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Abstract 
Signaling through the T cell receptor must be accompanied by 
costimulatory signals for the differentiation of naive T cells to 
cytokine-producing effector T helper ceils. The costimulatory 
signal through CD28 is required for T cell activation resulting 
in increased interleukin (II.)-2 production in vitro, but its role 
in the production of IL-4 and in the in vivo response is still 
unclear. We have examined the effects of blocking CTLA-4 
(the CD28 homologue) ligand interactions on the in vivo 
development of IL-4-producing T helper effector cells during a 
primary mucosal immune response to the nematode parasite 
Heligmosomoides polygyrzts and during a primary systemic 
immune response to immunogenic anti-IgD antibodies. Our 
results demonstrate that CD28 and/or CTLA-4 signaling is 
required for T cell priming leading to IL-4 cytokine produc- 
tion, B cell activation, and IgE secretion during both immune 
responses, suggesting that other signaling molecules do not 
substitute for these molecules in either of these two different 
immune responses. Furthermore, the CD28 ligands, B7-1 and 
B7-2, can substitute for each other in providing the required T 
cell costimulatory ligand interactions during the primary im- 
mune response to H. polyg3"rtts. In contrast, memory T cells 
during the challenge immune response do not require CD28/ 
CTLA-4 ligand interactions for IL-4 production and T helper 
effector function. 
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The costimulatory molecules, CD28 and 
CTLA4, may influence T cell differentiation 
quantitatively, determining the extent of T 
cell activation, and qualitatively influencing 
the cytokines that are produced by T helper 
(Th) cells once they become activated. Under- 
standing the effects of costimulatory mole- 
cules on Th cell activation during the course 
of an in vivo immune response could aid the 
development of therapies that require the in- 
duction of T cell unresponsiveness, including 
autoimmune diseases and transplantation. If 
costimulatory molecules can promote im- 
mune deviation by influencing whether a 
type 1 [interferon (IFN)-7-dominant] or a 
type 2 [interleukin (IL)-4-dominant] cytokine 
response develops, then targeting of these cell 
surface molecules may be useful for therapeu- 
tic manipulation of T cell cytokine produc- 
tion: an important capability for vaccine de- 
velopment. The T cell response may be de- 
pendent on whether CD28 or CTLA4 is pre- 
dominantly expressed and which ligand, in 
particular CD80 or CD86, is predominantly 
bound. In this review, an interpretation of 
recent results involving the role of these mole- 
cules in Th cell differentiation towards effec- 
tor function will be discussed. 

The concept of T cell costimulation was 
developed from the two-signal model of T 
lymphocyte activation in which one signal is 
provided through the antigen-specific T cell 
receptor (TCR) and the second through a non- 
antigen-specific costimulatory signal [1-4]. 
The second signal is necessary to stimulate T 
cells to proliferate in vitro and its absence can 
induce a state of T cell unresponsiveness 
termed anergy [1, 5-7]. Several T cell surface 
molecules and cytokine receptors have been 
proposed to provide a second signal [8-12]. 
Perhaps the best defined is CD28 and its 
homologue, CTLA4, which interact with the 
B7 molecules including CDS0 (B7-1) and 
CD86 (B7-2) on antigen presenting cells 

(APCs). CD28 is constitutively expressed on 
T cells, while CTLA4 expression appears to be 
restricted to activated T cells [2-4]. CD86 and 
CD80 both bind CTLA4 with high avidity 
and CD28 with lower avidity but utilize dif- 
ferent binding determinants and exhibit dif- 
ferent binding kinetics to CD28 and CTLA4 
[13]. 

