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Hepatitis C virus (HCV) is an emerging virus of medical importance. A majority of HCV infections become
chronic and lead to chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV usually induces robust
immune responses, but it frequently escapes the immune defense to establish persistent infection. The fact that
HCV exists as an evolving quasispecies plays an important role in the selection of escape mutants. Furthermore, 
several viral proteins interfere with cellular functions, in particular, those involved in the immune response of
the host. Several HCV proteins also modulate cell signalling through interaction with different effectors
involved in cell proliferation and apoptosis, or in the interferon-signalling pathway. In addition, HCV infects
immune cells such as B and T cells, and thus affects their normal functions. These various strategies used by
HCV to counter the immune response of the host are reviewed here. A better understanding of these
mechanisms would help design new therapeutic targets.

[Pavio N and Lai M M C 2003 The hepatitis C virus persistence: how to evade the immune system?; J. Biosci. 28 287–304]

1. Introduction

Hepatitis C virus (HCV) is an emerging virus. It was first 
identified in 1989 (Choo et al 1989). Before then, it was
classified as a non-A non-B hepatitis virus transmitted
mainly through blood products, or via other intravenous
routes as well. Acute infection is often insidious, but, in a 
majority of cases, the virus establishes chronic infection.
The persistent HCV infection results in liver damages:
for example: fibrosis, cirrhosis and hepatocellular carci-
noma (HCC) (Colombo 1998). Today, HCV infection is
the most common cause for liver transplantation in the
United States.

The mechanism by which HCV leads, at a high freque-
ncy, to persistent infection is not fully understood. The
lack of efficient in vitro or in vivo systems for HCV
replication, except in chimpanzee, renders such studies

difficult. Data obtained from infected patients, or from
experimental infection of chimpanzees, or from trans-
genic mice for HCV protein(s), or from cells transiently
or stably expressing one or several HCV proteins sug-
gests that viral persistency is a multifactorial mechanism;
and HCV has developed several strategies to evade the
immune system and persist. The high genetic variability
of HCV allows the virus to passively evade the immune
system. In addition, several viral genes impair cellular
functions involved in immune response, or in cell proli-
feration, or cause apoptosis. Furthermore, HCV does not
only infect hepatocytes but infect B and T cells as well.
Thus, infection of cells of the immune system impairs
their functions.

Currently, the only approved therapy for HCV is by
alpha interferon (IFN-α) or pegylated-IFN-α in mono-
therapy or in combination with ribavirin – a nucleoside
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analogue (McHutchison et al 1998; Poynard et al 1998).
However, a sustained response to treatment is observed
only in a limited number of cases. It is particularly ineffi-
cacious for the most prevalent genotype 1b (Liang et al
2000). The resistance to IFN therapy appears to be at
least partially associated with the interactions of viral
proteins with effectors of the IFN-α pathway.

In this review, we will present the latest findings on
the multiple strategies developed by HCV to evade the
immune system and persist.

1.1 Molecular biology of HCV

HCV belongs to the Flaviviridae family and is the
only member of the Hepacivirus genus. This family in-
cludes two other genera, Flavivirus and Pestivirus and
an unclassified virus GBV-B. They all share the same
genomic organization and perhaps, have similar struc-
tural characteristics too. They are enveloped viruses, and
their genome is composed of a single-stranded RNA of
positive polarity.

1.1a HCV genomic organization: The HCV genome con-
tains a long open reading frame (ORF) of approximately
9000 nucleotides (nt), flanked by untranslated regions at
its 5′ and 3′ extremities (Choo et al 1989) (figure 1). The 
5′-UTR is 341 nt long, has a complex structure (stem-
loops and pseudoknots), and contains an internal riboso-
mal entry site (IRES) (Brown et al 1992) which mediates
the cap-independent translation of the ORF. It also con-
tains RNA elements implicated in the genome replication
(Boyer and Haenni 1994). These sequences and structures

are very conserved and interact with multiple cellular
factors. The IRES contains four stem-loops which recruit
translation initiation factors such as the eukaryotic initia-
tion factor 3 (eIF3), the eIF2-GTP-initiator tRNA complex,
the 40S ribosome subunit and other noncanonical factors,
viz. La antigen and polypyrimidine-tract-binding-protein
(PTB) (Ali and Siddiqui 1995, 1997; Pestova et al 1998;
Sizova et al 1998; Kruger et al 2000; Shi and Lai 2001).

The 3′-UTR is 200 to 235 nt long and can be divided
into three regions. First (from the 5′-end) is a region of
variable sequence of length from 27 to 70 nt, followed by 
a poly-U/UC stretch, and finally a very conserved and
structured 98 nt X-region at the end of the 3′-UTR
(Kolykhalov et al 1996). The role of the variable region
(VR) is not clear. It has been shown that VR is not requi-
red for viral replication in chimpanzees after intrahepatic
inoculation with an HCV RNA transcript (Kolykhalov
et al 1996; Yanagi et al 1999b). The poly-U/UC region,
on the other hand, is essential for replication in vivo.
It interacts in vitro with several cellular proteins (PTB,
La antigen and GAPDH) which perhaps, regulate viral
replication (Gontarek et al 1999; Luo 1999). The very
conserved X-region interacts specifically with recombi-
nant HCV RNA polymerase and PTB in vitro. It is also
required for viral replication (Cheng et al 1999; Oh et al
2000).

The ORF encodes a long polyprotein of 3022 amino
acids. Concomitantly with its translation, it is cleaved by
cellular and viral proteases into ten different products
(Major and Feinstone 1997) (figure 1). The N-terminal
part encodes three to four structural proteins, and the rest
are the non-structural proteins. Their organization and
functions are described below.

