Skip to main content
Log in

Myocardial metabolism and cardiac performance in obesity and insulin resistance

  • Nuclear Cardiology
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Obesity, insulin resistance, and their frequent complication of type 2 diabetes are risk factors for left ventricular diastolic dysfunction, systolic dysfunction, and clinical heart failure. Although obesity, insulin resistance, and diabetes are risk factors for coronary artery disease, and hence ischemic cardiomyopathy-related heart failure, there is increasing evidence that these three risk factors are implicated in the development of cardiac dysfunction not related to epicardial coronary disease. There are several mechanisms by which this triad may cause cardiac dysfunction, including alterations in myocardial metabolism, which may initially be adaptations but evolve into maladaptive responses over time. Recent advances in our understanding of these mechanisms will aid in the development of novel therapies, including metabolic manipulations that could prevent and treat cardiac dysfunction in patients with obesity, insulin resistance, and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Flegal KM, Carroll MD, Ogden CL, Johnson CL:Prevalence and trends in obesity among US adults, 1999–2000.JAMA 2002,288:1723–1727.

    Article  PubMed  Google Scholar 

  2. Boyle JP, Honeycutt AA, Narayan KM, et al.:Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the US.Diabetes Care 2001,24:1936–1940.

    Article  PubMed  CAS  Google Scholar 

  3. Zimmet P, Alberti KG, Shaw J:Global and societal implications of the diabetes epidemic.Nature 2001,414:782–787.

    Article  PubMed  CAS  Google Scholar 

  4. Yach D, Stuckler D, Brownell KD:Epidemiologic and economic consequences of the global epidemics of obesity and diabetes.Nat Med 2006,12:62–66.

    Article  PubMed  CAS  Google Scholar 

  5. Kenchaiah S, Evans JC, Levy D, et al.:Obesity and the risk of heart failure.N Engl J Med 2002,347:305–313.

    Article  PubMed  Google Scholar 

  6. Kannel WB, Hjortland M, Castelli WP:Role of diabetes in congestive heart failure: the Framingham study.Am J Cardiol 1974,34:29–34.

    Article  PubMed  CAS  Google Scholar 

  7. Hamby RI, Zoneraich S, Sherman L:Diabetic cardiomyopathy.JAMA 1974,229:1749–1754.

    Article  PubMed  CAS  Google Scholar 

  8. Varela-Roman A, Grigorian Shamagian L, Barge Caballero E, et al.:Influence of diabetes on the survival of patients hospitalized with heart failure: a 12-year study.Eur J Heart Fail 2005,7:859–864.

    Article  PubMed  Google Scholar 

  9. Berkalp B, Cesur V, Corapcioglu D, et al.:Obesity and left ventricular diastolic dysfunction.Int J Cardiol 1995,52:23–26.

    Article  PubMed  CAS  Google Scholar 

  10. Peterson LR, Waggoner AD, Schechtman KB, et al.:Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging.J Am Coll Cardiol 2004,43:1399–1404.

    Article  PubMed  Google Scholar 

  11. Alpert MA:Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome.Am J Med Sci 2001,321:225–236.

    Article  PubMed  CAS  Google Scholar 

  12. Okura H, Inoue H, Tomon M, et al.:Impaired glucose tolerance as a determinant of early deterioration of left ventricular diastolic function in middle-aged healthy subjects.Am J Cardiol 2000,85:790–792, A799.

    Article  PubMed  CAS  Google Scholar 

  13. Boyer JK, Thanigaraj S, Schechtman KB, Perez JE:Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus.Am J Cardiol 2004,93:870–875.

    Article  PubMed  Google Scholar 

  14. Peterson LR, Waggoner AD, de las Fuentes L, et al.:Alterations in left ventricular structure and function in type-1 diabetics: a focus on left atrial contribution to function.J Am Soc Echocardiogr 2006,19:749–755.

    Article  PubMed  Google Scholar 

  15. Alpert MA, Lambert CR, Panayiotou H, et al.:Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss.Am J Cardiol 1995,76:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  16. Kuch B, Hense HW, Gneiting B, et al.:Body composition and prevalence of left ventricular hypertrophy.Circulation 2000,102:405–410.

