Skip to main content
Log in

Abstract

Isotopic records in meteorites provide evidence for the presence of several short-lived nuclides in the early solar system with half-lives varying from 105 to ∼8x107 years. Most of the nuclides with longer half-life (> 107 years) are considered to be products of stellar nucleosynthesis taking place over long time scales in our galaxy. However, for the relatively shorter-lived nuclides, two possibilities exist; they could be products of energetic particle interactions taking place in a presolar or early solar environment, or, they could have been produced in a stellar source and injected into the protosolar molecular cloud just prior to its collapse. The presently available data appear to support the latter case and put a stringent constraint of less than a million years for the time scale for the collapse of the protosolar molecular cloud to form the Sun and some of the first solar system solids. This short time scale also suggests the possibility of a triggered origin for the solar system with the very process of injection of the short-lived nuclides acting as the trigger for the collapse of the protosolar molecular cloud. Fossil records of the short-lived nuclides in meteorites also provide very useful chronological information on the early solar system processes like the time scale for nebular processing, the time scales for differentiation and for metal/silicate fractionation within planetesimals. The currently available data suggest a time scale of a few million years for nebular processing and a relatively short time scale of about ten million years within which differentiation, melting and recrystallization in some of the planetesimals took place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnould M, Paulus G and Meynet G 1997a Short-lived radionuclide production by non-exploding Wolf-Rayet stars;Astron. Astrophys. 321 452–465

    Google Scholar 

  • Arnould M, Meynet G and Paulus G 1997b Wolf-Rayet stars and their nucleosynthetic signatures in meteorites;Astrophysical implications of the laboratory study of presolar materials (eds) T J Bernatowicz and E Zinner (Woodbury: AIP), pp. 179–202

    Google Scholar 

  • Birck J L and Allègre C J 1985 Evidence for the presence of53Mn in the early solar system;Geophys. Res. Lett. 12 745–748

    Article  Google Scholar 

  • Bloemen H, Wijnands R, Bennet K, Diehl R, Hermsen W, Lichti G, Morris D, Ryan J, Schonfelder V, Strong A W, Swanenburg B N, de Vries C and Winkler C 1994 COMPTEL observations of the Orion complex: Evidence for cosmic-ray induced gamma-ray lines;Astron. Astrophys. 281 L5-L8

    Google Scholar 

  • Boss A P 1995 Collapse and fragmentation of molecular cloud cores. II. Collapse induced by stellar shock waves;Astrophys. J. 439 224–236

    Article  Google Scholar 

  • Cameron A G W 1993 Nucleosynthesis and star formation;Protostars and planets III (eds) E H Levy and J I Lunine (Tucson: Univ. of Arizona Press), pp. 47–73

    Google Scholar 

  • Cameron A G W, Höflich P, Myers P C and Clayton D D 1995 Massive supernovae, Orion gamma rays, and the formation of the solar system;Astrophys. J. Lett. 447 L53-L57

    Article  Google Scholar 

  • Chen J H and Wasserburg G J 1987 A search for evidence of extinct lead 205 in iron meteorites;Lunar Planet. Sci. XVIII 165–166

    Google Scholar 

  • Chen J H and Wasserburg G J 1996 Live 107Pd in the early solar system and implications for planetary evolution;Earth Processes: Reading the isotopic code (eds) A Basu and S Hart,AGU Geophys. Mon. Ser. 95, pp 1–20

  • Clayton D D 1982 Cosmic chemical memory: A new astronomy;Q. J. R. Astron. Soc. 23 174–212

    Google Scholar 

  • Clayton D D 1994 Production of26A1 and other extinct radionuclides by low-energy heavy cosmic rays in molecular clouds;Nature 368 222–224

    Article  Google Scholar 

  • Clayton D D and Jin L 1995a Gama rays, cosmic rays, and extinct radioactivity in molecular cloud;Astrophys. J. 451 681–699

    Article  Google Scholar 

  • Clayton D D and Jin L 1995b A new interpretation of26A1 in meteoritic inclusions;Astrophys. J. Lett. 451 L87-L91

    Google Scholar 

  • Clayton D D, Dwek E and Woosley S E 1977 Isotopic anomalies and proton irradiation in the early solar system;Astrophys. J. 214 300–315

