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Abstract. Ramanujan's notebooks contain many approximations, usually without expla- 
nations. Some of his approximations to series are explained as quadrature formulas, usually 
of Gaussian type. 
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1. Introduction 

K G Ramanathan was a gentle man who had a strong sense of duty. Part of his duty 
was the understanding of Ramanujan and his mathematics, and we can all feel pleased 
that he helped us understand some of the mathematics Ramanujan did. In light of 
his work on Ramanujan's work on modular functions, continued fractions, and 
hypergeometric and basic hypergeometric functions, it is appropriate to dedicate a 
paper to his memory which deals with material from Ramanujan's Notebooks. The 
particular questions below deal with orthogonal polynomials, although it is very 
unlikely Ramanujan knew this. He was just looking for nice approximations he could 
compute easily, and attractive explicit formulas. 

Ramanujan's approximations to certain series which I can explain are: 

X 2 g 3 

r + ~ r + ~.v ~p(2) + -~.v ~p(3) + . . .  (1.1) 

= e~cp(x) as the first approximation, (1.1a) 

2v/1 +4x  2 

x / l + 4 x + l  ( 1 - ~ ) }  
+ 2 x / 1 + 4 x  tp xq -- (1.1b) 

= ~{~cp(x)-t x / ~ +  12x-- 1 6 x / 1 +  12x tp ( x +  1 + x/~-~ + 1 2 x )  

-I 6 x / l + 1 2 x  cp xq- 2 " 
(1.1c) 
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These appear on page 352 of [4]. The rest appear on page 349 in 14]. 

1- {~o(x - n + l )  + ~0(x - n + 3) + . . .  + ~o(x + n - 1)} 
n 

(1.2) 

= ~o(x) as the first approximation, (12a) 

as the second, (1.2b) 

+ ~ / - - - - ~ ) + r  - -  +8(.2--4)r 

6(3n 2 - 7) 
(1.2c) 

whereot=3n2-13andfl= /~(6n4-45n2+164). 

He also included some examples 

13 
Ul +-u2 +.- .  + u13 = ~(7u2 + 1 lU 7 + 7U12 ) (1.3) 

ul + u2 + ... + u 2 2  

11 
= 289(161u3 + 256uu�89 + 161U2o ) (1.4) 

ul + u2 + ... + u7.= ~(u2 + u6) (1.5) 

ul + u2 + "-" + u26 = 13(u6 + u21) (1.6) 

~o(1) + ~o(2) +. . .  + ~o(21) 

= 9:8 [506{~o(2) + ~o(20)} + 931 {~o(1) + ~o(11 + 2 ~ )  

+, ( , , -2g) } ] .  ,,.7, 

2. Gaussian quadrature 

Let f(t) be a continuous function on an interval Ca, b], and d~(t) a non-negative 
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measure on [a, b]. The problem of Gaussian quadrature is to approximate 

f ~ f (t)d~(t) (2.1) 

by a finite sum which is exact for all polynomials of as high a degree as possible. 
When a < t I < . . .  < tk < b, set 

k 

w~(t) = I'I (t -- ti) (2.2) 
i z l  

and 

Wk(t) (2.3) 
%,~(t) = W'~(t~)(t -- t~)" 

Then 

L~(t) = ~, f(t~)Wj.k(t ) (2.4) 
j = l  

is a polynomial of degree at most (k - 1), and 

L[(t~) = f(t~), j = 1, 2 . . . . .  k. (2.5) 

When f ( t )  is a polynomial of degree ( k -  1), then 

s i n c e  

f(t)dot(t) = ~ f(t~) 
j = l  

f ( t )  = L~(t) 

w ~,~(t)dot(t) (2.6) 

(2.7) 

for all t. The degree (k - 1) can be increased by an appropriate choice of the points 
t~. Iff( t )  is a polynomial of degree (2k - 1), then 

f ( t )  - L~(t) = wk(t)r k_ 1 (t) (2.8) 

with r~_ t(t)  a polynomial of degree ( k -  1). If w~(t) is orthogonal to all polynomials 
of degree less than k, using the measure d0t(x) to define the inner product, then 

f[f(t)dot(t)-f;L[(t)dot(t)=ffw,(t)r,_,(t)dot(t)=O. (2.9) 

If 

2j = 2j, k = wl.k(t)dot(t ) (2.10) 

then the Gaussian quadrature approximation to (2.1) is 

k 

2jf(tj) .  (2.1 l) 
j = l  

There arc other expressions for 2~ defined in (2.10). See Theorem 3.42 in Szeg6 [6] 
for three other expressions. Two of these expressions show immediately that 2j > 0. 
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3. Ramannjan's claims 

To obtain Ramanujan's claims, it is first necessary to identify the measure dg(t), and 
then to locate the points where the interpolation is done. Finally, the weighting 
coefficients must be obtained. 

In example (1.1), the measure Ramanujan is using is obtained by multiplying both 
sides of the identities by e -x. The measure is the Poisson distribution 

e-XxJ 
- - ,  j = 0 , 1  . . . . .  (3.1) j~ 

so a = 0, b = oo and the measure is the sum of infinitely many multiples of a shifted 
delta function. 

The orthogonal polynomials for this measure are called Charlier polynomials, and 
they can be given as a hypcrgeometric series. The polynomials in (1.2) are also hyper- 
geometric functions, so we recall the definition of a generalized hypcrgeometric series. 
This is a series whose term ratio is a rational function. 