Figure 1. Genomic organization of HCV. The different types of cleavage sites of the polyprotein are
indicated with different sets of arrows.
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1.1b HCV proteins and functions: The first structural
protein, from the N-terminus of the polyprotein, is the core
protein. It constitutes the virion nucleocapsid and most
likely interacts with the viral RNA (Baumert et al 1998).
The full-length core protein has been shown to localize in 
the cytoplasm on the external membrane (cytoplasmic
side) of the endoplasmic reticulum, but some of its trun-
cated forms have been found in the nucleus (Santolini
et al 1994; Suzuki et al 1995). Several cleavage products 
of the core protein have been identified in cell culture
(Lo et al 1994; Hussy et al 1996; Liu et al 1997). The
relevance of those different forms in natural infection has
not been established. The core protein has been extensi-
vely studied and appears to play multiple roles in various
cellular signalling pathways, and potentially in onconge-
nesis (Chang et al 1998; Lai and Ware 2000). It can also
activate various promoters, as shown using reporter genes 
under the control of cellular promoters, such as c-myc
and c-fos, or viral promoters (retrovirus LTR, HBV) (Ray
et al 1995, 1997, 1998).

The next two proteins are the envelope glycoproteins
E1 and E2. They are believed to associate as a non-cova-
lent heterodimer (Deleersnyder et al 1997) and are expo-
sed on the virion surface. E2 mediates viral binding to the 
cells, as shown by a decrease of infectivity by incubation
of the virus with anti-E2 antibodies (Rosa et al 1996), but 
the HCV receptor has not yet been identified. Among the
potential candidates, CD81 (Pileri et al 1998), a ubiqui-
tous molecule, binds to E2 but does not mediate viral
entry. The other candidate is the LDL receptor (LDLR)
(Agnello et al 1999). Since circulating HCV particles in
sera of the patients are associated with lipids and lipopro-
teins, the nonspecific uptake of the virus through the
LDLR is possible. E1 and E2 contain both an ER reten-
tion signal, which limits their intracellular localization to
the ER (Cocquerel et al 1998, 1999). Cell-surface expres-
sion of E1 an E2 is very limited, which may explain why
the infected cells can escape from the immune recogni-
tion. Their ER localization strongly suggests that, as for
other Flaviviridae members, HCV assembles at the ER
membrane. Localization of the core protein near this struc-
ture is consistent with this hypothesis. E1 and core can
interact which each other, suggesting that the viral nucleo-
capsid is enveloped through this interaction. Beside its
structural role, E2 has been shown to modulate the IFN-α
response (Taylor et al 1999). The next protein on the
polyprotein is p7, which is a membrane-associated pro-
tein, but its precise role in viral structure or replication is 
not yet clear (Carrere-Kremer et al 2002).

The nonstructural (NS) proteins (NS2, NS3, NS4A,
NS4B, NS5A and NS5B) have various functions involved 
in viral RNA replication or proteolytic processing of the
polyprotein (De Francesco et al 2000). NS2 and NS3 are
the two viral proteases responsible for the cleavage of all

the NS proteins (Grakoui et al 1993; Hijikata et al 1993). 
Furthermore, NS3 has a helicase and an NTPase activity,
suggesting that it plays a role in RNA replication as well
(Tai et al 1996). NS4A is a cofactor of NS3, with which
it forms a heterodimer (Failla et al 1994; Kim et al 1996).
NS4B is an integral ER membrane protein. Its function is
not yet known, but it may play a role in the anchorage of
the replication complex to membrane – as observed for
the replication of other RNA viruses (Hugle et al 2001).
The role of NS5A in the HCV life cycle is also not known.
This protein is phosphorylated (Koch and Bartenschlager
1999) and has been shown to interfere with the IFN res-
ponse (Gale et al 1997). Recent studies of HCV RNA
replicon have shown that many adaptive mutations that
enhance viral replication are localized in NS5A, suggest-
ing that it plays an important role in viral replication
(Blight et al 2000; Lohmann et al 2001). Finally, NS5B
is the viral RNA-dependent RNA polymerase (RdRp). It
does not show a rigid template specificity in vitro but can 
copy a full-length HCV genomic RNA (Oh et al 1999).
NS5B has a hydrophobic domain at its C-terminus, allow-
ing its insertion into membrane (Yamashita et al 1998).

The viral life cycle is initiated by binding to a receptor, 
and after penetration or concomitantly with it, the viral
RNA is uncoated and translated into the viral proteins
by the cellular machinery. The viral RNA first replicates
into the negative-strand RNA, followed by positive-
strand RNA, using the NS proteins. The newly synthe-
sized positive-strand RNA is encapsidated together with
the core protein. Viral budding occurs most likely in the
ER-Golgi compartments. It is not known whether the
viral particles are secreted through vesicles or are re-
leased after cell lysis.

1.1c Genetic heterogeneity and quasispecies: As common
to all RdRps, NS5B does not have a proofreading activity.
As a result, HCV has a high mutation rate (10–5 error/nt)
and a large genetic heterogeneity and quasispecies (Ogata
et al 1991). Based on genomic sequence analysis, HCV is 
classified into at least six different genotypes, 1(a, b, c),
2(a, b, c), 3(a, b), 4a, 5a, 6a, and 52 subtypes (Simmonds
et al 1993, 1994; Bukh and Miller 1994; Bukh et al
1995). Different HCV genotypes differ from one another
by at least 30% overall, while the different subtypes
within a genotype may vary from one another by more
than 20%. Within a subtype, there is not more than 10%
of sequence variation (Simmonds 1994). HCV sequences
isolated from any single patient usually consist of hetero-
geneous population, termed the ‘quasispecies’. The con-
sensus viral sequence is the sequence with the most
common nucleotide at each position (Forns et al 1999).
These sequence variations are concentrated in the hyper-
variable regions of the genome, which though are not
essential for viral replication, allow a certain degree of
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plasticity. The best-characterized hypervariable region of
HCV is located at the N-terminal part of the envelope
protein E2 (hypervariable region 1, HVR1) (Weiner et al
1991, 1992; Kato et al 1992). Another HVR, HVR2, is
located slightly downstream on E2. Quasispecies consti-
tute a pool of viral variants that can change and acquire
new selective advantages in a very short time. Thus, these
new variants have adaptive advantages with a modified
viral tropism, host range, virulence, and drug resistance –
i.e. ability to escape from the host immune response. In-
deed, HVR1 of HCV is a dominant epitope (Kato et al
1993; Cerny et al 1994) and its variation can impair both
humoral and cellular immune response.