The interaction of CD28/CTLA4 with 
CD80 and CD86 on APCs is necessary to 
induce T cells to produce IL-2 in vitro. Thl 
clones and fresh T cells require signaling 
through CD28 in addition to signaling via the 
TCR for activation and IL-2 production [2, 
I4-16] and become anergic if they are stimu- 
lated through the TCR in the absence of co- 
stimulation via CD28 [17]. CD28 signaling 
stimulates T cell cytokine production both by 
regulating gene transcription and by stabiliz- 
ing mRNAs, particularly IL-2 [2, 14, 16, 18]. 
In contrast, some Th2 clones that use IL-4 as 
their autocrine growth factor do not require 
CD28 costimulation and proliferate in re- 
sponse to TCR cross-linking in the presence of 
IL-1 [19-23]. Furthermore, although a chim- 
eric fusion protein composed of CTLA4 and 
the Ig Fc region, called CTLA4Ig, inhibits 
alloantigen-specific responses and IL-2 and 
IFn-7 gene expression in mixed lymphocyte 
cultures, increased IL-4 gene expression and 
some proliferation persists [24]. These find- 
ings suggested that CTLA4-1igand interac- 
tions may be required for IL-2 production in 
vitro but that differentiation towards IL-4 
production may be induced by other costimu- 
latory signals. As will be discussed shortly, 
data obtained from our laboratory have 
shown that in vivo T cell differentiation to IL- 
4 production does require CTLA4 ligand in- 
teractions. 

Differences in T cell responses to CD28 
versus CTLA4 signaling have also been de- 
tected. Whereas CD28 costimulation by anti- 
CD28 antibody, CD80, or CD86 induces cy- 
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tokine secretion and up-regulates IL-2 recep- 
tor expression on resting T cells [3, 25, 26], 
CTLA4 ligation in conjunction with TCR sig- 
naling can trigger apoptosis in vitro [27]. The 
ratio of CD28 to CTLA4 molecules on the 
surface of a T cell may influence whether T 
cell activation leads to cytokine production 
and helper function or deletion via apoptosis. 
The increased expression of CTLA4 relative 
to CD28 at later stages of the immune re- 
sponse may thus contribute to the down-regu- 
lation of the T cell response [27-29]. Alterna- 
tively, other findings suggest that CTLA4 can 
provide similar costimulatory signals to 
CD28 [25]. Whether these differences are due 
to the cell surface concentrations of CTLA4 or 
the different cell lines or culture conditions 
that have been used has not yet been deter- 
mined. The possibility that CTLA4 may ac- 
tually bind additional CTLA4 ligands besides 
CD80 and CD86 has also been suggested [27, 
30]. 

These in vitro studies have provided an 
important basis for designing experiments to 
examine the role o f B 7-CD28/CTLA4 in terac- 
tions in vivo. It should be emphasized that the 
in vivo immune response cannot be replicated 
in vitro and to understand the function of 
these molecules it is necessary to perform in 
vivo studies. Initial in vivo experiments pri- 
marily involved administration of the 
CTLA4Ig fusion protein with the hypothesis 
that this molecule would bind CD80, CD86 
and perhaps other CTLA4 ligands thereby 
blocking their interactions with CD28 and 
CTLA4. Initially, a chimeric protein com- 
posed of the extracellular domain of human 
CTLA4 (a gene highly homologous to CD28) 
fused to a human IgG 1 heavy chain was used. 
CTLA4Ig has a >20-fold higher affinity for 
CD80 than does CD28, and acts as a competi- 
tive inhibitor of  CD28 binding to CD28 and 
CD86. More recently, a murine CTLA4/ 
mouse IgG Fc chimeric protein has been 

shown to have higher affinity for murine B7 
molecules and to be more effective in in- 
fluencing in vivo murine immune responses 
[31]. Although cell depletion has not been 
observed [31], Fc-mediated effects such as 
complement-mediated cell killing are possi- 
ble with this construct. Also, although B7 sig- 
naling has not yet been demonstrated, it is 
possible that binding or murine CTLA4Ig to 
B7 could initiate agonistic effects. CTLA4Ig 
administration in mice has inhibited the pri- 
mary in vivo antibody response to sheep red 
blood cells [32], graft rejection [33] and au- 
toimmune disease [34]. Our recent studies 
directly demonstrated that the in vivo devel- 
opment of IL-4-producing CD4+T cells 
could be blocked by CTLA4Ig administra- 
tion [35, 36]. The immunization systems that 
we use include the mucosal immune re- 
sponse to oral inoculation with the live ne- 
matode parasite, Heligmosomoides polygy- 
rus, and the systemic immune response to 
intravenous injection of a heterologous anti- 
mouse IgD antibody. Both systems elicit 
strong" responses that are characterized by 
marked elevations in IL-4 expression at both 
the mRNA and protein levels. The nematode 
parasite elicits a mucosal immune response, 
while the anti-IgD antibody induces a sys- 
temic response. 