If the shifted factorial is defined by 

( a ) . = a ( a +  1 ) . - . ( a + n -  1), n =  1,2 . . . . .  (3.2) 

1, n = 0, 

then the hypcrgeometric series is 

[ a l  . . . . .  ap. ) =  ~ (al)n...(at,) . v" 
PFq[, b 1 ..... bq' y ,~o(bl),...(b,),n!--" (3.3) 

This usually requires that p ~< q + 1, for the series diverges if p > q + 1 and it does 
not terminate. The Charlier polynomials are defined by 

C,(j~x)=2Fo(-n'-J; ~), n=O,l ..... (3.4) 

Since this series terminates, divergence is not a problem. See [3]. 
To obtain the zero used in (1.1a) 

J Cl(j ;x) = 1 - -  
x 

so it vanishes when j = x. It is easy to check that formula (1.1a) is exact when 

r  = ax  + b, 

for it is clearly exact when a = 0, and when b = 0 the calculation is routine. 
A second interpretation of this approximation was given by Ramanujan in Chapter 3 

of [4]. See Entry 10 in Berndt's version [1]. 

Cz(j; x) = 1 - 2j +j,~/ 1) 
x x 2 
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and this vanishes when 

2 x +  l_+x/1 + 4 x  j=  
2 

as Ramanujan claimed. 
The fact that the coefficients are those given by Ramanujan can be checked in two 

ways. Either one of the standard formulas can be used to derive them, or Ramanujan's 
formula can be used to check that there is equality for cubic polynomials. 

A similar argument can be tried for the third approximation 

3j(j - 1) j ( j -  1)(j - 2) (3.4) 
C 3 (j; x) = 1 - 3j + x ~ x 3 

x 

Ramanujan has the interpolation points at 

1 + x /1  + 12x 1 - x /1  + 12x 
j = x ,  x + and x +  

2" 2 

C3(j; x) does not vanish at any of these points, so this is not a Gaussian quadrature 
formula. A Gaussian formula exists, but the zeros of (3.4) cannot be found as a simple 
expression, so Ramanujan did something else here. He took the value j = x as one 
interpolation point, which is reasonable for it is the expected value of the Poisson dis- 
tribution. The remaining two points were chosen so the formula is exact for polynomials 
of maximal degree, which is four. This is most easily checked by showing there is 
equality for polynomials of degree 4. This is a tedious calculation which will not be 
given here. 

The remaining formulas are all Gaussian quadrature formulas. In all the cases 
Ramanujan is using a uniform distribution, on an equally spaced set of points. The 
usual notation for this takes the points at j .=  0, 1 . . . . .  N. The polynomials orthogonal 
with respect to this distribution were found by Tchebychef [7]. They are given by a 
hypergeometric series as 

Qk(J, N) ----- 3F2 I, -- N ' (3.5) 

where j, k = 0, 1 . . . . .  N. This is the usual method of taking care of the zero which will 
appear in the denominator because ( -  N) n = 0 when n = N + 1 . . . . .  The two factors 
( - J )n  and ( -k )n  both vanish when ( - N ) n  vanishes, and so the series continues to 
vanish when one zero in the numerator cancels a zero in the denominator. However, 
Ramanujan does not restrict his interpolation points to the integers, so we will define 

(-- k),,(k + I ) , ( - j ) ,  
Q,(J; N) 

.=o (1) , ( -  N),n[ 

when k = 0, 1 . . . . .  N, but j is now allowed to be real or complex. 
Again, we need to check thezeros of this function. In the previous case Ramanujan 

discovered Gaussian quadrature formulas when the polynomial was of degree 2, but 
for a cubic he did something else. In the present case, he goes up to degree 4, which 
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is possible because the polynomials are even or odd about the midpoint of the interval 
of orthogonality depending on the parity of the degree. Thus, such polynomials of 
degree 3 and 4 can be solved by taking square roots. 

The examples (1.3)-(1.7) are instances of the general formulas in (1.2), after the step 
size has been changed. Ramanujan took step size 2 in (1.2) to avoid fractions in the 
first expression, but went back to the more usual step size of I in the examples 
(1.3)-(1.7). 

4. Comments 

The polynomials in (3.5) are special cases of more general orthogonal polynomials. 
These polynomials. 

Qn(x;~t, fl, N) = ~ ( -  n)k(n + o~ + fl + 1)k(-- X)k 
k=O (~t + 1)k ( -  N)kk! ' 

(4.1) 

to revert to the more standard use of letters, are called Hahn polynomials. They are 
orthogonal on x = 0, 1 . . . . .  N with respect to the distribution 

x -- 0, 1 . . . . .  N. (4.2) 
x k N - x ]  

See [3]. The functions in (4.1) are multiples of what are called 3 - j  symbols in 
quantum angular momentum theory. The location of integer zeros of 3 - j  symbols 
is of some interest in mathematical physics. See [5] for some recent work. 

In the introduction, I wrote that it is very unlikely Ramanujan was aware of the 
orthogonal polynomials which determine Gaussian quadrature. That should not be a 
surprise, for Gauss did not use orthogonalitly explicidy when he discovered Gaussian 
quadrature. Jacobi was the first to make this connection. There are a number of 
instances when Ramanujan seems to come close to orthogonal polynomials. This is 
especially true in some of his continued fractions, for the three term recurrence 
relations which generate these are often directly involved with continued fractions. 
See, for example, [2]. However, there was no good book on orthogonal polynomials 
when Ramanujan was working, and no one in England knew much about them when 
Ramanujan was there. Szeg6 started the serious development of orthogonal poly- 
nomials about the time Ramanujan died. It is a shame he was not aware of this 
subject, for it is a source of many beautiful identities Ramanujan would have loved, 
and would have given him another tool to find new results. 
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