 p 12 m$, having $2 n=48+3$ small, formed less multivalent heteromorphic chromosome groups during the meiosis (ca. 1.2%) than p thm. Small chromosomes appeared in the form of one bivalent and one univalent in about 58% of the p.m.c., in the form of three univelents in about 38% of the P.M.C. and as a bomomorphic trivalent in ca. 2.8% of P.m.

In order to stady the transmission of the small chromosome through the egg cells and through the pollen, variant 801/1/26/22 p $2 m$, laving $2 n=48+1$ small, was crossed in both directions with N. tabacum var. macrophylla. The presence of the smail. chromosome was studied in the meiosis of F_{1} generation on aceto-carmine preparations. Fifteen F_{1} plants of the cross p 2mxmacrophylla out of eighteen oytologically
stadied had the small chromosome. In two plants the suall chromosome was not present. One plant had even two small chromosomes which indicated that egg cells (1) with no small chromosomes, (2) with one small chromosome, and (3) with two smail chromosomes, were viable. The later probably originated after division of the small chromosome during the first meiosis and inolusion of both halves into one anaphasal group during the second meiotic division; the lather amaphase giving rise to an egg cell with two small chromosomes.

Three F_{2} plants of the cross macrophalla $\times p$ 2m, out of twenty-one studied cytologieally, had one small chromosome, while the other eighteen plants had no small chromosome. These data show that the small additional chromosome can be more easily transmitted through the egg cell than through the pollen. It seems that pollen tubes having the additional small chromosome grow much slower than those having 94 chromosomes. The transmission of two small chromosomes gives rise to homozygous plants with $2 n=50$ in respect to the small chromosomes.

The behaviour of the small chromosome during the meiosis of the bybrids with macrophylla was similar to that in the variants with one and two small chromosomes.

Tt was mentioned above that variant 801/1/26/22 and its progeny were very similar to N. tabocum var. fruticosa, and it was of interest to enquire into the possibility of increasing the ferthity of this strain to produce cew variants that might compete with the original form. Their short vegetation period marked them out as favourable material.

We found that T_{4} plant $801 / 1 / 26 / 22 p 9 m$ set the largest amount of seeds per capsule (700-1000). By further selection of the most fertile $T_{5 \text { m }}$ variant we oltained in T_{6} p plants with about 1000-1200 seeds per capsule on self-polination, We are now growing a $T_{7 n}$ generation, and the fertility of this fruticoscu-like variant, with 3 mb- 48 , suggests that it will compete favourably with the original form. Indeed, such variants with shortened vegetation period as in our case may well be hetter suited to new areas with shorter summers.

We also grew on variant $801 / 1 / 26 / 22 p$ the in which $2 n=50$, i.e. ε variant with 25 pairs (the small chronosome being in homozygous condition), until $T_{7 m}$, and on selecting in each generation variants with $2 n=50$, we found in $T_{5 m}$ about 68% with $2 n=50$, and in $T_{6 m}$ about 75%. In $T_{7 m}$ we studied only twenty-four plants, of which twenty-one were homozygous for the small chromosome, i.e about 85%. These observations also showed that in some variants the relative stability of
the new laryotypes increases with the increase of the number of generations.

Adealoid content of the temperature variants

Biochemical analysis (quantitative and qualitative) carried out by a series of invertigators, especially those by Shmuck and his coworkers upon the alkaloid content in various species of the genus Nicoticuna and particularly in $N . t a b a c u m$, showed that the latter species contains chiefly the akholod nicotine, though accompanied by traces of some other alkaloids. The characteristic property of nicotine is that it can be easily distilled (or rather sublimated) with water vapour, while the other alkaloids remain behind. Nicotine reacts with picric acid, forming nicotine picrates, yellowish (pale lemon colour) needle-hike crystals with M.e. $218^{\circ} \mathrm{C}$.

By Keller's method one determines the total amount of alkaloids, while by Bertrand's method one determines the distillating alkaloid, which is chiefly nicotine. The difference represents the non-distilling (non-sublimating) alkaloids other than nicotine. In N. tabacum these differences were very small (Tables X and XI), whereas in N. silvestris (one of the ancestors of N. tabacum) they are considerable. Hence N. silvestris, according to Shmuck, contains a large percentage of nornicotine.

Table X gives the allaloid contents of N. tabacum macrophylla (control) and of some T_{3} temperative variants grown in the same conditions. In Table XI the alkaloid content of macrophyllet (control) and of some T_{4} temperatare variants is given.

The alkaloid content of N. tabccoum macrophylla grown as a control of the variants of T_{3} and T_{4} shows little wariation. It had 0.98% alkaloid, of which 0.94% was vicotine, and in the next generation it had 0.94% alkaloid, 0.91% being nicotine. Variants of X_{3} and T_{4} had allaloid and micotine contents that differed greatly from those of the original maorophoflut plant. T_{3} variants $801 / 1 / 24 / 28$ and $801 / 8 / 23 / 11$ had the lowest allaloid contents (Table X), namely 0.65%, while plant 801/1/25/18 had 200% alkeloids. The percentage of the nicotine content as conpared with the other alkaloids also differed very greatly. The nicotine content of T_{3} variant $801 / 1 / 24 / 28$, for example, was only $30 \cdot 7 \%$ of the whole allailoin content, while the nicotine content of T_{s} variant $801 / 2 / 21 / 5$ was 93.9% of the whoie alkaloid content, i.e. approximately as high as in macrophyilda.

Some T_{1} variants differed from the original form in respect of the
D. Kostofir and M. Sarana
TABLE X
Aldalond contonk in some variants of T_{3} generation grown at equal comditions

		Total amoment ol alkaboids determined by Keller's method $\%$ in respect to the dry substances	Nicoline content determined by Bextrand's mathod		Dther alkaloits than nicotine (differences)	
Peants			\% in respect to the dry substances	\% in respect to the total amount of alkeloids	\% in respert to the dry substances	\% in respect to the total angmint of atikatuids
N. tabamon rar. matraphyllit	18	0.98	0.94	95.9	0.04	± 1
$301 / 1 / 2021$	4.	1.50	$1 \cdot 37$	01.3	0.13	8.7
801/1/20 p 21	47	1.3.4	$1 \cdot 11$	$82 \cdot 1$	0.23	17.0
8011/2tp 28	49	0.65	0.20	$30 \cdot 7$	0.45	$69 \cdot 3$
801/1/25 p 18	48	2.00	1.85	92.5	0.15	7.5
801/1/3 21.8	47	$0 \cdot 30$	0.78	87.5	0.02	12.5
$801 / 1 / 20{ }^{2} 22$	$48+1 \mathrm{fr}$.	1.19	1.06	89.1	0.13	10.9
801/2/21 $p 5$	48	1.31	1.23	$93 \cdot 9$	0.08	$6 \cdot 1$
$801 / 3 / 23$ p ${ }^{2}$	48	1.01	$0 \cdot 83$	$83 \cdot 2$	0.18	17.8
S01/5/23 011	50	$0 \cdot 65$	0.46	70.8	$0 \cdot 19$	29.2
801/20/20 p^{3}	49	1.51	$1 \cdot 38$	$91 \cdot 4$	0.13	8.15