The Immune Response to H. polygyrus 
and Heterologous Antimouse IgD 

The nematode parasite, H. polygyrus, has 
a strictly enteral life cycle in which infective 
third-stage larvae (L3) invade the intestinal 
mucosa less than 24 h after ingestion and 
develop there into mature adults [37]. We 
mimic this by inoculating L3 larvae into the 
stomach with a ball-tipped feeding tube. The 
ensuing mucosal immune response is associ- 
ated with marked elevations in mesenteric 
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lymph node (MLN) CD4+ T cell IL-4 cyto- 
kine gene expression and protein secretion, 
T-cell-dependent and independent eleva- 
tions in IL-3, IL-5 and IL-9 mRNA, blood 
eosinophilia, mucosal mastocytosis (MMC) 
and also a vigorous B cell response that re- 
sults by day 8-12 in marked increases in 
serum IgE and IgG1 [37, 38; unpubl, re- 
sults]. The only source of MLN IL-4 that we 
have identified by cell sorting studies at ear- 
ly and late time points after H. polygyrus 
inoculation is CD4+, TCRa/[~+ cells [38; un- 
publ. results]. 

We have found a highly consistent sequen- 
tial cytokine expression pattern during the 
course of the immune response to this nema- 
tode parasite. Non-T cells are initially the pri- 
mary cytokine source and CD4+, TCRaJB+ 
cells become a major source later. During the 
first 24-48 h after H. polygyrus inoculation, 
the major cytokine mRNA elevations that we 
have detected include IL-5, IL-3 and IL-9. As 
much as a 1,000-fold increase in IL-9 gene 
expression has been detected in the gut muco- 
sa and the Peyer's patch by 12 h after H. poly- 
gyrus inoculation [38]. These cytokines re- 
main elevated at these time points in T-cell- 
deficient nude and B/T-cell-deficient severe 
combined immunodeficiency (SCID) mice, 
suggesting that non-B/non-T cells are the pri- 
mary source [38]. At day 2 after H. polygyrus 
inoculation, CD4+, TCRa/[3+ cells contribute 
increasingly to the elevations in these cyto- 
kines and also produce IL-4, which is detect- 
able at the protein and mRNA level in the 
mesenteric lymph node by day 6 after inocula- 
tion. By day 8-10, IL-4 mRNA and protein 
levels have peaked and the IL-4 levels and 
other cytokine elevations decrease thereafter 
[381. 

The other immunogen, heterologous anti- 
mouse IgD antibody, binds to and cross-links 
mouse B cell membrane IgD in the spleen 
within several hours after intravenous injec- 

tion, activating the B cells [39]. It is internal- 
ized and processed, and presented by the large 
number of activated B cells to IgG-specific 
naive T cells that are specific for the heterolo- 
gous IgG, with the result that a wave of T cell 
activation is observed [39-41]. Increased 
CD4+ T cell size and IL-2 receptor (IL-2R) 
expression are detected by 3 days [42] as are 
elevations in CD4+, TCRet/~+ T cell IL-2, IL- 
4 and IL-9 gene expression. By day 6, marked 
elevations in IL-4 and IL-10 mRNA are also 
detected along with a smaller increase in IFN- 
y mRNA [43]. During this response, T cells 
mediate B cell Ig class switching: elevations in 
serum IgE, IgG1, IgG2a and IgG3 are de- 
tected by 8-10 days after immunization [39, 
44]. Thus the immune response to heterolo- 
gous antimouse IgD antibody elicits effector 
cells characteristic of both type 1 and type 2 
patterns, a response sometimes referred to as 
a Th0 response, although type 2 cytokines 
predominate. This response is susceptible to 
intervention as we have shown that induction 
of endogenous IFN-et production [45] or exog- 
enous IL-12 administration [46] can shift the 
in vivo immune response from a predomi- 
nantly type 2 pattern to a predominantly 
type 1 pattern, while anti-IFN-y monoclonal 
antibody administration favors a predomi- 
nantly type 2 pattern [44]. 

The highly consistent, short time course of 
these two strong immune responses makes 
them particularly useful models to study T 
cell differentiation to cytokine production in 
vivo. Also, since they are very different im- 
mune responses, they are useful for identi- 
fying common pathways of T cell activation 
and differentiation to cytokine production 
and for discerning pathways that vary be- 
tween different immune responses. 