1.2 HCV tropism

As HCV is associated with hepatitis, liver is considered
to be its primary site of replication. Viral proteins and
RNA replicative intermediates (negative-strand RNA) can
be detected in hepatocytes of infected patients. Further-
more, HCV can infect and replicate, at low efficiency, in
primary human hepatocytes in vitro (Fournier et al 1998). 
More recently, the use of selectable replicon has confir-
med that a hepatoma cell line (Huh-7) can support HCV
RNA replication (Lohmann et al 1999).

The possibility that HCV infects other cells than hepa-
tocytes as well came from the observation that transplanted
livers in HCV patients are usually very rapidly re-infec-
ted by HCV (Araya et al 1997; Garcia-Retortillo et al
2002). This observation suggests the presence of other
potential reservoirs for HCV. Several studies have shown
that HCV can replicate in the peripheral blood mono-
nuclear cells (PBMC) (Lerat et al 1996; Bronowicki et al
1998). It has been shown that the pattern of circulating
virus and the virus in the liver are different from those in
the PBMC, suggesting that PBMC are an independent
site of viral multiplication. Furthermore, HCV can infect
and replicate in PBMC in vitro, at least to a low level
(Mizutani et al 1996; Nakajima et al 1996). It is possible
that some of the HCVs may have a modified tropism rep-
licating perhaps more efficiently in monocyte/macrophage
or lymphocytes. Consistent with this hypothesis, Laksus
et al (2002) have shown that after liver transplantation, the
liver graft is colonized primarily by liver-derived virus
remaining in the circulation but not by those found in
PBMC of the recipient, suggesting that the latter might
have been adapted to PBMC and infect hepatocytes less
efficiently.

B cell infection by HCV has been shown by detection
of HCV negative-strand RNA in PBMC of HCV patients
and in vitro infection of lymphocytes. Furthermore, in
our laboratory, a B cell line (SB) has been established from
the spleen of an HCV-patient with non-Hodgkin’s lym-
phoma. This cell line is persistently infected with HCV

and produces virus particles, which can infect another
lymphoblastoid cell line, such as Raji cells (Sung et al
2003).

Implication of HCV infection of the cells of immune
system as a mechanism to impair immune response and
facilitate viral persistence will be discussed in the later
sections.

HCV replication in vitro is very limited. Several stu-
dies have attempted to establish tissue culture models, but
none of them can support an active production of HCV
virion. Human primary hepatocytes and hepatocyte-deri-
ved cell lines are permissive to HCV infection, but viral
production is too low for biochemical and biological
studies. RNA transcripts derived from the full-length HCV
cDNA clones of several isolates, including 1a, a chimeric
1a-1b and 2a, are infectious upon intrahepatic injection
into chimpanzees (Yanagi et al 1997, 1998, 1999a).
However, the disease evolution in chimpanzees results in
most cases in virus clearance and mild hepatitis (Lanford
et al 2001).

Due to the absence of good animal or tissue culture
models, most HCV studies have been carried out in stable 
cell lines or transiently transfected cell lines expressing
one or several viral proteins. Transgenic mice have been
engineered with one or several viral proteins under vari-
ous promoters (Lai 2000). SCID/plasminogen activator
transgenic mice carrying chimeric human liver have been
developed recently (Mercer et al 2001). These mice can
be infected by HCV and produce high virus titer. However,
because of the immune deficiency, this mouse system is
not suitable for pathogenesis studies.

More recently, a selectable subgenomic replicon has
been constructed in R Bartenschlager’s laboratory. This
system allows RNA replication of HCV in Huh7 cells,
with high-level expression of HCV RNA and proteins
(Lohmann et al 1999). A full-length replicon has been
constructed as well, but no virus particles are detected
(Pietschmann et al 2002). This system allows the study of 
some aspects of HCV replication.

1.3 Host immune response to viral infection

1.3a The innate immune system: The innate immune
system is the first response to all types of pathogens prior 
to the appearance of the adaptive or specific response. It
involves natural killer (NK) cells, complement, cytokines
and apoptosis (figure 2). The NK cells are cytolytic cells
that use an antigen-independent mechanism. They are
activated by low level of autologous major histocompati-
bility complex class I (MHC-I) molecules on the surface
of infected cells. Some viruses inhibit MHC-I expression
to limit the specific cell-mediated immune response, but
it enhances NK cell function. NK cell activity is modula-
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ted by other components of the innate immune response,
such as α- or β-IFN (Paul 1999).

The complement is a component of the innate system
as well as the specific immune system. It is composed
of soluble molecules (C1q, C3b, etc.) that can interact
directly with viruses, or with virus-antibody complexes,
or with receptors on cells of the immune system. The
complement-binding activates a cascade of proteases that

leads to lysis or the activation of cells of immune res-
ponse.