    PubMed  CAS  Google Scholar 

  17. Alpert MA, Terry BE, Kelly DL:Effect of weight loss on cardiac chamber size, wall thickness and left ventricular function in morbid obesity.Am J Cardiol 1985,55:783–786.

    Article  PubMed  CAS  Google Scholar 

  18. Alpert MA, Terry BE, Mulekar M, et al.:Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss.Am J Cardiol 1997,80:736–740.

    Article  PubMed  CAS  Google Scholar 

  19. Raev DC:Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients.Diabetes Care 1994,17:633–639.

    Article  PubMed  CAS  Google Scholar 

  20. Vanninen E, Mustonen J, Vainio P, et al.:Left ventricular function and dimensions in newly diagnosed non-insulin-dependent diabetes mellitus.Am J Cardiol 1992,70:371–378.

    Article  PubMed  CAS  Google Scholar 

  21. Of importance Aasum E, Hafstad AD, Severson DL, Larsen TS:Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice.Diabetes 2003,52:434–441. In an animal model of obesity and diabetes, this study showed that myocardial metabolism alterations occur before the onset of cardiac dysfunction and may contribute to it.

    Article  PubMed  CAS  Google Scholar 

  22. Buchanan J, Mazumder PK, Hu P, et al.:Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity.Endocrinology 2005,146:5341–5349.

    Article  PubMed  CAS  Google Scholar 

  23. Mazumder PK, O’Neill BT, Roberts MW, et al.:Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts.Diabetes 2004,53:2366–2374.

    Article  PubMed  CAS  Google Scholar 

  24. Finck BN, Kelly DP:Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart.J Mol Cell Cardiol 2002,34:1249–1257.

    Article  PubMed  Google Scholar 

  25. Kliewer SA, Umesono K, Noonan DJ, et al.:Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors.Nature 1992,358:771–774.

    Article  PubMed  CAS  Google Scholar 

  26. Feige JN, Gelman L, Michalik L, et al.:From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions.Prog Lipid Res 2006,45:120–159.

    Article  PubMed  CAS  Google Scholar 

  27. Wolfe RR, Peters EJ, Klein S, et al.:Effect of short-term fasting on lipolytic responsiveness in normal and obese human subjects.Am J Physiol 1987,252:E189–196.

    PubMed  CAS  Google Scholar 

  28. Of major importance Peterson LR, Herrero P, Schechtman KB, et al.:Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women.Circulation 2004,109:2191–2196. In this study young, obese women had increased myocardial oxygen consumption and decreased efficiency. Insulin resistance predicted myocardial fatty acid uptake, utilization, and oxidation.

    Article  PubMed  Google Scholar 

  29. Murray AJ, Anderson RE, Watson GC, et al.:Uncoupling proteins in human heart.Lancet 2004,364:1786–1788.

    Article  PubMed  CAS  Google Scholar 

  30. Turpeinen AK, Takala TO, Nuutila P, et al.:Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid.Diabetes 1999,48:1245–1250.

    Article  PubMed  CAS  Google Scholar 

  31. Knuuti J, Takala TO, Nagren K, et al.:Myocardial fatty acid oxidation in patients with impaired glucose tolerance.Diabetologia 2001,44:184–187.

    Article  PubMed  CAS  Google Scholar 

  32. Kates AM, Herrero P, Dence C, et al.:Impact of aging on substrate metabolism by the human heart.J Am Coll Cardiol 2003,41:293–299.

    Article  PubMed  CAS  Google Scholar 

  33. Zhou YT, Grayburn P, Karim A, et al.:Lipotoxic heart disease in obese rats: implications for human obesity.Proc Natl Acad Sci U S A 2000,97:1784–1789.

    Article  PubMed  CAS  Google Scholar 

  34. Young ME, Guthrie PH, Razeghi P, et al.:Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart.Diabetes 2002,51:2587–2595.

    Article  PubMed  CAS  Google Scholar 

  35. Alavaikko M, Elfving R, Hirvonen J, Jarvi J:Triglycerides, cholesterol, and phospholipids in normal heart papillary muscle and in patients suffering from diabetes, cholelithiasis, hypertension, and coronary atheroma.J Clin Pathol 1973,26:285–293.