We have also analyzed other effector cells 
(including eosinophils, mast cells and B cells) 
that are characteristic of each response and in 
recent studies we also examined the influence 
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of blocking CTLA4 ligand interactions on 
their development. Analyzing these non-T cell 
populations not only provides an additional 
corroboration of our measurements of T cell 
cytokine production, since we have previous- 
ly shown that certain T-cell-derived cytokines 
are required for the activation and/or prolifer- 
ation of specific non-T cell populations [44, 
47], but it also provides additional insights 
into the effects of blocking CTLA4 ligands on 
a T-cell-dependent response to a live patho- 
gen, in the case of H. polygyrus, or a potent 
systemic immunogen, in the case of heterolo- 
gous antimouse IgD antibody. 

CTLA41g Blocks an in vivo Mucosal 
T Cell Response 

We used the stimulus, H. polygyrus, to 
examine the effect of CTLA4Ig administra- 
tion on the development of the in vivo muco- 
sal immune response. The CTLA4Ig fusion 
protein (100 gg) was administered on day 0 
and 1 after oral inoculation of live L3 H. poly- 
gyn~s larvae, and mice were subsequently ana- 
lyzed for T and B cell activation at day 8 and 
14 after immunization. Summarizing our re- 
cently published results [38], our data suggest 
that CTLA4-1igand interactions are required 
for (1)increased IL-3, IL-4 and IL-9 gene 
expression in the Peyer's patch and mesenter- 
ic lymph node, as measured by RT-PCR at 
day 8 after inoculation, (2) increased IL-4 cy- 
tokine protein secretion by CD4+, TCRct/I3+ 
cells, as determined by ELISPOT of FACS- 
sorted cells, (3) increased B cell MHC class II 
expression and size and (4)increased serum 
IgE levels. We only observed a partial de- 
crease in blood eosinophilia and correspond- 
ingly little change in IL-5 gene expression and 
secretion. Non-T cells are a major source of 
IL-5 during this response, suggesting that oth- 
er populations that are not dependent on T 

cell help can remain active during this re- 
sponse. Since IL-5 can directly induce blood 
eosinophilia [47], it is not surprising that this 
effector cell activity persists in the absence of 
CD28 signaling. The complete absence of de- 
tectable B cell activation, as measured by 
increased B cell size and MHC II expression 
as well as increased serum Ig levels, suggests 
that B cells cannot be initially activated by the 
antigens and other molecular structures char- 
acteristic of this live pathogen without the 
help o fT  cells activated by CD28/CTLA4-B7 
interactions. 

Although CTLA4Ig administration had 
been previously shown to block antibody pro- 
duction in vivo, our results were the first dem- 
onstrating that CTLA4Ig administration 
could block T cell cytokine production in 
vivo. Thus, in this immunization system, oth- 
er putative costimulatory signals, such as IL-1 
[48-50], the heat-stable antigen [51], or LFA- 
1 and CD2 [52-55] do not substitute for 
CTLA4-1igand interactions. In contrast to our 
observations, mice transgenic for soluble mu- 
rine CTLA4-H71 exhibit normal T cell prim- 
ing and cytokine production after immuniza- 
tion with a T-cell-dependent antigen [56]. 
One possible reason for this difference from 
our results is that these transgenic mice lack 
CD28/CTLA4 costimulatory signals from 
birth and may have compensated during on- 
togeny by using other signals. Alternatively, 
mCTLA4-H71 may not be produced at suffi- 
cient levels to block CTLA4-1igand interac- 
tions required for the induction of T cell 
responses. Our results clearly show that block- 
ing CTLA4 ligands by administration of 
CTLA4Ig in normal mature animals com- 
pletely inhibits elevations in T-cell-derived 
cytokine gene expression and IL-4 protein 
secretion. Our observation was also seemingly 
in conflict with in vitro studies suggesting that 
T cells differentiating to IL-4 production did 
not require CD28 interactions. One possibili- 
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ty was that the inhibition of IL-4 was an indi- 
rect effect resulting from the inhibition of T 
cell IL-2 production by CTLA4Ig administra- 
tion; numerous studies have shown a require- 
ment of CD28/CTLA4-B7 interactions for T 
cell IL-2 production [14, 17, 57-59]. If IL-2 is 
required for IL-4 production, a possibility for 
which there is considerable evidence primari- 
ly based on in vitro studies [60], then blocking 
B7 interactions may inhibit IL-2, preventing 
T cell differentiation to IL-4 production. 
However, despite the elevations in IL-4, no 
elevations in IL-2 gene expression are de- 
tected during the immune response to 14. poly- 
gyrus [38] and, furthermore, treatment of 
mice with anti-IL-2/anti-IL-2R antibodies, at 
concentrations that block IL-2 activity in 
other in vivo systems [61, 62], does not affect 
T-cell-dependent elevations in serum IgE 
production [Finkelman, unpubl, data]. In ad- 
dition, we have recently observed marked ele- 
vations in IL-4 production in H. polygyrus- 
inoculated IL-2 gene knockout mice, further 
suggesting that IL-2 is not required for T cell 
IL-4 production in this response [Gause, in 
preparation]. Our findings thus suggest that 
B7-1igand interactions are important for the 
generation of an IL-4 response even in an IL- 
2-independent system. 

