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Introduction 

The basic results on reduction theory for a linear algebraic group G over the field 
of rational numbers were established by Borel and Harish-Chandra in [3]. One of 
these results is the construction of a fundamental set for an arithmetic subgroup F 
of the real Lie group G(R). For another one, the criterion for compactness of the 
quotient G(R)/F, a more direct method of proof was given by Mostow and Tamagawa 
[8]. Godement and Weil [5] showed that this method can also be used to obtain 
fundamental sets. They used the language of adeles. 

Reduction theory for linear algebraic groups over number fields is reduced to 
groups over Q by restriction of the ground field. For groups over global fields of 
positive characteristic, i.e. function fields of dimension one over a finite field of 
constants, the method of Mostow and Tamagawa can also be used, but only under 
some restrictions on the characteristic (see [1]). Using another method, involving the 
study of semi-simple group schemes over complete curves, Harder [6] proved the 
basic results over function fields without restrictions on the characteristic. 

Some 25 years ago, in unpublished seminar notes, I tried to give a uniform 
treatment of the reduction theory over global fields, by the method of [5], also using 
Harder's idea to employ Galois descent. This attempt was not successful; there was a 
gap in the notes. However, they contain a proof of the compactness theorem. 

In the meantime, no uniform treatment of the basic results on reduction theory 
seems to have appeared in the literature. The present note, which is to a large extent 
expository, attempts to give such a treatment. The method is essentially that of the 
old notes. But I have abandoned the method of Mostow and Tamagawa altogether. 
Galois descent is used instead. 

In applying the method of [8] (and its extension in [5]) one encounters a somewhat 
subtle question. This method seems to involve an application of the following strong 
version of the Hilbert-Mumford theorem. Let G be a reductive group over a field k, 
acting linearly in a vector space V, everything being defined over k. Let ~ V(k) be a 
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non-zero instable vector. Then there is a cocharacter of G which is defined over k 
such that ~ is instable for the corresponding Gin-action. 

One knows that this result holds if k is perfect. But there are counter examples for 
non-perfect fields (see I-7, 5, 6]). This might explain that application of the method of 
Mostow and Tamagawa in the case of arbitrary function fields has not been successful. 

1. Preliminaries 

1.1. In the sequel k denotes a global field, i.e. either a finite extension of Q or a 
function field of dimension one with a finite field of constants. In the latter case k is 
a finite separable extension of a purely transcendental extension k o of a finite field, 
of transcendence degree one. In the first case we put k o = Q. 

Let G be a k-group, i.e. a linear algebraic group which is defined over k. We refer 
to [2] for the theory of linear algebraic groups. Denote by G(k) the group of k-rational 
points of G and by G(A, k) or G(A) the corresponding adele group. It is a locally 
compact group, containing G(k) as a discrete subgroup (see [10, Ch. 1] for the basic 
results on adeles). 

We denote by G(A,k) ~ or G(A) ~ the closed subgroup of G(A,k) consisting of the 
adeles g such that for each rational character Z of G which is defined over k the idele 
norm ]Z(g)l equals one. Then G(k) is a subgroup of G(A, k) ~ If G is the multiplicative 
group then G(A, k) is the group l(k) of ideles and G(A, k) ~ is the group l(k) ~ of ideles 
of norm one. We denote by C(G, k) or C(G) the quotient space G(A, k)~ It is 
well-known that l(k)~ * is compact. 

If dp:G--*H is a homomorphisrn of k-groups we denote by ~ the induced 
homomorphism of topological spaces C (G, k) ~ C(H, k). 

1.2. We now review some auxiliary results. Let H be a closed k-subgroup of G and 
let i be the injection H-~G. We say that a triple (V,p,O is a k-representation of G 
adapted to H if V is a vector space over k (in the sense of algebraic geometry), 
p:GoGL(V) is a k-representation of G ahd ~eV(k) is a non-zero vector such that 
H is the stabilizer of the line L through ~ for the G-action in V defined by p. It is 
known that such a triple exists. We may assume that p induces a k-isomorphism of 
the quotient space G/H onto the G-orbit of L in the projective space P(V) (see 
[2,5.1,6.8]). 

1.3. Lemma. T is a homeomorphism of C(H, k) onto a closed subspace of C(G, k). 
It is clear that T is an injective continuous map. Let (V,p, ~) be as above. Then 

H(A)~ is the inverse image of l(k)~162 under the continuous map 
g~-*p(g)-lv of G(A) to V(A). It suffices to prove that the induced map i':X/H(A) ~ 
(G(k)/G(k)) ~ G(A)/G(k) is a homeomorphism onto a dosed subspace. Since l(k) ~ is 
the product of k* and a compact set and since k*p(G(k))v is discrete in V(A) we have 
that l(k)~ is closed. Hence H(A)~ is closed in G(A), and the image of 
i' is closed. Since i' is open (see for example [10, p. 28-29]) it is a homeomorphism. 