530
 Heritable Variations im Nicotiana tabacum L.

alkaloid and nicotine contents in a similar way to those of the T_{3} generation (cf. Table XI).
T_{4} variants 801/1/24/28/14, 801/1/04/28/13 and 801/20/20/3/14, all chromosome aberrants, had the smallest percentage of allaloids (0.324, $0-291$ and $0-486$ respectively), and the smallest percentage of nicotine in respect to the total alkaloid contents ($17.9,59.1$ and 10.3 respectively). M.P. of the alkaloid picrates of $801 / 1 / 24 / 28 / 14$ and $801 / 20 / 20 / 3 / 14$ variants was $178-180^{\circ} \mathrm{C}$., while in all the other T_{4} variants (except plant $801 / 1 / 24 / 28 / 15$) they were $218,218-219$, and $217-218^{\circ} \mathrm{O}$., though somewhat lower in s01/8/23/11/17 ($2 n=51)$, viz. $212^{\circ} \mathrm{C}$. Variant 801/1/24/20/15 was the most outstanding in this respect, since its alkaloid picrates melted at three different gradually increasing degrees, namely, 190-220-260.

These data show that the hereditary changes induced by abnormal temperatures condition both quantitative and qualitative changes ia the biochemistry of the plant, as well as morphological ones.

Discussion and conclusions

The problem of the induction of hereditary variations by extreme temperatares (ET) may be conveniently divided into three parts, viz. (1) the mode of action of the ET and the kind of the primary hereditary changes induced, (2) production of secondary hereditary changes and the transmission of the primary aud secondary hereditary changes through the subsequent generations, and (3) the survival value of the hereditary variations (primary and secondary).

The first point may be subdivided into (a) hereditary changes and their sequences induced in the soma, and (b) hereditary changes and their secquence induced during gametogenesis.

Hereditary variations induced by $E T$ seem to result from (1) certain biophysical states, conditioned by $E T$, and (2) certain deviations in the procedure of the biochemical processes directed by the ET. It is wafortumate that we know very little about the hiophysical state of the cell elements at various temperatures, or about the deviations from the process of biochemical renctions in living cells at various temperabures. We may, however, consider briefly what is known and attempt to interpret some of the results obtained in our experments.

Cytoplesm and auclear elements of the living cells consist chiefly of protein colloids, the viscosity of which is influenced by the temperature. Some temperatures increase the viscosity of the cytoplasm, others decrease it.
D. Kostofe and ML Sarava
TABLE XI
Alhaloid contonts of some temperature variants of F_{4} generation grown al equal conditions

$$
0_{4}^{\circ}+\infty
$$

532 Heritable Variations in Nicotiana tabacum L

In stulying the changes of the cytoplasmic viscosity in Comungia, Heibruan (1994, 1928) plotted a W-like curve with higher points (higher viscosity) $-1,15$ and $32^{\circ} \mathrm{C}$. and with lower points (lower viscosity), 3 and $31^{\circ} \mathrm{C}$. Nemec (1901) found that in plants an increase in the cytoplasmic viscosity takes place at $6^{\circ} \mathrm{O}$.

High temperatures lethal to living cells induce an irreversible coagulation of the cytoplasm. These temperatures induce first an increase of the viscosity and then coagulation. Temperatures somewhat below lethal induce an increase in cytoplasmic viscosity. Temperatures somewhat below sublethal (but still high) lead to a decrease in cytoplasmic viscosity,

An abnormal increase in cytoplasmic viscosity, whether due to high or low temperature, bas a marked influence on chromosomal aberrations. Increased viscosity through low temperature diminishes chiasma frequency and eren the number of bivalents in species hybrids (cf. Kostoff, 1930b, and unpublished). The same effect has been found in a few cases when the plant is exposed to extremely high (sublethal) temperature. Higher viscosity also tends to prevent chromosome conjugation during leptotene. Homologous chromosomes would move less effectively toward one another in more viscous media (when the attraction forces are the same). This leads to an increase of the chiasma frequency in less viscous and to a decrease in more viscous cytoplasm. In the latter case univalent chromosomes may appear during the first meiotic division, and their random distribution during the first meiosis leads to the formation of gametes with aboormal chromosome numbers ($n \pm a$). Since chimmata represent crossing-overs (cf. Dadington, 1937), and since temperatures, inducing changes in cytoplasmic viscosity also cause changes in chiasma frequency, it is clear that temperatures would infuence the crossing-over values. Such statements have been made long ago (Plough, 1917, 1921; Plough \& Ives, 1932; Stera, 1926).

Increased protoplasmic viscosity leads also to somatic chromosome doubling. The chromosomes (or rather their centromeres) divide during the metaphase, but in a too viscous medium they cannot rewch the poles and form a "tetraploid" nucleus on the equator or a binucleate cell which, during the subsequent division, can give rise to two tetreploid cells when the spindles of both metaphasal plates fuse (nuclei of syncytia divide synchrononsily). Randolph's cacthod (1932) of chromosome duplication under the influence of high temperatures rests on this primciple. Inoreased cytoplasmic viscosity induced by abnormal temperatures leads occasionally to meiotic chromosome doublings (Kostoff, $1931 c, d$).

Another category of hereditary change induced by $E T$ are chromosome dislocations. Peto's (1935) and Shkwamikov's (1936) observations as well as our own showed that $E T$ leads to exchange of parts in somatic cells. Direct observations, as well as the new types of chromosomes found in somatic cells after treatment, show definitely that exchange of parts between non-homologous chromosomes (and obviously between homologous ones also) takes place.

The next questions that arise are: (1.) What types of chromosome rearrangements take place? and (2) What is the "mechanism" that regulates this phenomenon?

Direct observation upon the mitotic metaphases in material fixed immediately after treatment showed that exchange of parts between morphologically dissimilar chromosomes takes place. We had the impression that this phenomenon, ilke simple crossing-overs between chromosomes with inversions (in inverted segments), conditions the formation of exceedingly small chromosomes (versus long).