We believe a more likely explanation for 
the discrepancy observed between in vivo and 
in vitro T cell costimulatory requirements for 
IL-4 production is the state of activation of 
the responding T cells. Th 1 or Th2 cell clones 
are continually restimulated and are probably 
more similar to in vivo activated T effector or 
memory cells than naive T cells. In our sys- 
tem, since CTLA4Ig administration com- 
pletely inhibits T cell cytokine production, the 
cell populations involved in the immune re- 
sponse to H. polygyrus are probably naive Th 
cells, a population which has been shown to 
be more dependent on costimulatory signals 
than effector or memory Th cells [63]. We 

have tested this hypothesis by administering 
CTLA4Ig during the initiation of a memory 
response. Fourteen days after H. polygyrus 
inoculation, BALB/c mice (5/treatment 
group) were treated with an antihelminthic 
drug (pyrantel pamoate), which causes rapid 
worm expulsion, and 60 days later challenged 
with H. polygyrus plus either CTLA4Ig or the 
control fusion protein, L6. In these experi- 
ments, CTLA4Ig administration did not 
down-regulate elevations in either T cell IL-4 
production or serum IgE levels [Gause et al., 
in preparation]. We have repeated this experi- 
ment and found the results to be highly con- 
sistent. Furthermore, we have found that ad- 
ministration of CTLA4Ig at day 3 and 4 after 
primary H. polygyrus inoculation does not 
inhibit elevations in T cell IL-4 production at 
day 8 after immunization [35]. Taken togeth- 
er, these data suggest that naive T cells requir- 
ing CD28/CTLA4-B7 interactions initially re- 
spond to H. polygyrus during the develop- 
ment of the mucosal type 2 response. Memory 
Th cells that are activated during the chal- 
lenge response and activated Th cells that 
develop shortly after primary H. polygyrus 
inoculation no longer require these costimula- 
tory signals. 

The observation that Thl  clones are more 
B7 dependent for their activation than Th2 
clones suggests that in vivo differentiated ef- 
fector Th cells may differ in their require- 
ments for B7-mediated costimulation, de- 
pending on whether they produce IL-4 or 
IFN-y. Although T cells producing Th 1 cyto- 
kines have not yet been directly examined for 
their B7 dependence during an in vivo im- 
mune response to an antigen, the type 1 re- 
sponse to Leishmania in C57BL/6 mice is 
refractory to CTLA4Ig administration, al- 
though the type 2 response in BALB/c mice is 
B7 CTLA4-1igand dependent [64]. Further- 
more, in studies of donor-specific tolerance of 
MHC-incompatible rat renal allografts in 

181 



inbred strains, induction of immunosuppres- 
sion was optimized when CTLA4Ig adminis- 
tration was delayed [65]. With this regimen, 
IL-4 but not IFN-~, remained elevated in the 
renal allografts, a reversal of the cytokine pat- 
tern observed in control antibody-treated 
mice. These findings that blocking B7 interac- 
tions after initial T cell activation favors the 
development of a type 2 T cell cytokine pat- 
tern are consistent with the model that after 
initial activation T cell differentiation to- 
wards IL-4 production is less B7 dependent 
than differentiation towards IFN-7 produc- 
tion. It will be important in future studies to 
directly examine the role of B7 interactions in 
T cell differentiation during a type 1 re- 
sponse. 

