The population incubated in the PPY medium increased 3, 4.7, 6 and 3 times during 3 h at $60,65,70$ and $75^{\circ} \mathrm{C}$, respectively. The optimal density of a culture incubated in buffer was not changed. The course of protein turnover in the culture growing in the PPY indicated the presence of a small portion of short-lived proteins, the extent of which increased by increasing the temperature. The residual proteins were stable (Fig. 1, Table I). The size of the short-lived protein fraction increased slightly when the population was starved in a buffer. The residual proteins were degraded under this condition but the rate of their degradation was much lower than that of the short-lived fraction (Fig. 2, Table I). The degradation constant of the long-lived proteins reached its maximum value at $65{ }^{\circ} \mathrm{C}$.

The results indicate that the kinetics of protein turnover in the extreme thermophile T.flavus is similar to the mesophilis Escherichia coli (Nath and Koch 1970; Pine 1973) and Bacillus megaterium (Chaloupka and Strnadová 1982) when these organisms grow in the range of their optimum temperatures.

REFERENCES

Bubela B., Holdsworth E.S.: Amino acid uptake, protein and nucleic acid synthesis and turnover in Bacillus stearothermophilus. Biochim.Biophys.Acta 123, 364 (1966).
Chaloupka J., Strnadov\& M.: Kinetics of protein turnover in growing cells of Bacillus meguterium. J.Gen.Microbiol, 128, 1003 (1982).
Epstein I., Grossowicz N.: Intracellular protein breakdown in a thermophile. J.Bacteriol. 99, 418 (1969).
Loginora L.G., Egorova L.A.: New Forms of Thermophilic Bacteria. (In Russian) Nauka Moscow 1977.
Nath K., Koch A.L.: Protein degradation in Escherichia coli. I. Measurement of rapidly and slowly decaying components. J.Biol.Chem. 245, 2889 (1970).
Pine M.J.: Regulation of intracellular proteolysis in Escherichia coli. J.Bacteriol. 115, 107 (1973).

ERRATUM

Please replace the symbol $\ln \mu$ in Fig. 2 on p. 48, vol. 28 (1983) by the symbol $-\ln \mu$.