1.4. Restriction of the ground field 

Let ! be a finite separable extension of k. If G is an/-group denote by H = II~/~G the 
k-group obtained from G by restricting the ground field to k ([10, 1.3]). Denote by 
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tkG:H--~ G the canonical l-morphism. If G is a k-group we also have a k-homomorphism 
~'G:G ~ H with t#~,, ~k~ = id. We have an isomorphism of topological groups 

H(A, k) --* G(A, l), (1) 

inducing an isomorphism H(k) ~- G(l). 
If G is a k-group, the composite of $,~ and the isomorphism (1) is the canonical 

injection G(A, k) --, G(A,I). 

1.5. Lemma. Let l be a finite separable extension of k. The canonical injection 
C(G, k ) ~  C(G, l) is a homeomorphism onto a closed subspace. 

This follows from the preceding observations and 1.3. 
Let H be a normal k-subgroup of the k-group G and let n: G ~ G/H be the canonical 

homomorphism. A section over k for rt is a k-morphism tr:G/H ~ G such that r~ca = id. 
Then G(I)~(G/H)(I) is surjective for any k-algebra I. 

1.6. Lemma. Assume that tr is a section over k. 

(i) The canonical homomorphism G(A)--*(G/H)(A) is surjective; 
(ii) Assume that the group of k-characters of H is trivial and that both C(H) and 
C(G/H) are compact. Then C(G) is compact. 

We skip the easy proof of (i). In the situation of (ii) let K and K' be compact sets in 
(G/H)(A) and H (A) such that (G/H)(A) = K.(G/H)(k) and H (A) = K'.H (k), respectively. 
Then G(A) ~ is a closed subset of tr(K).K'.G(k), and the assertion follows. 

A special case where sections exist, is when G is the semi-direct product over k of 
H and a k-subgroup L. In that case G(A, k) is the semi-direct product of H(A, k) and 
L(A, k). 

1.7. PROPOSITION 

Let G be a connected solvable k-group which is split over k. Then C(G, k) is compact. 
For split groups see [2,w 15]. The proposition is well-known if G = Go or Gin. 

In the general case G is the semi-direct product of a k-split maximal torus and its 
unipotent radical, which is also k-split. By the lemma the proof is reduced to the case 
that G is either a torus or a unipotent group. The first case reduces to the case of G=. 
In the second case we have a normal sequence of connected split k-subgroups such 
that the successive quotients are all k-isomorphic to Ga. Since for any connected 
normal k-subgroup of our group G sections exist (by a result of Rosenlicht, see 
I-9, Th. 1]), the lemma reduces this case to Go. 

1.8. Heights 

Let V be a finite dimensional vector space over k, in the sense of algebraic geometry. 
Denote by V(A) the corresponding adele space and by GL(V, A) the group of in.vertible 
automorphisms of the A-module V(A). This group is isomorphic to the adele group 
GL(V)(A). We transport the structure of topological group of the latter group to 
GL(V,, A). 

We say that x~ V(A) is primitive if there is g~GL(V, A) such that g.x is a non-zero 
element of V(k). For all places v of k we choose on Vv = V(kv) a norm IP !1~ compatible 



210 T A Springer 

with the absolute value on k~ and such that for almost v we have that for xe  V(k~) 
the norm II x I1~. equals the maximum of the absolute values of x with respect to a fixed 
basis of V(k) (the same then holds for any other basis, for almost all v). For xe  V(A) 
primitive we put 

II x 11 : l--I II Xr lit,- (2) 
v 

We call such a function on the set of primitive elements of V(A) a height. 
We list some properties of a height I[ II. 

(a) for all ideles t and all primitive x~ V(A) we have IIt.xl[ = Itl Ilxll; 
(b) / f  II 11' is another height, the ratio II x II - 1 II x I1' lies in a fixed compact subset of R* ,  
where x~ V(A) is primitive; 
(c) /f (x.) is a sequence of primitive vectors which converges to 0 in V(A) then IIx.II 
tends to 0 in R; 
(d) I f  (x.) is a sequence of primitive vectors such that IIx. II tends to 0 in R then there 
exist 2. in k such that the sequence (2.x.) converges to 0 in V(A). 

This is well-known (see [5, 1.1J). (a) and (b) are easy. To prove (c) it suffices to 
consider the case that in (2) we have for all places v that IIx~ II is the maximum of 
the absolute values of coordinates with respect to a given basis of V(k). Let 

K = {xeV(A)I IIx~ll = 1 for all v}. 