    Article  PubMed  CAS  Google Scholar 

  36. Of major importance Szczepaniak LS, Dobbins RL, Metzger GJ, et al.:Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging.Magn Reson Med 2003,49:417–423. This study showed for the first time that MR spectroscopy can be employed for the noninvasive quantification of intramyocellular triglyceride in vivo in humans.

    Article  PubMed  CAS  Google Scholar 

  37. Herrero P, Peterson LR, McGill JB, et al.:Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus.J Am Coll Cardiol 2006,47:598–604.

    Article  PubMed  CAS  Google Scholar 

  38. Gunawardena R, McGill J, Herrero P, et al.:The transition from obesity with insulin resistance to type-2 diabetes mellitus is associated with progressive worsening in myocardial substrate metabolism [abstract].Circulation 2006,114:II-851.

    Google Scholar 

  39. Iozzo P, Chareonthaitawee P, Rimoldi O, et al.:Mismatch between insulin-mediated glucose uptake and blood flow in the heart of patients with Type II diabetes.Diabetologia 2002,45:1404–1409.

    Article  PubMed  CAS  Google Scholar 

  40. Scheuermann-Freestone M, Madsen PL, Manners D, et al.:Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes.Circulation 2003,107:3040–3046.

    Article  PubMed  CAS  Google Scholar 

  41. Taegtmeyer H, Wilson CR, Razeghi P, Sharma S:Metabolic energetics and genetics in the heart.Ann N Y Acad Sci 2005,1047:208–218.

    Article  PubMed  CAS  Google Scholar 

  42. Sawyer DB, Colucci WS:Mitochondrial oxidative stress in heart failure: “oxygen wastage” revisited.Circ Res 2000,86:119–120.

    PubMed  CAS  Google Scholar 

  43. Vincent HK, Powers SK, Stewart DJ, et al.:Obesity is associated with increased myocardial oxidative stress.Int J Obes Relat Metab Disord 1999,23:67–74.

    Article  PubMed  CAS  Google Scholar 

  44. Unger RH:Lipotoxic diseases.Annu Rev Med 2002,53:319–336.

    Article  PubMed  CAS  Google Scholar 

  45. Unger RH:Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome.Endocrinology 2003,144:5159–5165.

    Article  PubMed  CAS  Google Scholar 

  46. Pettus BJ, Chalfant CE, Hannun YA:Ceramide in apoptosis: an overview and current perspectives.Biochim Biophys Acta 2002,1585:114–125.

    PubMed  CAS  Google Scholar 

  47. Listenberger LL, Ory DS, Schaffer JE:Palmitate-induced apoptosis can occur through a ceramide-independent pathway.J Biol Chem 2001,276:14890–14895.

    Article  PubMed  CAS  Google Scholar 

  48. Borradaile NM, Schaffer JE:Lipotoxicity in the heart.Curr Hypertens Rep 2005,7:412–417.

    Article  PubMed  CAS  Google Scholar 

  49. Of major importance Diamant M, Lamb HJ, Groeneveld Y, et al.:Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus.J Am Coll Cardiol 2003,42:328–335. This study linked an impairment of the myocardium’s energetic state with decreased diastolic function in humans with type 2 diabetes.

    Article  PubMed  CAS  Google Scholar 

  50. Of importance Leichman JG, Aguilar D, King TM, et al.:Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity.Am J Clin Nutr 2006,84:336–341. This study linked increasing plasma fatty acid levels with decreased diastolic function.

    PubMed  CAS  Google Scholar 

  51. Kankaanpaa M, Lehto HR, Parkka JP, et al.:Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels.J Clin Endocrinol Metab 2006,91:4689–4695.

    Article  PubMed  CAS  Google Scholar 

  52. Kanoupakis E, Michaloudis D, Fraidakis O, et al.:Left ventricular function and cardiopulmonary performance following surgical treatment of morbid obesity.Obes Surg 2001,11:552–558.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda R. Peterson MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Peterson, L.R. Myocardial metabolism and cardiac performance in obesity and insulin resistance. Curr Cardiol Rep 9, 143–149 (2007). https://doi.org/10.1007/BF02938341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02938341

Keywords

Navigation