IFNs and other cytokines are induced after infection
and regulate the various mechanisms that inhibit virus
replication, cell proliferation and apoptosis via different
signal transduction pathways. They play a role in both
innate and specific immunity. IFNs are classified into two
types: I and II. Type I (IFN-α and IFN-β) are produced in 

Figure 2. Interactions of HCV proteins with different effectors of the immune response. The effects of
HCV proteins on the different components of the innate and specific immunity are summarized.
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most cell types and are typically induced by double-stran-
ded RNA, which is either synthesized in the course of
many viral infections, or by other cytokines and growth fac-
tor, such as interleukins 1 and 2 (IL-1 and IL-2) and tumour 
necrosis factor (TNF). Type II IFN (IFN-γ) is synthesized
mainly by T lymphocytes and is involved in the antigen-
specific immune response. After binding of IFNs with
their cognate receptors, a cascade of events occurs, which 
result in the activation of genes involved in the antiviral
response such as the 2′,5′-oligoadenylate synthetase, MHC-
I and the IFN-induced double-stranded RNA-activated
protein kinase (PKR). PKR activation results in the phos-
phorylation of eIF-2α, which, in turn, inhibits translation,
and other signals implicated in cell proliferation, trans-
formation and apoptosis.

Other cytokines are also induced after viral infection;
namely, TNF-α, TNF-β, IL-1, IL-2, IL-4, IL-5, IL-6, and
IL-8 (Paul 1999).

Apoptosis is an innate defense to eliminate infected cells
as well as a component of the specific immune response,
involving the cytotoxic activity. Multiple mechanisms
can lead to apoptosis: for example; some cell surface rece-
ptors (termed death receptors) such as Fas, TNF-R1
or CD40 can be activated by binding of their cognate
ligands, leading to the initiation of the caspase cascade,
which results in apoptosis (Paul 1999).

After HCV infection, the innate immune system is the
first line of defense. Since acute HCV infection is silent
in most cases, very few data are available on the acute
phase in human. During the chronic phase, the comple-
ment and cytokine profiles vary with individual patients,
depending on the presence or absence of IFN treatment.
The complement and cytokine profiles also depend on
the stage of the disease, the ethnicity of patients and the
compartment studied (serum vs. liver) (Shapiro et al
1998; Biro et al 2000; Cotler et al 2001; Kimball et al
2001; Neuman et al 2001).

1.3b Specific immune response: The specific immune res-
ponse is divided into two major types of effector: cellular
effectors comprised of cytotoxic T lymphocytes (CTL),
and humoral effectors comprised of antibodies secreted
by activated B lymphocytes. In both the cases, recogni-
tion of a specific viral epitope is required. However, T
and B epitopes are different: T epitopes are exclusively
linear, whereas B epitopes can be linear or conforma-
tional. Both of them can target any of the viral proteins,
but only some of the B epitopes which are localized on
the viral envelope glycoproteins or outer viral capsid pro-
teins, can induce the production of neutralizing anti-
bodies that can inhibit the binding and entry of the virus.
T cells recognize epitopes presented by MHC molecules;
CTL requires epitope presentation by MHC-I molecules

and helper T cells by class II. CTL response is respon-
sible for the elimination of infected cells, and antibodies
can bind free virus and mediate lysis of infected cell as
well. CTL uses two major pathways to eliminate infected
cells; the perforin-mediated cytolysis; or the Fas-media-
ted pathway. CTL also secretes cytokines, such as IFN-γ
and TNF, which contribute to the control of viral infection
by a non-cytolytic mechanism. Helper T cell (Th) secre-
tes cytokines that are important for optimal responses of
B cells and antibody production or CTL. Two types of Th 
are distinguished according to the type of cytokines they
secrete. Th1, important for CTL activation, secretes IFN-
γ, TNF-β and IL-2. Th2, important for B cell activation
and secretion of antibodies, secretes IL-4, IL-5, IL-6
and IL-13. After activation by interaction with their spe-
cific antigen, B cells produce antibodies if they receive a
second signal from Th2 cells. Immunoglobulin diversity
is obtained by recombination of different genes (VDJ)
and somatic mutations. Class switching (such as from
IgM to IgG) involves different cytokines. The spleen is the
first place where B cells start their maturation after anti-
gen stimulation (Paul 1999).

Dendritic cells (DCs) are important for initiation of spe-
cific immune responses because of their competence to
capture and present antigen to T cells. After antigen inter-
nalization, the DCs themselves undergo a process of matu-
ration, migration, and relocation (Bell et al 1999). During 
maturation, DCs up-regulate MHC, adhesion, and co-sti-
mulatory molecules. Mature DCs also secrete high levels
of IL-12: a Th-1-polarizing cytokine that promotes the
maturation of CTL.

During HCV infection, a robust CTL response is obser-
ved with a persistent intrahepatic Th1-associated cyto-
kine production (IL-2, IFN-γ, TNF) (Cerny and Chisari
1999; Cucchiarini et al 2000; Valiante et al 2000).
Although intrahepatic HCV-specific CTL are detected,
they are in a very limited number (1% to 2%). This Th1
response is insufficient to clear the virus and is associated
with a predominant nonspecific chronic inflammation,
resulting in persistent liver injury (Napoli et al 1996;
Chang et al 2001). A humoral response is observed as
well, but does not lead to viral clearance.

2. Evasion of the immune response by 

quasispecies variation

HCV as a consequence of its sequence variability, is pre-
sent as a pool of viruses presenting different epitopes.
Modifications of both B and T epitope patterns during
HCV infection have been observed and could contribute
to HCV evasion from the immune system (Cerny
and Chisari 1994; Cerny et al 1994; Weiner et al 1992,
1995).
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2.1 Variation of the neutralizing epitopes