Although our findings suggest that an on- 
going or memory type 2 T cell response does 
not require CTLA4 ligand interactions, the 
results may still be important from a thera- 
peutic viewpoint since they suggest that the T 
cell development pathway leading to IL-4 pro- 
duction in the mucosal region can be inhibit- 
ed by blocking B7 ligand interactions. It is 
also possible that chronic CTLA4Ig treatment 
after immunization may eventually inhibit 
the Th2 response by blocking renewal of 
primed cells. One potential therapeutic ap- 
proach relies on the premise that blocking 
CTLA4-1igand interactions during an im- 
mune response to an allergen or other antigen 
might induce tolerance, resulting in unrespon- 
siveness to subsequent challenges. Our find- 
ings that the primary T cell response to H. 
polygyrus is dependent on B7 costimulation 
suggests an experimental in vivo model for 
future studies directed towards determining 
whether T cell anergy will occur in the ab- 
sence of CTLA4-1igand costimulatory signals 
during a Th2-1ike response. 

CTLA41g Blocks an in vivo Systemic 
T Cell Response 

Although T cell differentiation towards IL- 
4 production during a mucosal immune re- 
sponse is inhibitable by CTLA4Ig administra- 
tion, a systemic T cell response may have dif- 
ferent costimulatory requirements including 
signaling. Hence, T cell differentiation to- 
wards IL-4 production, or cytokine produc- 
tion in general, may not require B7 costimula- 
tory signals during the systemic immune re- 
sponse. We have addressed this possibility by 
examining the effect of blocking B7 ligands on 
the immune response to heterologous anti- 
mouse IgD antibodies. We determined that 
B7 ligand interactions are required for (1) in- 
creased IL-2, IL-4 and IL-9 but not IL-10 gene 
expression, (2) elevations in the number of IL- 
4- but not IL-10-secreting cells, as measured 
by ELISPOT, in both unsorted splenic cells 
and sorted CD4+, TCRa/I3+ T cells, (3) in situ 
IL-4 protein expression in spleen sections as 
measured by immunohistological staining 
and (4)elevated serum IgG1, IgE, IgG3 and 
IgG2a [36]. These effects were dependent on 
early administration at day 3-4 after immuni- 
zation, no effects on elevations in cytokine 
production or serum Ig levels were detected. 
These results established that B7 plays a key 
role in costimulating naive CD4+ T cells to 
differentiate to IL-4-producing cells during a 
systemic as well as a mucosal immune re- 
sponse. 

We used three different assay systems to 
measure IL-4 expression, all of which pro- 
vided corroborating data. Each assay has dis- 
tinct advantages and disadvantages. The RT- 
PCR technique measures changes in gene ex- 
pression in situ with essentially no manipula- 
tion of tissue required; however, it does not 
provide direct information on protein pro- 
duction. The ELISPOT assay provides pro- 
tein secretion data and in many ways is a 
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marked improvement over other in vitro as- 
says which require restimulation or extended 
cultures, but still requires some in vitro cul- 
ture (3 h) which might induce production of 
cytokines not being made in vivo. Finally, 
immunohistochemistry can measure cytokine 
protein in situ, but because cytokine proteins 
are rapidly made, secreted, and utilized, suffi- 
cient quantities may not be present at a given 
time point to be detected. 

The nature of the immune response to 
immunogenic antimouse IgD may favor a 
critical.role for CD28/CTLA4 costimulation, 
since B cells are the principal APC in this sys- 
tem [66]. If B cells rely on B7 as the principal 
costimulatory ligand for naive T cell activa- 
tion, then immunization favoring B cell anti- 
gen presentation may be particularly sensitive 
to CTLA4Ig. In vivo, o ther  APCs, such as 
dendritic cells or activated macrophages, may 
be more permissive to an absence of CD28/ 
CTLA4 signaling because they express a 
greater repertoire of cell surface or secreted 
costimulatory molecules. However, this possi- 
bility seems unlikely as CTLA4Ig also blocked 
the mucosal T cell response to H. polygyrus 
where non-B cells are probably the major 
APCs. Furthermore, Wallace et al. [31] has 
recently blocked elevations in T cell IL-4 pro- 
duction in the spleen during the systemic im- 
mune response to sheep red blood cells. 