    Article  Google Scholar 

  • Dearborn D S P and Blake J B 1985 On the source of the26A1 observed in the interstellar medium;Astrophys. J. Lett. 288 L21-L24

    Article  Google Scholar 

  • Dearborn D S P and Blake J B 1988 Possible contributions by Wolf-Rayet stars to the protosolar nebula: Extinct radioactivities, or grains of truth from Wolf-Rayet stars?Astrophys. J. 332 305–312

    Article  Google Scholar 

  • Foster P N and Boss A P 1997 Injection of radioactive nuclides from the stellar source that triggered the collapse of the presolar nebula;Astrophys. J. 489 346–357

    Article  Google Scholar 

  • Gallino R, Busso M, Arlandini C, Lugaro M and Straniero O 1996 Neutron captures in low-mass AGB stars;Mem. S.A. It. 67 761–774

    Google Scholar 

  • Göpel C, Manhès G and Allègre C J 1994 U-Pb systematics of phosphates from equilibrated ordinary chondrites;Earth Planet. Sci. Lett. 121 153–171

    Article  Google Scholar 

  • Goswami J N, Srinivasan G and Ulyanov A A 1994 Ion microprobe studies of Efremovka CAIs: I. Magnesium isotope composition;Geochim. Cosmochim. Acta 58 431–447

    Article  Google Scholar 

  • Grossman J 1988 Formation of chondrules;Meteorites and the early solar system (eds) J F Kerridge and M S Matthews (Tucson: Univ. of Arizona Press), pp. 680–696

    Google Scholar 

  • Grossman L 1980 Refractory inclusions in the Allende meteorite;Ann. Rev. Earth Planet. Sci. 8 559–608

    Article  Google Scholar 

  • Harper C L Jr 1996 Evidence for92gNb in the early solar system and evaluation of a new p-process cosmochronometer from92gNb/92Mo;Astrophys. J. 466 437–456

    Article  Google Scholar 

  • Harper C L Jr and Jacobsen S B 1996 Evidence for182Hf in the early solar system and constraints on the timescale of terrestrial accretion and core formation;Geochim. Cosmochim. Acta 60 1131–1153

    Article  Google Scholar 

  • Heymann D and Dziczkaniec M 1976 Early irradiation of matter in the solar system: Magnesium (proton, neutron) scheme;Science 191 79–81

    Article  Google Scholar 

  • Heymann D, Dziczkaniec M, Walker A, Huss G and Morgan J A 1978 Effects of proton irradiation on a gas phase in which condensation take place. I. Negative26Mg anomalies and 26 Al;Astrophys. J. 225 1030–1044

    Article  Google Scholar 

  • Hohenberg C M, Brazzle R H, Pravdivtseva O V and Meshik A P 1998 The I-Xe chronometer (this volume)

  • Hudson G B, Kennedy B M, Podosek F A and Hohenberg C M 1988 The early solar system abundance of244Pu as inferred from the St. Severin chondrite;Proc. Lunar Planet Sci. Conf. 19 547–557

    Google Scholar 

  • Hutcheon I D, Armstrong J T and Wasserburg G J 1984 Excess41K in Allende CAI: A hint reexamined;Meteoritics 19 243–244

    Google Scholar 

  • Jeffreys P M and Reynolds J H 1961 Origin of excess129Xe in stone meteorites;J. Geophys. Res. 66 3582–3583

    Article  Google Scholar 

  • Kastner J H and Myers P C 1994 An observational estimate of the possibility of encounters between mass-losing evolved stars and molecular clouds;Astrophys. J. 421 605–614

    Article  Google Scholar 

  • Kelly W R and Wasserburg G J 1978 Evidence for the existence of107Pd in the early solar system;Geophys. Res. Lett. 5 1079–1082

    Article  Google Scholar 

  • Kita N T, Nagahara T, Togashi S and Morishita Y 1998 New evidence of aluminium-26 from a ferrous-oxide-rich chondrule in Semarkona (LL3.0);Meteor. Planet. Sci. 33 A83-A84

    Google Scholar 

  • Lee D C and Halliday A N 1995 Hafnium-tungsten chronometry and the timing of terrestrial core formation;Nature 378 771–774