One possible way to escape the humoral response is to
have a large diversity of epitopes that can not be neutra-
lized by antibodies. Several studies have shown that dur-
ing HCV infection, the HVR1 sequence of E2 became
progressively heterogeneous, suggesting that it is a target
of selection by antiviral antibodies (Farci et al 1997).
Neutralization-escape variants have been isolated during
HCV infection (Weiner et al 1992). In HCV patients with 
impaired humoral immune response, the HVR1 has a
lower mutation rate compared to immunocompetent indi-
viduals, suggesting that mutations in the HVR1 region
are the result of selective pressure and that HVR1 con-
tains dominant B epitopes (Kumar et al 1994; Booth et al
1998). In HCV-infected patients, antibodies are produced
early after infection. Farci et al (2000) reported that the
pattern of quasispecies (in HVR1) during the acute phase
predicts the outcome of the infection. If the quasispecies
pattern is limited, infection is circumvented and the virus
is eliminated. However, if the quasispecies pattern con-
tinues to evolve, persistent infection results. Anti-HVR1
antibodies, referred to as ‘neutralizing of binding’ (NOB)
antibodies, are able to bind recombinant E2, HCV virus-
like particles or bona fide viral particles. But, there is no
definitive proof that they block viral entry (Farci et al
1996). A correlation has been observed between pro-
longed high NOB titers in patients and natural resolution
of chronic hepatitis C (Ishii et al 1998), suggesting that
they can play a role in viral clearance. However, lack of
an efficient model of infection renders the validation of
this hypothesis difficult.

These observations suggest that selection of viral vari-
ants that cannot be efficiently neutralized by anti-HVR1
antibodies probably contributes to the failure of elimina-
tion of HCV, leading to the establishment of a persistent
infection.

2.2 Variation of CTL epitopes

As for B epitopes, there is a large variety of CTL epi-
topes on HCV proteins, including those in the HVR1
region. In resolving infection, a strong and durable CTL
response targeting multiple epitopes is observed (Cucchi-
arini et al 2000; Lechner et al 2000). In chronic infection, 
a CTL response is observed as well, but there are fewer
HCV-specific CTLs circulating in the peripheral blood
(He et al 1999). CTLs are present in the liver of these
patients, but they appear to be inefficient in eliminating
infected cells. Studies on variation of CTL epitopes dur-
ing infection have shown that the selection of viral vari-
ants early during infection may determine the outcome of

the infection (Tsai et al 1998; Erickson et al 2001). HCV 
mutants that escape CTL recognition have been reported
(Weiner et al 1995). Studies performed in infected
patients as well as in a chimpanzee model have shown
that CTL epitopes evolve during infection, confirming
that there is a selective pressure against HCV quasispe-
cies by the immune system. In both cases, an early selec-
tion of CTL escape mutants leads to chronic infection,
whereas a narrow spectrum of CTL epitopes correlates
with the clearance of infection (Tsai et al 1998; Erickson
et al 2001). Another important phenomenon has been
observed with some epitope mutants, i.e. they can func-
tion as T cell receptor antagonist and inhibit CTL activity 
(Tsai et al 1998).

As with B epitopes, HCV quasispecies imply variation
of T cell epitopes during infection. An early selection of
escape mutants seems to be a key event in the establish-
ment of HCV persistent infection. In addition, a weaker
CTL response (less circulating CTL or defect in CTL
activity) has been observed in chronic infection.

The rapid selection of B and T epitope escape mutants
early after infection probably results from selective pres-
sure of the immune system of the host. It is not clear
why, in some cases, selection of mutants is faster and
leads to chronic infection, and, in others, it is not as
effective and leads to elimination of the virus. It is not
clear if the genotype, the viral load or the variety of qua-
sispecies at the time of infection are important for the
rapid selection of escape mutants.

Selection of escape mutants might not be the only way
to escape from every possible antibodies or from all
HCV-specific CTL, but if dominant epitopes are invol-
ved, it would probably contribute to the persistence of
HCV (figure 2).

3. Implication of HCV proteins in the modulation

of innate and specific functions

Since the selection of escape mutants to antibodies and
HCV-specific CTLs does not fully explain why HCV
persists with this very high frequency, many studies have
been carried out to determine if viral proteins could be
involved in the inhibition of cellular immune functions.
Models using transient or stable expression of one or
several viral proteins in different cell types as well as
in transgenic mice expressing these proteins have been
reported. These studies have shown that several viral pro-
teins have potential effects on signalling pathways invol-
ved in immune response, cell proliferation or apoptosis
(table 1). In this chapter, we focus on the interactions of
HCV proteins with effectors of the innate and specific
immune system.
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3.1 Effects of the core protein on cell signalling

3.1a Interaction with members of the tumour necrosis
factor receptor family: The TNF receptor family is
involved in the immune system and particularly in the
control of apoptosis. Studies using cell culture have
shown that the core protein of HCV can interact with
the cytoplasmic domain of the lymphotoxin β-receptor
(LTβR), TNFR-1 (Chen et al 1997; Matsumoto et al

1997; Zhu et al 1998) and Fas (Hahn et al 2000). The
interaction of core protein with LTβR occurs between the 
N-terminal part of core and the region of LTβR that
interacts with its signalling adaptor TRAF-3 (figure 3).
Thus, the core-LTβR interaction is expected to modulate
the signal transduction that follows the interaction of
LTβR with its ligand. Expression of core in HeLa cells
increases sensitivity to apoptosis after stimulation of
lymphotoxin-αβ complex plus γ-interferon stimulation
(Chen et al 1997). The core protein is also able to bind

Figure 3. Interactions of the core protein with the TNFR family. The core protein binds 
to the cytoplasmic domain of FAS, TNFR1 and LTβR and alter their activation threshold. 
The final response varies with the cells.
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the death domain (DD) of TNFR-1 (figure 3). This inter-
action reduces the binding between TNFR-1 and TRADD 
or TRAF-2, two molecules of the TNFR signalling path-
way (Zhu et al 2001). Furthermore, using a mouse fibro-
blastic cell line, the TNF-induced NFκB activation is
inhibited by the core protein (Zhu et al 1998).