In studying meiosis in T_{0}, T_{1} and the subsequent generations, we found abnormalities suggesting the following types of chromosome rearrangements.
(1) Translocations, duplications. The appearance of quadrivalents in variants with $2 n=48$ and in trisomics with $2 n=49$ when in the latter a quadrivalent and a univalent were found could be interpreted by postalating translocations. The formation of ring trivalents in a series of variants fornd during diakinesis also suggested translocations. Some of the latter might be primary of the type $A B-B C-O A$, others secoudary of the type $A x B-B x B-B x A,(A B-B B-B A)$.
(2) Inversions, fragmentations. The occurrence of chromatin bridges during the meiotic anaphases (some of which persisted even during the second metaphases) could be interpreted as bicentric chromatids resulting from crossing-over in inverted regions. The discovery of small fragments duriag diakinesis in variants forming chromatin bridges suggested a precocious separation of the fragments resulting from the activity of chromosome repulsions during diakinesis. Breakage (or perbaps the tearing of very viscous colloids such as the chromosomes) of the bicentric chromatids (chromatin bridges) also seems to lead to the formation of small chromosomes.
(3) Delations, deficiencies, "duptication-deficiencies". Heteromorphio pairs found cuite often during meiosis could be interpreted by postalating

534 Heritable Variations in Nicotiana tabacum L.

deletions, deficiencies, and duplications. Exchanges of parts between non-homologons chromosomes in the soma may ultimately lead to "duplication" or "deficiency". Heteromorphic bivalents (one chromosome much longer than the other) with two terminal chiasmata found during diakinesis strongly suggested that the shorter one might have undergone deletion. Direct evidence for this was supplied in studying the chromomeres during the diplotene, when one chromosome of a heteromorphic pair has many more chromomeres between two terminal or subterminal chiasmata than the other. Deficiencies were also detected in a similar way. Chromosome pairs were found during diplotene in which one chromomere of a chromosome was lacking. We had bere a loss but not a gain, since during the mejosis 24 pairs but no multivalents were found. On the contrary univalents were occasionally observed.
(4) Numerical changes. Temperature variants with $2 n=47,48,49$, 50 and 51 chromosomes were obtained, some of them being definitely altered.

In the works by Jollos (1933, 1984), Peto (1937) and others, gene mutations were stated to have ocourred. The segregations that we observed in some F_{2} generations grown from crosses between N. iabacum var. macrophylla and some temperature variants with 48 chromosomes, strongly suggested that some new characters observed in the temperature variants might be due to gene mutations. Considering, however, the fact that N. tabacum is an allopolyploid in which various kinds of deficiencies and deletions might be viable, and that hereditary changes due to certain chromosome alterations might behave like gene mutations, we cannot positively affirm that we are concerned with gene mutations. For it seems possible that some of the gene mutations recorded by other investigatoxs might have been due either to losses or to duplications. And here we may stress the difficulties in the genetic analysis of the hereditary changes induced in our material owing to (1) chromosome alterations that might mask gene mutations, and (2) selective fertilization due to differences in the rate of the pollen-tube growth of gametes having various changes, chromosomal or genic. The data given in Tables III-XI. as well as the cytological results, serve to emphasize these difficulties.

In order to estimate correctily the additional complications in the primary hereditary alteration induced by temperature, the possibility of secondary hereditary alterations due to conjugations and crossing-over between partially homologous cbromosomes nemly changed and unchanged must be considered.

This problem, as well as the evolutionary significance of the tem-
perature variants, can be fruitfuly disoussed in the light of researches apon the problem of the origin of N. tabachm species. The theoretical argaments aclyanced by Clausen (1997) about the origin of N . tabacum were: The hybrids N. babacun $(n=24) \times N$. situestris $(n=12)$ and N. tabacum $\times N$. thentosa $(n=12)$ formed 12 bivalents and 12 univalents, while haploid N. tabacum and the $F_{1} N$. silvestris $\times N$. Iomentosa usuatly formed 24 univalents. On the basis of these arguments he assumed that N. tabacim has probably oxiginated by chromosome doubling in F_{1} N. silvestris $\times N$. tomentosco, Kostoff (1930b, 1931d, 1933a, 1934, 1936b, $1938 b$, c) tested this theory by crossing N. tabacum var. macrophyplat with pollen of $F_{1} N$. situestris $\times N$. tomentosiformis, produced at relatively ligh temperature ($1931 / l$). Most of the triple hybrids so formed had whole genoms of \bar{N}. tabacum (24), N. silvestris (12) and N. tomentosiformis (12). They had relatively normal meiosis, since silvestris chromosomes conjugated. with 19 N . tabacum chromosomes, while tomentosiformis chromosomes conjugated with the other 12 abacum chromosomes. Fostofl used tomentcsiformis, instead of tomentosa, because the F_{1} N. situestris \times tomentosifomis hybrids were more tabacum-like (1933a). N. tomentosa is very closely related to N. tomentosiformis; their hybrids usually formed 12 bivalents, had normal meiosis, and were fully fertile. Furtber evidence as to the origin of N. tabacum (Kostoff, $1938 b, c$) was the production of the fertile N. tabacam-like allotetraploid hybrid N. silvestris-tonentosiformis by gradual accumulation of genoms, which gave fertile hybrids with almost normal meiosis when crossed with N. tabacum varieties (Kostoff, unpublished).

Since the additional complications in the heritable variations primarily produced by temperature would be chiefly conditioned by cross-ovexs between siluestris and tomentosiformis chromosomes as well as between the reorganized and non-reorganized chromosomes, we must ronsider here the degree of bomology between silvestris and tomentosiformis chromosomes in tiee A_{2} hybrid stlvestris \times iomentosiformis, of which the meiosis should be (and really is) very much like that of the haploid N. labacum. Text-fig. 6 shows the freguency of the bivalents it F_{2} silvestris \times tomentosiformis bybrids, which usually showed one chiasma during the metaphase. About 61.2% of the p.m.c. hadatieastone bivalent with one chiasma. Two bivalcuts or more than two (up to 5) ocoured rarely. The same chromosome belaviour was found in the haploid. N. tabucum (Kostofi, unpublisbed; of. Clausen \& Mann, 1924; Lammerts, 1934, etc.).

These observations showed that in the monosomic, trisomic, and
polysomic variants, "siluestris-type" univalent chromosomes can occasionally conjugate with "tomentosiformis type", cross-over and give rise to reorganized chromosomes in the way that pertially homologons chromosomes belave in species hybrids (cf. Kostoff, 1935d, 1937a, 1938d). The reorganized chromosome produced under the influence of abnormal temperatures in the variants studied may behave in a similar way.

In connexion with the primary, and especially with the secondary chromosome alterations occurring in hybrids produced by orossing two primary variants (such as our T_{2} variants and their progenies) the following question arises, viz. Is some degree of partial homology necessary for chromosome conjugation and crossing-over, or might these processes sometimes take place between the heterochromatic, genetically inert regions of non-homologous chromosomes? If coajugation aud crossing-over occasionally take place in the heterochromatic regions of non-homologous chromosomes during meiosis, or even in the somatic cells, the secondary chromosome rearrangement might be very significant in allopolyploid plants like N. tabaoum.

Oytological studies during the last few years upon chromosome conjugations in heterochromatic regions shows that this process occurs in certain material, e.g. in the salivary glands of Drosophila and other Diptera, in Drosera tentacles, in some plant galls, and probably in some species bybrids as well as under the influence of certain external agents (temperature, X-rays, etc.) (for literature see Kostofi, $1938 a, e$). Conjugation of the heterochromatic regions in a common chromocentre in Drosophila is the best example in this respect, but a series of good examples in the plant hingdom can be also recalled (cf. Kostoff, $1938 a$, e).