    Article  Google Scholar 

  • Lee D C and Halliday A N 1996 Hf-W Isotopic evidence for rapid accretion and differentiation in the early solar system;Science 274 1876–1879

    Article  Google Scholar 

  • Lee T 1978 A local proton irradiation model for isotopic anomalies in the solar system;Astrophys. J. 219 217–226

    Article  Google Scholar 

  • Lee T, Papanastassiou D A and Wasserburg G J 1976 Demonstration of26Mg excess in Allende and evidence for26Al;Geophys. Res. Lett. 3 109–112

    Article  Google Scholar 

  • Lee T, Papanastassiou D A and Wasserburg G J 1977 Aluminium-26 in the early solar system: Fossil or fuel?Astrophys. J. 211 107–110

    Article  Google Scholar 

  • Lee T, Shu F H, Shang H, Glassgold A E and Rehm K E 1998 Protostellar Cosmic rays and extinct radioactivities in meteorites;Astrophys. J. in press

  • Lugmair G W and Shukolyukov A 1998 Early solar system timescales according to 53Mn-53Cr systematics;Geochim. Cosmochim. Acta (in press)

  • Lugmair G W and Galer S J G 1992 Age and isotopic relationship among the angrites Lewis Cliff 86010 and Angra Dos Reis;Geochim. Cosmochim. Acta 56 1673–1694

    Article  Google Scholar 

  • Lugmair G W, Shukolyukov A and Maclsaac Ch 1995 The abundance of 60Fe in the early solar system;Nuclei in the Cosmoc III (eds) M Bussoet al (AIP), pp. 591–594

  • MacPherson G J, Davis A M and Zinner E K 1995 The distribution of aluminium-26 in the early solar system: A reappraisal;Meteoritics 30 365–386

    Google Scholar 

  • Manhès G, Göpel C and Allègre C J 1988 Systematique U-Pb dans les inclusions refractaries d’Allende: le plus vieux materiau solaire;C.R. ATP Planetol. (in French) 323–327

  • Murty S V S, Goswami J N and Shukolyukov Yu A 1997 Excess36Ar in the Efremovka meteorite: A strong hint for the presence of36C1 in the early solar system;Astrophys. J. Lett. 475 L65-L68

    Article  Google Scholar 

  • Nazarov M A, Ulyanov A A, Korina M I and Kolesov G M 1982 Efremovka CAI’s: Major and trace element chemistry;Lunar Planet. Sci. XIII 584–585

    Google Scholar 

  • Nazarov M A, Korina M I, Ulyanov A A, Kolesov G M and Sherbovsky E Ya 1984 Mineralogy, petrology and chemical composition of Ca and Al-rich inclusions of Efremovka meteorite;Meteoritika (in Russian)43 49–66

    Google Scholar 

  • Nyquist L, Lindstorm D, Shih C-Y, Wiesmann H, Mittlefehldt D, Wentworth S and Martinez R 1997 Mn-Cr systematics of chondrules from the Bishunpur and Chainpur meteorites;Lunar Planet. Sci. Conf. XXVIII 1033–1034

    Google Scholar 

  • Podosek F A and Swindle T D 1988 Extinct nuclides;Meteorites and the early solar system (eds) J F Kerridge and M S Matthews (Tucson: Univ. of Arizona Press), pp. 1093–1113

    Google Scholar 

  • Podosek F A and Nichols Jr R H 1997 Short-lived radionuclides in the solar nebula;Astrophysical Implications of the laboratory study of presolar materials (eds) T J Bernatowicz and E Zinner (Woodbury: AIP), pp. 617–647

    Google Scholar 

  • Ramaty R, Kozlovsky B and Lingenfelter R E 1996 Light isotopes, extinct radioisotopes and gamma ray lines from low energy cosmic ray interactions;Astrophys. J. 456 525–540

    Article  Google Scholar 

  • Reynolds J H 1960 Determination of the age of the elements;Phys. Res. Lett. 4 8–10

    Article  Google Scholar 

  • Rowe M W and Kuroda P K 1965 Fissiogenic Xe from the Pasamonte meteorite;J. Geophys. Res. 70 709–714

    Article  Google Scholar 

  • Russell S S, Srinivasan S, Huss G R, Wasserburg G J and MacPherson G J 1996 Evidence for wide spread26A1 in the solar nebula and constraints for nebula time scales;Science 273 575–762

