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In the above-mentioned paper, it was shown that the zeros in the k of the redueed
radial wave-function @,(k, 7) have the density »/x in each of the half-planes Rek > 0
and Rek < 0. The proof was based on three theorems of the theory of entire func-
tions. Here, we give a simplified proof based on the following theorem of LEVINSON (?)
and Koosis (3):

Theorem. — Let f(z) be an entire function of exponential type A in each of the
half-planes Imz> 0 and Imz< 0. Let f(2) be bounded on the real axis. If we
denote by n.(R) and n_(R) the number of zeros of f of modulus less than F, counted
according to their multiplicity, in Rez> 0 and Rez < 0 respectively, then
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In other words, the zeros have the density A/z in each half-plane.
Applying this theorem to the wave-function ¢,(k, r), and remembering that
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we see at once that the total density of the zeros of ¢ in the k-plane, is
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Therefore, to prove our sum rules (formulae (3.1)) we need only the above theorem
and the theorem of Pfluger (theorem 2 of our paper).
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