These results support the hypothesis that the core pro-
tein may have a pro-apoptotic activity by affecting the
TNFR signalling pathway. However, these findings are
not always observed in every cell types or with all HCV
core isolates (Ray et al 1996; Hahn et al 2000). Several
studies, in fact, have shown that the core protein reduces
sensitivity to TNF and activates NFκB, thus inhibiting
apoptosis either constitutively or in response to cytokines
(Marusawa et al 1999). These conflicting reports suggest
that other, possibly cell-type specific, factors might be
involved.

Modulation of Fas-mediated apoptosis by the core pro-
tein has been described in HepG2 cells (Ruggieri et al
1997) and Jurkat cell (Hahn et al 2000). In those studies,
transient and/or stable expression of the core protein
increases sensitivity to Fas-mediated apoptosis. The core
protein binds to the cytoplasmic domain of Fas in vitro,
and upon Fas/FasL engagement, a significant increase in
caspase 3 activation is observed (Hahn et al 2000). Since
HCV can infect T cells, decrease of apoptosis threshold
by core may impair their activation and cytotoxic func-
tions. Correspondingly, a suppression of the host immune
responses has been observed in a murine model using
recombinant vaccinia virus or Sindbis virus expressing
HCV core protein (Large et al 1999). In this study, ex-
pression of the core protein increases viral titer, reduces
CTL activity and reduces the level of IL-2 and IFN-γ
production. These in vivo data confirm the modulatory
effect of core on the immune system. In another cell cul-
ture study, the core protein has been shown to bind to a
complement receptor (C1qR) on T cells; suppressing T
cell response, and IL-2 production and IL-2 receptor ex-
pression (Yao et al 2001) (figure 2).

In contrast, another in vitro study, performed in HeLa
cells, has shown an opposite effect of core expression on
Fas-mediated apoptosis. In that case, an inhibition of
apoptosis was observed via activation of NFκB (Maru-
sawa et al 1999; Watashi et al 2001). Furthermore, two
recent studies in mice, using either a recombinant replica-
tion-deficient adenovirus expressing the core protein or
transgenic mice for the core protein, have shown no im-
munomodulatory effects of the core protein on virus-
induced cellular immunity (Sun et al 2001; Liu et al
2002). Again, divergent effects were observed, depend-
ing on cell type, mouse strain, vector or experimental
conditions, suggesting that several factors need to be
considered and conclusions should be made in reference
to the model used.

Implication of core protein in modulating apoptosis
can have several consequences on immune response. Since
HCV can infect lymphocytes, increasing their sensitivity
to apoptotic stimuli affects their activation and immune
functions. In chronic infection, few HCV-specific CTLs
are found in the peripheral blood, which could be due to
an abnormal death of activated CTL. Therefore, LTβR
and TNFR1 signalling is important for the microenvi-
ronment that allows interactions of lymphocytes with
antigen-presenting cells, and for B cell migration and
differentiation into antibody-producing cell. Impairment
of these functions may interfere with the elimination of
infected cells and neutralization of virus. Thus, the HCV
core protein appears to play a key role in immunomodu-
lation and is thus one of the factors that contribute to
HCV persistent infection.

3.1b Modulation of the IFN pathway: More recently,
another potential role of the core protein has been pro-
posed in the PKR-induced apoptosis (Delhem et al 2001). 
As mentioned earlier, PKR is induced by IFN and acti-
vated by double-stranded RNA. Activation of PKR
requires its dimerization and autophosphorylation. Upon
activation, PKR phosphorylates several substrates, inclu-
ding eIf2-α, and the inhibitor of NFκB (IκB), which lead
to inhibition of translation, anti-proliferative effects and
apoptosis. It has been shown that the recombinant core
protein derived from HCV sequences isolated from hepa-
tocellular carcinoma can bind and activate PKR in vitro.
The increase of apoptosis is more pronounced with core
proteins isolated from the tumour than from the non-
tumour part. The increase of apoptosis is also more sig-
nificant after co-stimulation with TNF-α and IFN-α –
which induces PKR – than with TNF-α alone, in the
presence of the core protein derived from tumour (Del-
hem et al 2001). Thus, core protein variants selected dur-
ing persistent infection may have acquired new property
that enhances the pro-apoptotic activity of PKR (figure
4). Promoting apoptosis could prevent viral persistence.
However, depending on the cell types, particularly in
immune cells, the cell death may actually favour viral
persistence. Furthermore, it could induce selection of the
cells resistant to apoptosis, leading to cellular transforma-
tion and carcinogenesis.

The core protein also activates multiple cellular and
viral promoters. Thus, many immune-related genes or
components of signalling pathways could be altered at the
gene expression level by the core protein. For example,
IL-2 production from T cells is enhanced by core protein
(Bergqvist and Rice 2001). Also, core protein can acti-
vate 2′-5′-oligoadenylate synthetase gene, which is an IFN-
inducible gene (Naganuma et al 2000).
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Figure 4. Structure of the core protein, E2 and NS5A and their effects of PKR cascade. E2 and NS5A inhibit
PKR activity and the PKR-induced translation shut-off. Core protein isolated from tumour increases PKR phos-
phoryation and its pro-apoptotic activity. Abbreviations are as follows: For core: P, phosphorylation site; NLS,
nuclear localization signal; E1, signal sequence. For E2, Leader: signal sequence, HVR, hypervariable region;
PePHD, PKR-eIF2α phosphorylation domain; TM, transmembrane domain. For NS5A: P, phosphorylation site;
ISDR, IFN-sensitivity-determining region; NLS, nuclear localization signal; V3, variable region.
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3.2 Effect of the envelope glycoprotein E2 on 
the IFN response