Primary as well as secondary chromosome rearrangements were responsible for the numerous numerical and structural variants that we described in this paper. The characters involved were: (a) morphological, (b) physiological, and (c) biochemical. The morphological claracters involved colour as well as shapes and quatities. There were giants and dwarfs with varions habits of growth, with nomal and deformed leaves and flowers. Variants with different expressions of the leaf petioles and the wings on the petioles, corrugations, different angles of the apex, different leaf indexes (length : breadth), etc., were raised. Temperature variants with quite different numbers of leaves were grown. Variants with different flower sizes and shapes, with different leagths of the stigmas and anthers, etc., were also maised. The colour of the leaves and dowers differed in many variants. There were variants witla deep green leaves and others with lighter ones. The gradation of Hower colour from
deep rod to pale pink (almost ivory) were the most string obaracters. Morphological as well as the physiological characters (as, for example, the changes in the vegetation period and the changes in resistance) are of great evolutiouary significance. The changes in the contents of allaloids, qualitatively and quantitatively, are culso of significance. Similar changes in the alkaloid content were also determined by Popoff, Kostoff \& Teudall (1981) in N. tabocum variants obtained by Kostofe \& Kendall (1931) by wounding the anthers before or during meiosis. Since a large number of the hereditary changes of the temperature variants were probably due to "duplientions" w " deficiencies" (also deletions), very many of the variants had silvestris-like and tomentosifomis-like characters.

Hence many of these variants, although called "temperature variants", were merely derived from the primary variants obtained directily under the influence of extreme temperatures. The "indirect" chauges, which were chietly due to fresh pumerical changes and to secondary obromosome rearrangements following crossing-over between partially homologous ${ }^{1}$ chromosomes, to subsequent recombinations and utimate homozygosis, were undoubtedly much more effective than those resuluing directly from the temperatare effect. Nevertheless, the latter conditioned the former.

We may here recall a similar case (Kostoff, 1931b), in which Capsicum anoum plants exposed to abnormal temperatare presented abnormal meiosis. After selfing there appeared in T_{1} one trisomic $(2 n+1=25)$ and one structural heterozygote ($2 n=24$) which during meiosis formed
 were found, and among its progeny were varimats with numerical and structural changes (Eostoff, unpublished).

These studies show that small changes induced by abnormal temperatures in matrute may further lead in some organisms to more effective changes, and here we may mention some observations of other authors in support of our suggestion. Th the second generation of monosomio spelt wheats, Nishiyama (1928) obtained the expected typer 301r, $20^{I I}+1^{I I}$, and $21^{I T}$ and unexpected types with $18^{I I}+3^{I}, 19^{I I}+1 \mathrm{I}, 19^{I I}+3^{I}$ and $1915+3$. Some of these might result from structural changes following conjugation and erossing-over between the single chromosome and some of those presented in pairs. A more convincing case is the plant

1 Probably also between the beterochromatio regions of the non-homologous chromosomes.

538 Heritable Y chiations in Niootiana tabacum L.

with a small chromosome (fragment) obtained by Nishiyama (1933) on selfing a monosomic oat (Avena).

Plants with structural changes were also obtained on selfing monosomics of Nicotiana tabocum (Clausen, 1931, 1932; Olmo, 1936). Lammerts (1932) also observed variants in the progeny of N, rubtica monosomics. The complexity of the segregations often obtained irom monosomic and trisomic "speltoids" from vulgare wheats reported by many anthors (Flakansson, 1932, and others) Cannot be merely interpreted by the expected numerical changes without postulating structural alterations. "Hexaploid" wheats and oats as well as N. Fustica are allopolyploid species like N, tabacum.

Large numbers of forms that arise from allopolyploids when the F_{1} hybrids, from which they originate, show partial allosyndesis during meiosis were fully discussed by Kostoff (1938d) in connexion with the progenies of Nicotiona glauca-Langsdorfit allopolyploids. Allopolyploids N. siluestris-tomentosiformis, experimentally obtained (Kostofi, 1936a, $1938 b$, c), also "segregated", giving rise to some numerical as well as structural variments, since in some P.M.C. of the allopolyploids, univalents and polyvalents were found. In the light of this discussion the results obtained by Leliveld (1937) in studying some progenies by Kostoff's triple fertile hybrids N. triplex are to be expected, since N. triplex also formed oceasionally multivalents (Kostoff, $1933 a$).

Our "temperatrue" variants clearly point to the origin of many of the varieties now known in N. tabacum. Non-conjunctions induced by external conditions (obielly temperature) lead to numerical changes, while these give rise to structural hybrids. Occasional multivalency leads to the same results. Multivalency and univalency have, no doubt, occurred more frequently in the earliest formed N. tabacum plants (allopolyploids of N. sithestris-tomentosiformis). Hybridizations of the new variants have givell rise to new combinations, and so the number of the varieties has been increased. We may recall here that numerical changes in N. tabacum (trisomic and monosomic) have occasionally been. found in nature. Some N. tabacum varieties differ structurally. Some varietal hybrids, for example, with N. tabacum var. calyzina (and otber varieties), represent structural hybrids (Kostoff, tupublished).

One of the most essentia problems in expermental evolation and plant breeding is the survival of the new organisms arising in nature or experimentally produced. Our variants were usually less fertile when they first arose, but their fertility rapilly increased in a few generations, approaching in some of them that of the original form. New physiological
characters, e.g. shortcning of the vegetation period, increased resistance, etc., favour the survival of the organism and its spread into new areas. Plauts with shorter vegetation period might occupy areas mose distant from the equator with shorter summers than those with long vegetation periods. Plants with increased numbers of leaves, with altered chemistry (quantitatively and qualitatively), eto., are important from an agricultural point of view.

All this goes to show that extreme temperatures are a powerful factor in the induction of hereditary variations, either directly or through the changes, further complications arising independently from them. Temperature is a factor to which all living boings are exposed in nature. It induces heritable as well as non-heritable variations and so affords abundant material for natual and artificial selection. Parasites are another important natural factor for the induction of hereditary variation. Yiruses and bacteria, mites and gall wasps, etc., induce abnormalities in the process of cell division, meiosis and mitosis, and these may lead to the formation of heteroploid and polyploid sex and somatic cells (Kostoff, 1930a, 1933b, e. 1936b, 1998f; Kostoff \& Kendali, 1929a, b, $1930 a, b, 1931,1932,1933,1934$; Kendall, 1930a, b, etc.). Parasites act upon the plant tissues by their chemical excretions and by the mounds which they cause. And here we may point out that the "decapitation" method for inducing polyploidy (to which may also add "heteroploidy"), recommended by Winkler (1916) and Jorgensen (1928) and widely practised during the last decade is based upon "wounds". (These seern to increase the cytoplasmic viscosity.) At the present time, however, the most effective methods for inducing polyploidy sud heteroploidy are, no doubt, the chemical methods in which colchicine (Iudford, 1936; Blakeslee, Avery, et cl., 1937; Kostoff 1938g, i,j, 7; Walker, 1938; Gavaudan, 1938; Margenot, 1938; Simonet \& his coworkers, 1938; Levan, 1938; Gyöffy, 1938, etc.) and accnatphthene (Kostoff, 1938g, h, i, j, h, ete.) are applied. These two ageats not chiely by interfering with the formation of achromatic figures, but there are also chemicals which act by changing the cytoplasmic viscosity.

Summary

Abnormal temperatures ($A T$) induce in Nicotiana labacum var. macrophyllo itregularities in mitosis and especially in mejosis which lead to numerical chromosome alterations, meuploid and euploid. They also iaduce structural chromosome chauges.

