Skip to main content
Log in

Production of ethanol from enzymatically hydrolyzed orange peel by the yeastSaccharomyces cerevisiae

  • Session 2 Applied Biological Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We extended our previous investigations of enzymatic hydrolysis of polysaccharides in orange peel by commercial cellulase and pectinase enzymes to higher, more practical concentrations of orange peel solids. High yields of saccharification could be maintained even at substrate concentrations as high as 22–23%, but the rates of solubilization and saccharification decreased 2-3-fold. We also tested the fermentability of these hydrolysates by the yeastSaccharomyces cerevisiae, which revealed the presence of inhibitory compounds. These compounds could be removed by the filtration of hydrolyzed peel. Successful fermentations of filtered hydrolysates were achieved after pH adjustment with calcium carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agricultural Research Service (1962),Chemistry and Technology of Citrus, Citrus Products and Byproducts. Agriculture Handbook No. 98, United States Department of Agriculture Publ., Washington, DC, p. 98.

    Google Scholar 

  2. Kesterson, J. W. and Braddock, R. J. (1976),By-Products and Specialty Products of Florida Citrus. Bulletin #784, University of Florida Publ., Gainesville, FL, p. 119.

    Google Scholar 

  3. Grohmann, K. and Baldwin, E. A. (1992),Biotechnol. Lett. 14, 1169–1174.

    Article  CAS  Google Scholar 

  4. Nishio, N., Oku, Y., Kawamara, D., and Nagai, S. (1979),Hakko Kogaku Kaishi 57, 354–359.

    CAS  Google Scholar 

  5. Nishio, N. and Nagai, S. (1979),Eur. J. Appl. Microbiol. Biotechnol. 6, 371–378.

    Article  CAS  Google Scholar 

  6. Marshall, M. R., Graumlich, T. R., Braddock, R. J., and Messersmith, M. (1985),J. Food Sci. 50, 1211,1212.

    Article  CAS  Google Scholar 

  7. Echeverria, E., Burns, J. K., and Wicker, L. (1988),Proc. Fla. State Hort. Soc. 101, 150–154.

    Google Scholar 

  8. Akao, T., Mizuki, E., Saito, H., Okumura, S., and Murao, S. (1992),Bioresource Technol. 41, 35–39.

    Article  CAS  Google Scholar 

  9. Ben-Shalom, N. (1986),J. Food Sci. 51, 720,721, 730.

    Article  CAS  Google Scholar 

  10. Nelson, N. (1944),J. Biol. Chem. 153, 375–386.

    CAS  Google Scholar 

  11. Kohn, R. and Kovac, P. (1978),Chem. Zvesti 32, 478–485.

    CAS  Google Scholar 

  12. Grohmann, K., Wyman, C. E., and Himmell, M. E. (1992), inEmerging Technologies for Materials and Fuels from Biomass, Rowell, R. M., Schulz, T. P., and Narayan, R., eds., ACS Symp. Series No. 476, American Chemical Society Publ., Washington, DC, pp. 354–392.

    Google Scholar 

  13. Tong, G. E. and Cannell, R. P. (1988), inOrganic Chemicals from Biomass, Wise, D. L., ed., Benjamin/Cummings, Menlo Park, CA, pp. 407–451.

    Google Scholar 

  14. Rohatgi, N. K. and Ingham, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 515–526.

    Article  Google Scholar 

  15. Von Loesecke, H. W. (1934),Citrus Ind. 15, 8,9, 20,21.

    Google Scholar 

  16. McNary, R., Wolford, R. W., and Patton, V. D. (1951),Food Technol. 5, 319–323.

    CAS  Google Scholar 

  17. Lane, A. G. (1980),J. Chem. Tech. Biotechnol. 30, 345–350.

    CAS  Google Scholar 

  18. Lane, A. G. (1983),Environ. Technol. Lett. 4, 65–72.

    Article  CAS  Google Scholar 

  19. Mizuki, E., Akao, T., and Saruwatari, T. (1990),Biol. Wastes 33, 161–168.

    Article  CAS  Google Scholar 

  20. Murdock, D. I. and Allen, W. E. (1960),Food Technol. 14, 441–445.

    CAS  Google Scholar 

  21. Subba, M. S., Soumithri, T. C., and Suryanarayana, R. (1967),J. Food Sci. 32, 225–227.

    Article  CAS  Google Scholar 

  22. Shaw, P. E. (1979),J. Agric. Food Chem. 27, 246–257.

    Article  CAS  Google Scholar 

  23. Scott, W. C. and Veldhuis, M. K. (1966),J. A.O.A.C. 49, 628–633.

    CAS  Google Scholar 

  24. Barnett, J. A., Payne, R. W., and Yarrow, D. (1985), inYeasts Characteristics and Identification, Cambridge University Press, Cambridge, UK, p. 811.

    Google Scholar 

  25. Carlson, M. (1987),J. Bacterial. 169, 4873–4877.

    CAS  Google Scholar 

  26. Hara, T., Fujio, Y., and Ueda, S. (1985),Nippon Shokahin Kogyo Gakkaishi 32, 241–246.

    CAS  Google Scholar 

  27. Sinclair, W. B. (1961), inThe Orange. Its Biochemistry and Physiology, Sinclair, W. B., ed., Univ. of California, Publ., Riverside, CA, pp. 191–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grohmann, K., Baldwin, E.A. & Buslig, B.S. Production of ethanol from enzymatically hydrolyzed orange peel by the yeastSaccharomyces cerevisiae . Appl Biochem Biotechnol 45, 315–327 (1994). https://doi.org/10.1007/BF02941808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941808

Index Entries

Navigation