The glycoprotein E2 of HCV contains a stretch of amino
acids that share a high degree of sequence homology
with the autophosphorylation sites of PKR and the phos-
phorylation site of its substrate eIF2α, the so-called
PKR-eIF2α phosphorylation domain (PePHD) (Taylor
et al 1999). E2 is able to inhibit PKR activation in vitro
in a PePHD-dependent manner. This inhibition blocks the 
phosphorylation of eIF2α, and prevents translation shut-
off mediated by IFN (figure 4). Since E2 itself is not
phosphorylated, it probably serves as a pseudo-substrate
of PKR. E2 is mostly glycosylated and located in the ER,
but an unglycosylated form of E2 is localized in the
cytoplasm and it is this form that interacts with PKR in
mammalian cells (Pavio et al 2002). The PePHD sequ-
ence is different between the viral genotypes, and the
degree of inhibition of PKR activation by various E2
sequences correlates with the degree of resistance of the
different genotypes to IFN therapy. Several studies have
looked for this correlation in patients and have either
confirmed or invalidated this observation (Lo and Lin
2001; Puig-Basagoiti et al 2001). It is most likely that the 
E2-PKR interaction could only explain the differences in
the interferon sensitivity between different viral geno-
types but does not explain the differences between iso-
lates within the same genotype.

E2 has been shown to induce an ER stress response
(Liberman et al 1999), which may affect the expression
of cell surface molecules.

3.3 Effects of the NS5A protein on IFN response 
and IL-8 level

NS5A contains a region associated with IFN resistance:
the IFN-sensitivity-determining region (ISDR) localized
in its C-terminal part (figure 4). Mutations in this region
confer sensitivity to IFN therapy (Enomoto et al 1996;
Castelain et al 2002; Schiappa et al 2002). This correla-
tion is mainly observed among Japanese HCV patients,
but failed to be confirmed in other populations (Gerotto
et al 2000). Since the diverse studies have been done
using various cohorts of patients and using different
methods, it is difficult to reach a consensus conclusion.
Viral genotypes, dose of IFN used, length of the treat-
ment and time after infection, are important parameters
that need to be considered for the validation of those
studies. The recent use of replicon does not support the
role of NS5A (genotype 1b) in the resistance to IFN (Guo 
et al 2001). Since the role of NS5A in HCV replication is
not known, it is difficult to determine why mutations in
this region may confer a disadvantage to the virus during
IFN therapy. Interestingly, adaptive mutations around the
ISDR often contribute to the increase of replication effi-
ciency of the HCV replicons.

The NS5A protein from IFN-resistant strains of geno-
types 1a and 1b has been reported to inhibit PKR through 
a direct interaction between the C-terminal part of NS5A, 
near the ISDR, and the central part of PKR (Gale et al
1997). This interaction is believed to be responsible for
the anti-IFN response exerted by NS5A. Again, these
results are controversial depending on the experimental
models used, virus-rescue experiments, transient or stable
transformant, the viral genotype, etc. (Podevin et al 2001).

More recently, NS5A was found to induce production
of IL-8, which, in turn, partially inhibits the IFN-induced
antiviral response in vitro (Polyak et al 2001a). Further-
more, a study of hepatitis C patients has shown an elevation
of IL-8 in their serum in association with the resistance to 
interferon therapy (Polyak et al 2001b), suggesting that
NS5A has several potential ways to interfere with the
immune response.

3.4 Effects of the NS5B protein on cell surface 
expression of cellular proteins

NS5B is believed to form a membrane-associated RNA
replication complex with the other NS proteins. NS5B
has a membrane-anchorage domain and is found in the
ER or an ER-like modified compartment (Schmidt-Mende
et al 2001). The membrane localization of NS5B allows
its interaction with cellular proteins of the vesicle trans-
port. NS5B interacts with a SNARE-like protein [soluble
(N-ethylmaleimide-sensitive fusion protein) attachment

Table 1. Summary of accessory functions of HCV proteins.

HCV proteins Accessory functions

CORE
↑↓
↑
↓

TNFR, Gene expression
PKR, NFκB, Steatosis, Oncogenesis
CTL

E2
↓
↑
↑

PKR
Stress response
CD81 stimulation

NS3
↑
↑

PKA, PKC
Oncogenesis

NS4B
↑
↑

NFκB
Oncogenesis

NS5A
↓
↓
↑
↑↓

PKR
Growth regulation (Grb2)
Steatosis
Oncogenesis

NS5B ↓ Vesicle transport

For details, see text and Sakamuro et al (1995), Ray et al
(1996), Barba et al (1997), Borowski et al (1997), Gale et al
(1999), Ghosh et al (1999), Tau et al (1999), Kato et al (2000), 
Park et al (2000), Arina et al (2001) and Shi et al (2002).
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protein receptor] named hVAP33 (Tu et al 1999) and down-
regulates the surface expression of cell surface proteins
such as MHC-I (unpublished results). Thus, reduction of
MHC-I on infected cells may prevent the elimination of the 
infected cells by CTLs. This property of NS5B may contri-
bute to the inefficient CTL response and the persistence of
HCV (figure 2).

In conclusion, several HCV proteins possess properties
that can directly or indirectly affect the immune response. 
By interfering with the IFN pathway, E2 and NS5A of
HCV genotypes 1a and 1b contribute to the viral escape
from the innate immune response, and to the resistance to 
IFN therapy. Decrease of cell surface expression of
molecules, such as MHC-I, by NS5B may contribute to
the viral escape from the CTL response. This observation
is also consistent with a high degree of infiltration of
activated NK cells in the liver of chronically infected
patients (Valiante et al 2000).

4. Impairment of immune functions during 

HCV infection

HCV can infect PBMC, in particular, B and T cells. Infec-
tion of these cells may lead to several dysfunctions.

4.1 B cell-related pathologies associated with 
HCV infection

Long-term infection with HCV is associated with
immune-mediated pathologies, such as type II mixed cryo-
globulinemia (MC), production of autoantibodies, the
appearance of rheumatoid factors or development of B-
cell non-Hodgkin’s lymphomas (B-NHL).