Among the progeny of treated plants structural and pumerical variants of various kinds were found.

By crossing among themselves the extreme variants thas produced, and by further breeding, paying greater attention to the more extreme ones, we obtained a large number of new vaniants, which behaved quite. differently.

Chiasma formations between normal and structurally changed chromosomes, between partially homologous unchanged, and probably also between. non-homologous ones, conditioned secondary structaral changes and variations.

Some of the variants are considered from an evolutionary point of view in connexion with the origin of the species N. tabachm and its varieties.

The roles of abnormal temperatures and of other factors that induce hereditary vaniations in nature are disonssed.

RETERENCES

AxDravs, F. M. (1900). "The effect of gases on nuclear division." Ann. Bot., Lond., 19, 521-30.
Atwood, S. (1936). "Tetraploic and aneuploid Mellitotus albar resulting from heat treatment." Amer. J. Bot. 23, 674-7.
Belltma, J. (1925). "Production of triploid and tetraploid plants." J. Hejed. 16, 463-4.
Blafislife, A. F., Avery, A. G., Bergatre, A. D., Batina, S., Carmbrdge, J. I. \& Buchrolz, J. T. (1936, 1937). "Datura investigations." Ami. Rep. Dir. Dep. Genet. Carneg. Tratn, 1936-6, pp. 37-40; 1036-7, pp. 38-44.
Bleime, F. (1930). "Experimentell-cytologische Untersuchtugen. I. EinAuss abnormaler Temperatur auf die Reduktionsteilung." Z. Zellforsch. 2, 21s-36.
Camara, A. (1935). "Der Einfluss hoher Temperaturen anf dic meiotischen Chomosomen der Aloe arborescens L." Rev. Agron. 23, 1-26.
Cartledcar, J. L., Bazron, L. V. \& Blatreseee, A. F. (1936). "Heat and moisture as factons in the increased mutation rate from Datura seeds." Proc. Anner. phal. Soc. 76, 663-85.
Clacsex, P. E. (1927). "Interspecitic hybrilization and the origin of species in Nicoliana." Z. induht. Abstamm. ut. VererbLehre, 46, 25.
-(1928). "Interspecifo hylaridization of species Nicoiama." 'Ferh. V. Int. Kongr. Vereobysuiss. in Berlin, 1927, 2, 54i-53.

- (1931). "Tnberitance in Xicotiana tabueumb. XI. The fluted assemblage." Amer. Nat. 65, 316-31.
-- (1.932). "Cytological and genetical features of monosomic derivatives in Nuotionc.'" Proc. Shuth Inh. Congr, Genet. 2, 23-5.
Clausen, R. E. \& Mams, M. C. (1924). "Tnheritance in Nitotiana tabacum. V. The occurvence of haploid planits in interspecife progenies." Proc. nat. Acad. Sci., Wash. 10, 121-4.

Darlacton, C. D. (1937). Recent Advances in Oybogy, gad ed. London: J. and A. Ohuchill, Ltd.
Dsuwny, CH. (1859). The Origin of Species. London.

- (1868). The Fariation of Animals and Plants ander Donestiontion. London.

Dmaoor, J. (1895). "Contribution à l'étade de la phystologia de la cellale (Tndépendance functionelle du protoplasma et du noyare." Arch. Biol, Paris, 13, $163-340$.
Donsex, E. (1936). "Induced polyploidy in wheat and rye." I. Hered. 27, I5b-60.
Gavaupan, N. \{193S\}. "Mécamisme daction de la colchicine sur la caryocinèse des vegetaux." O.R. Soc. Biol., Powis, 128, 714-13.
 Gie Zeilen der Wurzelspitze von Gallomia candicahs." Bein. boi. Zbl. 23, 127.-36.
Grarssmov, J. J. (1902). "Die Abhängigkeit der Grösse der Zelle von der Menge ihrer K5ernmasse." Z. tillg. Physiol. 1, 220-58.
Gofdschmin, P. (1999). "Experimentelle Mutation mad des Problem der sogenannten Parallel-Indultion." Biol. Z6l. 49, 497-48.
--- (1983). "Some aspects of erolution." Science, 78, 539-17.
Grossmaxn, E. F. \& Saitr, T. (T933). "Genio modifications in Drosophida induced by heat irradiation." Amer. Nai. 67, 129-36.
Gyönfy, B. (1938). "Durch Kolehizinbohandung erzeugte polyphoide Pflanzen." Netarmissenschaften, 26, 547.
HAEswson, A. (1932). "Zytologisohe Studien an fompaktoiden Typen von Triticum valgare:" Hereditas, Ltund, 17, 155-96.
Hatmanis, 0. (1918). "Expermentelle Untersuohugen über den Einfins höherer Temperatur auf Morplologie und Cytologie der Algen." Arch. EntonNech. Org. 44, 590-642.

- (1919). "Über den Einfluss der Temperatur auf Piasma, Kerr und Nucheolus und cytologische Cleichgewichtszastande (Zellphysiologische Experimente an PAanzen)." Arch. Zellforsoh. 15, 177-248.
Thmbory, O. (1930). "Temperatur und Chromosomenkonjugation." Svensk. bot. Tidskr. 24, 12-25.
Herbromn, L. (1934). "The colloid chemistry of protoplasm. [J. The viscosity of protoplasn at various temperatures." Amer. I. Physiol. 68, 645.
--. (1928). "The colloid chemistry of protoplasm." Protoplosma-Monograpkien. pp. 1-356. Berin.
Jollos, V. (1930). "Etadien gum 巴volutionsprobiem. I. Üher die experimentelle Hervorufung und Steigemug von Mutation bei Drosophila melenogcter." Biol. 766. 50, 542-54.
- (1933). "Die Übereinskmmung der bei Drosophila melanograster nach Fitzeeinwirkung entstelenden Modifationen und Mutationen." Naiuruissensichafen. 21, 831 -4.
-(193d). "Inherited changes produced by heat-treatment in Drosophila metanogester." Genelica, 16, 476-94.:
Jorgensen, C. A. (9928). "The experimental formabion of heteroploid plants in the genus Sotanum." J. Genet. 19, 133-211.
Finndara, J. (r930a). "Fistotogical and cytological studies of stems of plants injected with certain chenicals." Inaug. Dissert., Sofla Unit., p. 1.-40.

542 Heritable Variations in Nicotiana tabacum L.

Finnalu, J. (1930b), "The structure and development of certain Bryophyd galls," 2. Parasitenk, 2, 477-501.

Kynossowa, F. (1936). "Der Eintluss hoher Temperatur anf das Mutieren der ruhenden Embryonen von Crepis tectorum L. bei konstwater Feuchtigkeit." Planta, 25, 491-501.
Kosmory, D. (1929-30). "Chomosomaberrationen und Genmutationen als Ursache des Saratutabbaues." Johb. Lcandw. Fckeult., Sofia, Uninersiatat, 8, 317-93.