The possibility existed in the anti-IgD anti- 
body system that blocking CD28/CTLA4-B7 
interactions inhibited IL-2 production that 
was required for later IL-4 production as has 
been demonstrated in vitro [67, 68]. How- 
ever, as in the mucosal immune response to 
H. polygyrus, we have not been able to block 
elevations in IL-4 gene expression by treating 
immunogenic anti-IgD-immunized mice with 
anti-IL-2 and anti-IL-2Ra monoclonal anti- 
bodies [Gause, unpubl, data]. Taken together, 
these results suggest that during a systemic 
immune response, a strong immunogen favor- 

ing a Th2-1ike response can rapidly induce 
previously resting T cells by a CD28~depen- 
dent pathway to produce IL-4 in the absence 
of initial increases in IL-2 or the appearance 
of a Th0-1ike pattern. 

The observation that CTLA4Ig did not 
block the T cell response when given 2-3 clays 
after immunization suggests that unlike naive 
T cells, effector T cells do not require CD28/ 
CTLA4 signaling and that T cell-B cell inter- 
actions occurring at later stages of the im- 
mune response may not require such signal- 
ing. The effectiveness of CTLA4Ig treatments 
only at the onset of the immune response also 
suggests that in this system resting T cells and 
not already activated cells are initially stimu- 
lated by antigen-presenting B cells, consistent 
with increasing evidence that activated B cells 
can present antigen to and activate resting T 
cells [66, 69]. 

A notable exception to the inhibition of T 
cell cytokines by CTLA4Ig was the sustained 
elevation of IL- 10. Our results suggest that IL- 
l0 gene expression and protein secretion is 
regulated differently than other Th2 cytokines 
in vivo. In other immunization systems, we 
have also found that IL-10 gene expression is 
not coordinately elevated with other Th2 cy- 
tokines [38, 43, 70]. Differential regulation of 
IL-4 and IL-10 has also been shown in acti- 
vated T cell clones where elevations in IL-4 
gene expression are cyclosporin sensitive, 
while IL-10 elevations are cyclosporin resis- 
tant [71 ]. The sustained elevation of IL-10 in 
the absence of the CD28 costimulatory signal 
may suggest that either other costimulatory 
molecules can substitute for CD28 in vivo or 
that signaling through the TCR is sufficient 
for up-regulating IL-10 gene expression and 
protein production. IL-10 has been shown to 
affect a variety of cell types including B cells, 
macrophages and T cells [72-74]. Moreover, 
IL-10 can selectively inhibit the up-regulation 
of B7 on macrophages thereby inhibiting 
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macrophage costimulatory activity [75]. Re- 
cent studies from our laboratories suggest that 
administration of CTLA4Ig during primary 
anti-IgD immunization tolerizes T cells such 
that they become unresponsive in challenge 
immunizations [Gause and Finkelman, un- 
publ. data]. Whether elevated IL- 10 may con- 
tribute to the induction of T cell tolerance 
observed in vivo is currently being examined. 

Signaling through CD80 versus CD86 

Although in vivo experiments involving 
CTLA4Ig administration have documented 
the importance of B7 ligands in the develop- 
ment of effector T cells, the role of the indi- 
vidual B7 molecules, CD80 and CD86, is 
uncertain. It has also been proposed that 
CD86 and CD80 may be more important at 
early and later stages of the immune response, 
respectively, and tha t  this difference may ex- 
plain the differential effects of anti-CD80 and 
anti-CD86 antibodies on the development of 
diabetes in the nonobese diabetic mouse [27, 
28, 76-78]. Consistent with this hypothesis, 
lipopolysaccharide-stimulated human B cells 
express CD86 within 24h  of activation, 
whereas CD80 cells surface expression peaks 
several days later [79]. Other studies suggest 
that monocytes constitutively express CD86 
whereas CD80 is induced after culture with 
IFN-T and that CD86 is expressed at low lev- 
els on unstimulated dendritic cells and ex- 
pression of both CD80 and CD86 is up-regu- 
lated by granulocyte/macrophage-colony- 
stimulating factor [80]. However, these in vi- 
tro analyses, particularly of dendritic cells, 
may not reflect in vivo conditions and recent 
findings suggest that a lymph node dendritic 
cell population, not easily released into sus- 
pension, constitutively expresses high levels 
of CD86 [81]. If CD80 is expressed at later 
stages than CD86 on the relevant APC popu- 

lations, then since CTLA4 is not expressed 
until after the initiation of the response, it 
may interact more with CD80 functioning to 
down-regulate immune responsiveness [28, 
76, 77]. 