In HCV patients, circulating immune complexes of
HCV and anti-HCV antibodies with cryoprecipitating pro-
perties cause type II MC, which is associated with poly-
clonal or monoclonal B cell expansion. Approximately
one-third of HCV-infected patients have this pathology.
Although it is considered a non-neoplastic disorder, it
may evolve into lymphoma in some patients (Pozzato
et al 1994). Several studies have demonstrated a high
prevalence of chronic HCV infection among patients with 
B-NHL (Ferri et al 1994; Pioltelli et al 1996; Zuckerman
et al 1997). A strong expression of the anti-apoptotic bcl-
2 oncogene, and a high frequency of reciprocal t(14;18)
translocation, have been found in B cells from HCV
patients with type II MC (Monteverde et al 1997; Kitay-
Cohen et al 1999; Zignego et al 2000; Zuckerman et al
2001). In addition, a high rate of B cell oligo clonality, as
detected by re-arrangement of immunoglobulin heavy
chain, occurs in HCV-infected patients even in the absence
of cryoglobulinemia. Thus, clonal proliferation and inhi-
bition of apoptosis of B lymphocytes may play an impor-
tant role during the multi-step process of lymphoma-
genesis. The role of HCV in this process has been further

demonstrated by the isolation of B-NHL cells, whose B
cell receptor is able to bind E2 (Quinn et al 2001). The
authors proposed that chronic antigen stimulation in con-
junction with activation though the interaction between
E2 and CD81 is responsible for the lymphomagenesis.
Another cell culture study has shown that interaction of
E2 with CD81 on Daudi cell, a B cell line, leads to an
antiproliferative effect (Flint et al 1999). These studies
suggest that HCV can affect the immune functions by
multiple ways.

4.2 Impairment of natural killer cells functions

Interaction of virus particle with cell surface molecules,
such as CD81, may modulate cell signalling. CD81 is
widely expressed and is found on NK cells. Two inde-
pendent studies have shown that the cross-linking of
CD81 by immobilized E2 inhibits non-MHC-restricted
cytotoxicity mediated by NK cells and also IFN-γ pro-
duction by NK cells following exposure to IL-2, IL-12,
IL-15, or CD16 cross-linking (Crotta et al 2002; Tseng
and Klimpel 2002). Inhibition of IFN-γ production by
NK cells could alter the development of a Th1 response
and favour a Th2. An imbalance in the ratio of Th1/Th2
has been shown in infected patients (Sarih et al 2000;
Valiante et al 2000) (figure 2).

Inhibition of the innate immune response early after
infection could confer a growth advantage to HCV that
could not be controlled by the adaptive immune response. 
The inefficient NK cell response could allow the sele-
ction of escape variants.

4.3 Impairment of T cell functions

On T cells, CD81 forms a complex with several different
molecules, including CD4, CD8, α4β1 integrin, and CD82.
In a recent study, using recombinant E2 as a ligand in an
in vitro assay, it has been shown that CD81 cross-linked
by E2 lowers the activation threshold of T cell (Wack
et al 2001). E2-induced co-stimulation lowers the thres-
hold for IL-2 receptor-α expression and IL-2 production,
resulting in an increase of T cell proliferation. It also
enhances the production of IFN-γ and IL-4 and causes
increased T cell receptor (TCR) down-regulation (figure
2). These results suggest that, during HCV infection,
even suboptimal stimuli could activate T cell and thus
contribute to liver damage or autoimmune disorders
associated with HCV infection.

4.4 Impairment of dendritic cell functions

Several viruses, such as herpes simplex virus, measles
virus, and Epstein-Barr virus, have been shown to dimi-
nish DC function. It is only recently that HCV has also
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been shown to affect the function of DCs. Compared to
monocyte-derived DCs from healthy donors, DCs from
patients with chronic HCV infection showed an impaired
ability to stimulate allogeneic T cells and to produce inter-
feron (Kanto et al 1999; Bain et al 2001). An independent
study also demonstrated impaired stimulatory capacity of
DCs derived from HCV-infected patients with hepatocellu-
lar carcinoma (Kakumu et al 2000). This impaired matura-
tion of DCs has been correlated with persistent HCV
infection (Auffermann-Gretzinger et al 2001). Furthermore, 
in patients who have cleared the virus, DC maturation is
normal. It is not known yet if the virus infects DCs directly.

5. Conclusions and future directions

In conclusion, HCV has developed several strategies to
counteract the immune system of the host. Combination
of these different strategies probably allows HCV to esta-
blish persistence at a high frequency. HCV quasispecies
play an important role in the selection of escape mutants
that are not recognized by the immune system. Further-
more, viral proteins can interact with effectors of various
signalling pathways involved in cell proliferation, apop-
tosis or transformation. These interactions can occur in
the infected cells or on cell surface with circulating virus
particles. Intracellular interactions have been demon-
strated between the viral NS5A, E2 or core proteins with
PKR, between core and several members of the TNFR
family and between NS5A, NS5B and hVAP-33, a protein
of the cellular transport. These interactions result in the
modulation of apoptosis pathways, interference with the
IFN-α pathway, or with the cellular secretion pathway and
cell surface expression of MHC-I molecule. Modulation of
cellular functions can also involve interaction of circulating 
virus particles with cell surface receptors, such as interac-
tion between E2 and CD81 on NK cells or T cells, and sen-
sitize these cells to apoptotic stimuli. These strategies
impair both innate and specific immune responses.

Once HCV has established a persistent infection, treat-
ment of this infection is compromized. Therefore, pre-
vention by vaccination should be the option of choice.
Unfortunately, HCV escape mutants and the various
existing genotypes render the development of a protec-
tive vaccine difficult.

In summary, HCV, as an emerging virus, has evolved in
such a way that it has developed many strategies to escape
our immune system, resulting, first, in the difficulty to
identify it and, second, in making it difficult to cure.
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