- (I930ct). "Degeneration of the prue lines." Sci. Publ. Butg. Agric. Soc. (Bulgaria), pp. I-16.
- (1930d). "Ontogeny, genetics, and cytology of Nicotiania hybrids." Genetica, 12. 33-139.
- (1930c). "Protoplasmio visoosity in plants." Protoplasma, 11, 177-95.
- (1930d). "Chromosomal aberrants and gene mutations in Nicotiana obtained by grafting." J. Genet. 22, 390-418.
- (193L a). "Heteroploiciy in Nicotiana tabacom and Solanum melongena cansed by fumigation with aicotine sulfate." Bull. Bulgtw. Bot. Soc. (Butywrict), 4, 87-92.
- (1931b). "Hybrid matation, ohromosome aberration and sterility in pepper: (Capsicum)." Minist Agric. Bulgar. Farming-Econ. Libvary, no. 42, pp. 1-45.
- (1931c), "Studies on the sterility in certain fruit trees." Bulfor. Agric. Sac. Scient. Publ. no. 28, 1-63.
———(I931d). "A fertile triple hybrid Nicotiana tabacum $\times(N$. sibestris $\times N$. Pusbyi)." Amer. J. Bot. 18, 112-13.
—— $(1933$ a) . "Oytogenetio stadies of the triple fertile hybrid Nicoltanca tabacum $\times(N)$ sithestris× N. Rusbyi)-N. triplex." Bull. Appl. Bot. Genet. Pl. Breed. (U.S.S.R.). Ser. II, no. 5, 167-205.
-- (1933b). "Virus diseases causing sterility." Phytopath. Z. 5, 693-603.
- ($1933 c$). "A contribution to the sterility and the irregulazities in the meiotio processes caused by vius disease." Genetica, 15, 103-14.
- (1934). "Polygenom hybrids experimentally producod." O.R. Acad. Sci. U.R.S.S. Repr. pp. 1-6.
- (1935). "Tnheritance of nataral imonanty in plats with special reference to production of ixmune parieties by interspecific bybridization." Ann. Acod. tohecosl. Afric. 10, 389-402.
--- (1935 c). "Studies on polyploid plants. VIII. Chromosome conjugation in the haploids and its genetic significance." O.P. Acud. Sui. U.R.S.S. 1, no. 5, 330-2.
- (19356). "On the inorease of matation frequency fodowing interspecific hybridization." Curem Sricuce (India), 3, 302-4.
—.- (1935c). "Stuclies on polyploid plants. X. On the so-called constancy of the amphidiploid plants." C.R. Acul. Sei. U.R.S.S. 1, no. 9, 6 (5̄3-7.
- (1935 d). "Conjugation between momphologically different chromosomes in Nicotiana species hybrics." O.R. Acad. Sci. U.R.S.S. 1, no. 7/S, 558-60.
—— (1936a). "The origin of cultivated tobacco." Gur. Sob. 4, 872.
—— (1936b). "Virus and geniareactions in mompogenetic mad phylogenetio aspects." Plytoputh. Z. 9, 387-405.
- - $\{1937 a\}$. "Cytologiced standies on certain progenies of the hybrid Triticam

- (1937b). "Formation of a guadrivalent group in a bybrid between Trizicum valgore and atr vuloure extracted derivative." Cuhy. Soi. 5, 537.

D. Kostoff and M. Sarava

Lostoft, D. (1938a). "Heterochromatin, somatic 'crosing-over' and the interchange hypothesis between non-homologons chronosomes." Proc. Ind. Atall. Sci. B. 8, 11-4t.
-- (1935 b). "Studies on polyploid plants. XVIII. Gytogenetic studies on Nicotiena sitvestris $\times N$. tomentosifowis hybrids aod amphidiploids and their bearings on the problem of the origin of N. tabocum." C.R. Acad. Sci. U.R.S.S. 18, 459-62. (1938 c). "Cytogenetic studics on the origin of the species Nicotiona iabacum 1. ." Dul. Oull. Fem. Thath. (Bull. That. Cult. Ferm. Tabac.), 27, 164-71. (1938d). "Studies on polyploid plants. XXI." f. Genet. 37, 199-309.
(1938a). "A contribution to the chromosoue structure and behaviour." Celbule , 47, 219-25.

- (1938f). "Changes in the chiasma frequency in Petmia induced by virus disease." Curr. Sci. 6, 555-b.
(1938 g). "Trregular meiosis and polyploidy induced by colchicine and acenaphthene." O.R. Acad. Sci. U.R.S.S. 19, IS9-91.
- (1938 $)$) "Trrogularities in the mitosis and polyploidy induced by colchicine and acenaphthene." Curr. Sci. 6, 549-53.
- (1938i). :Irregular meiosis and abnormal polien tabe growth indtuced by acenapthene." Gurr. Sci. 7, S-11.
(1938j). "Tregular metosis and mitosis induced by acenophthene." Nature, Sond., 141, 1144-5; 172, 753.
- (1938 k). "Polyploid plants produced by colshicine and aconaphthene." Ou". Sci. (in the Press).
Kostofe, D. \& Axamitisti, I. (1935a). :Studies on polypioid plants, LX. Chemioal analysis of diploid and their tetraploid plants." C.F. Acad. Sci. U.R.S.S. 3/4, 293-7.
————(1935b). "Stadies on polyploid plants. VII. Chemicel aneivsia of F_{1} hybrids and their amphidiploids." C.R. Acad. Sci. U.R.S.S. 4, no. 5. 325-9.
Kostoff, D. \& Kgadsum, J. (1929a). "Stuches on the struotrote and development of certain Cymipid galls." Piol. Bull. Wool's Hote, 56, 402-ä9.
————(1929b). "Inregular meiosis in Lyciom halimifolium Mill. produced by gall mites (Eryophyes)." -J. Genes 21, 113-15. - (1930a). "Cytology of Nematode galls on Nicotiana roots." Zbi. Bakt. . 5 Abt. 81, 86-91.
————(1930b). "Inregular meiosis in Datura ferox caused by Tetrongehus Helow bus." Genoticta, 22, 140-4.
———(1931). "Fariants and aberrants in Nicolicma tabucum obtained experimentally." Biol ger. 7, 271-82.
--.-.-(1933). "Origin of a tetreploid shoot Gotn the region of a tumor on tomato." Science, 76, 144.
_———(1933). "Studies on plant tumoss and polyplody produced by bacteria and other agents." Arch. Mibmbiol. 4, 487-508.
——— (193:t). "Studies on polyploid plants. UX. Gytogenetios of tetreploid tomatoes." Gavicnbatimiss. 9, 20-童4.
 Langsdorfli \times N. Sanderae) plant and its progeny." Bul. Cuit. Ferm. Tulun. (Bull. Inest. Cull Hrem. Tabac.), 23, 253-69, pl. Jl./S. 1933, no. 3.