Although some studies suggest that CD80 
and CD86 can equivalently mediate costimu- 
lation in vitro [26], recent in vivo studies 
show that quite different results can be ob- 
tained following administration of anti-CD80 
monoclonat antibody, anti-CD86 monoclonal 
antibody or the combination of both during 
an in vivo immune response, with one report 
suggesting that CD80 costimulation favors a 
type t and CD86 favors a type 2 response 
[82]. In this report, T cell clones from proteo- 
lipid-protein-immunized mice, in which 
CD80 interactions were blocked, produced 
primarily IL-4, whereas anti-CD86 treatment 
favored experimental allergic encephalomye- 
litis severity and a type 1 response [82]. Un- 
derstanding the developmental processes that 
govern the cytokines that are secreted by 
effector Th cells is required to promote opti- 
mal host-protective immune responses to 
pathogens and is becoming increasingly uti- 
lized in vaccine development [83]. This find- 
ing is thus of considerable interest from an 
applied as well as a basic research viewpoint. 
However, whether the observation that CD80 
favors Thl and CD86 Th2 cytokine produc- 
tion is generalizable to other immunization 
systems is unclear and since T cell clones were 
used, the contribution of artifacts resulting 
from their long-term in vitro culture is also 
uncertain. Recent in vitro studies of anti- 
CD3-stimulated T cells provided with either 
CDS0 or CD86 costimulation showed that 
although CD86 promoted the production of 
the Th2 cytokine, IL-4, it also favored the Th 1 
cytokine tumor necrosis factor-13, while CD80 
favored IFN-T and IL-2 production but also 
promoted some IL-4 production [84]. In con- 
trast to these two studies, we have recently 
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Fig. 1. B7 costimulation (either 
CD80 or CD86) is required for ini- 
tial T cell triggering for the IL-2- 
independent development of IL-4- 
producing CD4+, TCRa/13+ Th 
cells during the primary mucosal 
immune response to H. polygyrus. 

~ ~ C D 8 0  - -  ~ , ~  

" ' ~  CD86 - -  "~ - '~  

IL-2-independent pathway 
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found that treatment of mice with either anti- 
CDS0 or anti-CD86 antibodies did not block 
elevations in IL-4 production or serum IgG1 
levels during the primary immune response to 
H. polygyrus, but treatment with the combi- 
nation of both antibodies blocked elevations 
in both IL-4 and serum IgG1 levels [Gause, in 
preparation]. These results suggest that in this 
mucosal immune response to a live pathogen, 
the CDS0 and CD86 molecules can substitute 
for each other. It also shows that either CD80 
or CD86 is required for the development of 
the T cell response and that, if there are addi- 
tional B7 molecules, they cannot substitute 
for the combined absence of these two sig- 
nals. 

Summary 

In summary, our studies of the in vivo 
type 2 immune response suggest a model for 
the development of IL-4-producing T cells 
during the mucosal immune response to a 
nematode parasite (fig. 1). Although we have 
performed some parallel studies of the anti- 
IgD response, our findings are not yet com- 
plete enough to fully extend this model to a 
systemic immune response and it is possible 
that T cells differentiating in response to other 
immunogens or following immunization by 
other routes may utilize B7 signaling differ- 
ently. Following H. polygyrus inoculation, IL- 

4-producing effect0r CD4+ Th cells rapidly 
develop from naive CD4+ T cells via an IL- 
2-independent pathway. T cell differentiation 
during this response initially requires B7 in- 
teractions and either CD80 or CD86 can pro- 
vide this signaling. Shortly after T cell activa- 
tion, the maturing T cells lose their require- 
ment for B7 signaling and can progress to IL-4 
production in its absence. Memory Th cells 
similarly do not require B7 costimulatory sig- 
nals for their activation to IL-4 production 
during the in vivo challenge response. 
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