    Google Scholar 

  • Russell S S, Huss G R, MacPherson G J and Wasserburg G J 1997 Early and late chondrule formation: New constraints for solar nebula chronology from26A1/27A1 in unequilibrated ordinary chondrites;Lunar Planet. Sci. 28 1209–1210

    Google Scholar 

  • Sahijpal S, Goswami J N, Davis A M, Grossman L and Lewis R S 1998 A stellar origin for the short-lived nuclides in the early Solar System;Nature 391 559–561

    Article  Google Scholar 

  • Shu F H, Shang H, Glassgold E and Lee T 1997 X-rays and fluctuating X-wind from protostars;Science 277 1475–1479

    Article  Google Scholar 

  • Shukolyukov A and Lugmair G W 1993a Live iron-60 in the early solar system;Science 259 1138–1142

    Article  Google Scholar 

  • Shukolyukov A and Lugmair G W 1993b60Fe in eucrites;Earth Planet. Sci. Lett. 119 159–166

    Article  Google Scholar 

  • Srinivasan G, Ulyanov A A and Goswami J N 199441Ca in the early solar system;Astrophys. J. Lett. 431 L67-L70

    Article  Google Scholar 

  • Srinivasan G, Sahijpal S, Ulyanov A A and Goswami J N 1996 Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and41Ca in the early solar system;Geochim. Cosmochim. Acta. 60 1823–1835

    Article  Google Scholar 

  • Srinivasan G, Goswami J N and Bhandari N 1998 Search for extinct aluminium-26 in the Piplia Kalan eucrite;Meteor. Planet. Sci. 33 A148-A149

    Google Scholar 

  • Vanhala H A T 1998 The triggered origin of the solar system (this volume)

  • Vanhala H A T and Cameron A G W 1998 Numerical simulations of triggered star formation. I. Collapse of dense molecular cloud cores;Astrophys. J. (in press)

  • Wasserburg G J 1985 Short-lived nuclei in the early solar system;Protostars and planets II (eds) D C Black and M S Matthews (Tucson: Univ. of Arizona Press), pp. 703–737

    Google Scholar 

  • Wasserburg G J and Arnould M 1987 A possible relationship between extinct26A1 and53Mn in meteorites and early solar system;Lecture notes in physics 287, 4th workshop on nuclear astrophysics (eds) W Hillebrandtet al (Heidelberg: Springer-Verlag) pp. 262–276

    Google Scholar 

  • Wasserburg G J, Busso M, Gallino R and Raiteri C M 1994 Asymptotic giant branch stars as a source of shortlived radioactive nuclei in the solar nebula;Astrophys. J. 424 412–428

    Article  Google Scholar 

  • Wasserburg G J, Gallino R, Busso M, Goswami J N and Raiteri C M 1995 Injection of freshly synthesized41Ca in the early solar nebula by an asymptotic giant branch star;Astrophys. J. Lett. 440 L101-L104

    Article  Google Scholar 

  • Wasserburg G J, Busso M and Gallino R 1996 Abundances of actinides and short-lived nonactinides in the interstellar medium: Diverse supernova sources for ther processes;Astrophys. J. Lett. 466 L109-L113

    Article  Google Scholar 

  • Woosley S E and Weaver T A 1995 The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis;Astrophys. J. (Suppl.) 101 181–235

    Article  Google Scholar 

  • Weidenschilling S J 1977 Aerodynamics of solid bodies in the solar nebula;Mon. Not. R. Astron. Soc. 180 57–70

    Google Scholar 

  • Weidenschilling S J 1988 Formation processes and time scales for meteorite parent bodies;Meteorites and the early solar system (eds) J F Kerridge and M S Matthews (Tucson: Univ. of Arizona Press), pp 348–371

    Google Scholar 

  • Yin Q, Jagoutz E and Wanke H 1992 Re-Search for extinct99Tc and98Tc in the early solar system;Meteoritics 27 310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Goswami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, J.N. Short-lived nuclides in the early solar system. Proc. Indian Acad. Sci. (Earth Planet Sci.) 107, 401–411 (1998). https://doi.org/10.1007/BF02841606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841606

Keywords

Navigation