544 Heritable Tariations in Nicotiana tabacum I.

Kostomp, D. \& Popoft, I. (1931). "Inheritance of nicotine." Biol, gen. 7, \#83-6.
Kozevorov, Z. A. (1928). "Thor experimentelle Chromosomenzahiverdoppelung in den scmatischen Zellea mit abnormen Temperaturen." Angezu. Bot. 10, 140-S.
Lammats, W. E. (1932). "Thleritance of monosomies in Nigotinmer rusticc." Genetics, 17, 689-96.
_-'(1984). "On the nature of chromosome association in N. tabocum haploids." Cyologia, To \%yo, 6, 38-50.
Leliveld, J. A. (1937). "Voonloopige mededeeling omatrent enkele oytologische gegevens aangaande het geslacht Nicotiona L." Bull. Deli Proefst. MedursSwmatra, no. 37, 1-3ㄹ.
Gevint, A. (1988). "The effect of colchicine on root mitosis in Allium." Herediths, Litud, 24, 471-86.
LicdFord, R.J. (1036). "The action of toxic subatances upon the division of normal and melignant cells in vitro and in wio." Arch. exp. Zellforsch. 18, 411-tl;
Lomoegirde, 血. (1014). "Zur Mechemith der Kemteihang." Suensh bot. Tidskr. 8, 161 - 80 .
Lerfov, A. N. (1937). "On the artificial incuation of polyploid gametes by treatment with low temperature and chloroform." Bull. Appl. Bot. Genef. Pl. Breed. ser. n, no. 7, 12.7-50.
Martatr, M. \& Massarf, J. (1906). "Sur les excitants de la division cellulaire." Rec. Irost. Bot., Brucelles, 6, 369-421.
Wargerot, G. (1938a). "Effets de la colohicine sur la xitose dans les racines d'4llium cepar et d'Hyacinthus orientalis." C.R. Soc. Biol., Paris, 128, 501-4.
-. (1938b). "Eypertrophies des macines produtes par la colchicine chez quelques plantes." O.R. Soc. Biol., Puris, 128, 565-8.
Merstida, H. (1936). "The effect of abnormal temperatiwe mpon the pollen formation of Petunia." J. Coll. Agric., Tokyo, 14, 71-92.
Metsusma, K. (1935). "Chromosome doubling in rice plants treated with high temperature." Jap. J. Genct. 11, 235-7.
Marsturd, H. (1937). "Ohromosome studies on Trilizhm Jomischaticum Pall. V. Abnormal meiotio divisions due to high temperature." Oytologia, Tolyo, Fujii fub. Vol., pp. 20-34.
 Epilobium." Plcinta, 1, 560-32.
minovidov, P. F. (1932). "Einfiuss won Wasser hoher Temperatur anf den Kern der Pflanzenzellen im Lichte der Nuclealreaktion. (Beitrag zur playsikalischen Chemie dea Zellkernes.)" Prolopiasma, 17, 39 -38.
Da Mox, W. E. (1936). "Untersuchungea uber den Einfluss der Temperahux auf das Bntstehen von Modificabiouen wd Mrtationen bei niederländischen Hyazinthen-- varietäten." Gartenbouwiss. 10, $263-378$.

Müntzing, A., Tometorp, G. \& Mundt-Peterfen, E. (I926). "Tedeaploid badey produced by heat treatment." Heredhicus, Lund, 22, 401-6.
Nakhmura, M. (I933). "The effect of semsonal high air temperature on the meiosis of the pollen mother cellis of Impatiens balsamia Linn." Proc. Japan. Ass. Adv. Sci. 10, 474-8.
Nraime, B. (190n), "Uber die Wahruehmung des Schwerkaftreizes bei den Planzen." Jb. wiss. Bot. 36, 80-178.

D. Kosmofe and M. Sarana

Nefryan: I. (I998). "On hybrids between Triticum speito and two dwarf wheat plants with 40 somatic chromosomes." Bot. Mag. Tokyo, 42, 154-77.
-- (1933). "The genetics and cytology of certain cereals. IV. Further stadies on fatuoid onts." Jow. J. Genet. 8, 107-34.
Olmo, T. P. (1935). "Genetical studies of monosomic bypes of Vicotiana labacmom." Genetics, 20, 286-300.

- (1936). "Gytological studies of monosomic and derivative types of Nicotiana taocaum." Cytologic, Tolyo, 7, 143-59.
Peto, F. H. (1935). "Association of somatic obromosomes induced by heat and ohloral hydrate treatments." Gonod. f. Res. 13, 301-14.
- - (1936). "Feat induced tetraploidy in barley." Cancul. J. Res. 14, 4t5-7.
-- (1937). "Geneticai studies on matants in the progeny of heat-treated banley." Ganad. J. Res. 15, 217-29.
Plocgat, H. H. (1917). "The effect of temperature on crossing-ofer in Drosopmila." J. exp. Zool. 24, 147-209.
-- (1921). "Eurther studies on the effect of temperature on crossing-over." J. sxp. Zool. 32, 187-202.

Phough, H. H. \& Iyes, P. T. (1932). "New evidence of the production of mutations by high temperature, with a eritique of the concept of directed mutations." Proc. 6 th Tht. Congr. Genet 2, 156-8.
-...- (I934a). "Mutations and somatic variations induced by bigh tempertature in Drosophita" (Abstract). Amer. Nal. 58.
————(1934b). "Treat induced mutations in Drosophita." Proc. nat. Accal. Sci., Wash. 20, 268-73.
Poporf, I., Fostorf, D. \& Kendate, J. (1931). "The nicotine content in an experimentally obtained tobacco popalation." Zombed. Misle. 1, 'T1-4.
Paminaus, E. (IS80). 'Atterations produits dans les plantes par la cultare clans m sol surcharffe." Ann. sci. nat., ser. vi, Bot., 10, 347-60.
Pundolpa, L. F. (1932). "Some effects of high temperature on polyploiay and other variations in maize." Proc. nat. Acad. Sci., Wash., 18, 292-9.
Romitsex, P. T. (7930). "Über das Lerworufen erblicher Veränderungen bei Drosophiad durch Temperatureinwirkung." Biol. Zbl. 50, 554 66.
Sabling, W. K. (1903). "L'infuence des agents externes sur le division des noyaux dans des lacines de Ticia If abet" Reo. gen. Bot. 15, 481-97.
Sazamers, T. (1920). "Experimentelle Stulion äber die Zell- und Kemteilng mit hesonderer Puäcksicht auf Form, Grösse and Zabl der Cbromosomen." J. Goil. Sci. Toxyo, 39, eut. Ir, 221 p.
Sakanurn, T. \& Stow, J. (I92b). "Über die experimentell verandaste Entstehung Fon keimfahligen Pollenkönern mit abweichenden Chromosomengahlen." Jap. J. Bot 3, 111-37.

Darana, M. (1930). "Die Verdärzang der Chromosomen unter dem Finfluss der Kälte bei den Getreideptanzen." (Ukranimn.) Z. Arfew. Boh. Chamkou, 5/6, 15-22.
Sux, K. (1935). "the effect of temperatre on muclear differantiations in mioxospore development." I. Atmold Arbor 16, 301-10.
(1936). "The expermential production of polyploidy." J. Arnobl Arbor 17, 1.53-9.
(1937). "Efect of variahions in temperature on nuclear and cell division in Trudescando." Aner. J. Eot. 24, 218-25.

Sexvanimov, P. F. (1936). "The inflnence of increased temperature on the froquency of ehronosomal mutations in Crepis ander different conditions of relative bumidity of the air." Biol. Zh. 5, 887-9t.
(1938b), "Der Einfuss erhöhter Temperaturen auf die Mutationsmate beim Weizea." Brol. Zh. 5, 503-12.
Sceraman, F. L. (1902). "Über die Einwirkung von Temperaturen auf die Zeden des Yegetetionspunktes des Sprosses von Ticia Faba" (Diss. Bonn!. Verh. Nat. Ver. preuss. Rheinl. Westf, 59, 79-98.
Suroner, M. (1938). "De l'obtention de variétés polyploides a grancles fieurs après application de colchigne." Rev. Hortic., N.S., 26, 159-61.
Shmontt, M. Ceoprater, R. \& Sobleagrt, G. (1938). "Suy lobtention d'un Linhm usitatissimum I. tetraploz̈de après application de colchioine." C.R. Acad. Soi., Paris, 207, 85-7.
Smonet, N. \& Dansereau, P. (1938). "Sur plusieurs mutations tétraploïdes de Petumia apparues après traitement is la colchicine." O.R. Acad. Sci, Paris, 206,1832 主.
StıGb, J. (1936). "Gntersuchungen zur Physiologie der Meiosis. IX." Z. Bot. 36, 1-57.
Stera, C. (1926), "An effect of temperature and age on crossing-over in the fist chromosome of Drosophila melanogaster." Proc. nat Acad. Sci., Wath, 12,530-2.
Stubbe, H. (193D). "Untersuohungen aber experimentelle Auslösung von Mutationer bei Aniarminuon majus. III." Z, witdukt. Abstamm. - v. VererbLehre, 60, f. 4.513.
Theagt, E. (1928). "The influence of higher temperatare on the reduction division of p.atc. of Lychnis Sieboldh." Sci. Rep. Thhoka Lruiv. 3, 4.6l-6.
Walket, Pu. (1938). "The effeot of colchicine on somatic cells of Tradescontion paludasa." J. Amold Avbor 19, 158-62.
de Wibdeman, E. ($189, a$). "Premières recherches au sujet de l'infuence de la tetapérature sur marele, la clurée et la fréquence de la caryocinèse da régre végétal." J. soc. roy. Sci. mat., Bruxelles, pp. $1-27$.
—— (1891b). "Recherches aur sujet de l'inluence de la températate sur la marohe, la durée et la fréquence de la caryocinèse dans la vègne végétal." A Anar. Soc. Belg. Micr. 15, 5-58.
Wingrer, H. (1916). "Über die experimentelle Erzeugung von Pflanzen mitu abweichenden Chromosomenzablen." Z. Bot. 8, 417-531.
Yadiata, Cr, (1927). "Experimentelle zytologigebe Beitrige. IT" "J. Frac. Sci. Univ. Tokyo, Sec. III, Bot. 2, 215-96.

EXPLANATION OF PLATES XVIII-XIX

plate nviai
Flowers of the ociginal form and of nine experimentaliy prodnced extreme variants.

Fitg. 9 . Vatiant $80 / / 7 / 23 p 3$; $3 n=50$. (Sessile leaves,)
Tig. 3. Variant $801 / 10 / 2 t p 3 ; 2 n=40$. (Sessile leaves.)
Fig. 4. Variand $501 / 1 / 26,22 p 16 ; 2 n=18+1$ small. (Petiolate leaves with small mings on the petioles.)
Fig. 5. Variant S01/1/25 p 5 ; $3 n=48$, (Elongated leares with long pelioles.)

Fig. 7. Variant $301 / 20 / 20 / 3 p 7 ; \Delta n=49$. (Sessile leaves.)
Firg. 8. Variat $501 / 20 / 20 / 12 p 34 ; 3 n=48$. (Bessile leaves.)
Fig. 9. Monosomic variant $80 / 1 / 26 / 15$ p $97 ; 2 n=47$. (Sessile elongated leaves.)
Eig. 10. Variant 801/1/25/18 of Lis $2_{n}=48$. (Sessile leaves.)

PLATE Nix

Fig. 1. Diakinesis in a eme. of wariant $301 / L / 21 p 3$. Note one univalent and a trivalent ting.
Fig. 2. Tirst meiotic metaphase (side riew) of wariant $80 / 20 / 20 p 9$. Note uniwalent tund brivalent.
Fig. 3, Diakinesis in rariant $801 / 7 / 23 p 3$. Note polyvadent and univalent chromosomes.
Fig. 4. Diekinesis in variant $801 / 7 / 23 . p 3$. Note small chromosomes (fragments).
Fig. 5. Metiphase (side view) of variant $801 / 7 / 23 \not \equiv 3$. Note a frivaient and two gmall chromosomes (fragments).
Fig. 6. Finst maphase with a chromatin bringe. Variant $801 / 1 / 23 p 3$.
Fig. 7. Tirst unaphase with lagsards. Variant 801/7/93p3.
Fig. S. Second metaphase with $34+26$ chromosomes. Variant 801/4/23p3.
Fig. 9. Thirst anaphase with laggards and delayed separibion of a probabig heteromorphic bivalent, Y ariant $801 / 10 / 24 p=$.
Fig. 10. Fivst metaphase (aide riew) with a trivaleat (probably heteromorphic) and a univalent. Fariant $501 / 1 / 2-1 / 28 p 14$.
Fig. 1L. Second metaphase with $25: 26$ chromosomes, suggesting a division of unimalent ehromosomes duxing the first meiosis (of. text). Variant $801 / 1 / 2 t / 28 p 14$.
Fig. 12. Fimst metaphase, side viow, a small univalent on the spindle. Variant 801/1/24/28p17.
Fig. 13. First anaphase with lagging small (short) urivalent; other mivalents divide. Variant $501 / 4 / 2+198 p 17$.
Fig. l4. First metaphase (side view) with a small anivalent (outside of tive plate), and a polyvalent chromosoge. Variant $80 / 1 / 24 / 28 / 2 p 4$.
Irig. 15. Pirst andphase, the small univalent chromosome divides on the spindle. Fariant $801 / 1 /-4 / 28 / 2 p 4$.

Fig. 27. Seoond metaphase each plate has 24 chromosomes. The plates (rather one choomosome of one plate with another from the other plate) tre connected with chromatin brilge formed during the frst meiosis and peristing until the seoond metaphase. Variant 801/196/29 $p 6$.
Fig. 18. First meiotio metaphase wibh about 68 units (untralenta, bivalents and multiwatents) from a pollen mother cell, probebly with maltiple chromosome number. Variant 801/4/26/20p1.

JOURNAL OF GENETICS, VOL. XXXVII, NO. 3

Wig. 1.

Fig. 4.

rig. 7.

Fig. 2.

Tig. 5.

Fig. 8.

Fig. 3.

Fig. 6.

Tig. 0.

aiduy

Fig. 10.

Fig. 13.

Wig. 11

Fig. lat.
-

Fig. 12.

Fig. 15.

Fig. 16.

Tig. 17.

Fig. 18.