This is a compact set and for any primitive x there is an idele t such that t .xeK. 
Using this fact, the proof of (c) is straightforward and the proof of (d) reduces to the 
case that V has dimension one, which is well-known. 

1.9. Reduction theory for GL(2) 

We now take k = k o. Let V be the standard 2-dimensional vector space. So V(k) = k 2, 
V(A) = A 2, GL(V, A) = GL(2, A), where A = A(ko). We use a particular height. Ifko = Q 
we define for a finite place 11 x~ [I to be the maximum of the absolute values of the 
coordinates with respect to the canonical basis (ei). For  the infinite place v of Q it 
is the Euclidean length of x~. If k0 is a function field we take 11 xo J[ to be the maximum 
of the absolute values of these coordinates, for all places. 

For  all places v the subgroup My of GL(2,k~) preserving [I II is compact. So 
M = II~M~ is a compact subgroup of GL(2, A). It is well-known that any geGL(2,A) 
can be written ifi the form g = m.t, with m e M  and t upper triangular. Denote the 
first and last diagonal ideles of such a t by tl,  t2. For  any c > 0 let T(c) be the set 
of upper triangular elements t in GL(2, A) with [tl/t2[<<. c. The next result goes back 
to Gauss. 

1.10 P R O P O S I T I O N  

There exists a constant c > 0 such that GL(2, A) = M.T(c).GL(2, k). 
The proof will show that we may take c = 2/x/3. Let geGL(2, A). We have to find 

~eGL(2, k) such that g~eM.T(c). Since V(k) is discrete in V(A) it follows from property 
(d) of heights that the set of numbers II g-r [J where r runs through the non-zero vectors 
of V(k), is bounded away from zero. We may therefore assume that Ilg.e 1 I[ ~< IIg.r 
for all such ~. Put  g = m.t, as before. Then g.el = tl and for all 2,/zEk, not both zero, 
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and u6A we have 

Ita l ~< II(A + ~u)t~ e I + ~t2e  2 II. 

Put x = tilt  2. Then 

Ixl ~ II (u + v)xe x + e2 II, (3) 

for all vek. 
If k = Q we multiply x by an element of k* (modifying u and v) such as to obtain 

an idele whose components at the finite places are all 1. Then take v~k such that 
II u~ + v II ~< 1 for all finite v and ~< 1/2 at the infinite place. Now (3) gives 

Ixl ~ ~/(1 + Ixl2/4), 

whence lxl ~< 2/x/3. 
If k is a field of rational functions in one indeterminate over a finite field with q 

elements we take as infinite place the obvious one. Proceeding as before we see that 
we can now find v such that even II uv +/~ II ~< q -  a at the infinite place. The inequality 
(3) gives Ixl ~< 1. We have a bound as required for t I t21 . The same argument works 
for SL(2) and gives the following. 

1.11. COROLLARY. 

There exists a compact subgroup M' of SL(2,A) and a constant c > O) such that 
SL(2, A) -- M'.(T(c) n SL(2, A)).SL(2, k). 

2. Reduction theory 

2.1. Statement of the main results 

We now assume that G is a connected reductive k-group. We fix a minimal parabolic 
k-subgroup P of G. Let U be its unipotent radical. It is a k-split unipotent group. 
We also fix a maximal k-split torus S of G which lies in P. The centralizer L of S is 
a k-Levi group of P and P is the semi-direct product over k of L and U. We denote 
by R the root system of (G, S), by R + the set of positive roots defined by P and by 
A the basis of R defined by R +. For  the basic facts on reductive'k-groups we refer to 14]. 

The homogeneous space G/P is a projective k-variety. It follows from [loc.cit., 4.13] 
that the canonical map G(A)/P(A)--,(G/P)(A) is a homeomorphism. It follows that 
G(A)/P(A) is compact. 

Let X(P) be the group of k-characters of P. We have a homomorphism 
P(A)--, Hom(X(P), R*)  whose kernel if P(A) ~ and there is a similar homomorphism 
for S. One knows that restriction of characters identifies X(P) with a subgroup of 
finite index of X(S). It then readily follows that there is a finite subset F of P(A) such 
that P(A) = F.S(A).P(A) ~ 

We conclude that there is a compact subset K of G(A) such that 

G(A) ~ = K.(S(A) n G(A) ~ ~ 

If c is a strictly positive constant we define S(c) to be the set of s6(S(A)n G(A) ~ such 
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that I~t(s)l ~< c all ~teA and we put ~ (c )  = K.S(c).P(A) ~ The following statements are 
the main results of reduction theory. 

((7) (Compactness theorem) C(G) is compact if and only if G is anisotropic (i.e. P = G). 
(F) (Fundamental set theorem) I f  G is isotropic there is c with G(A) ~ = 6P(c)..G(k). 

2.2. Remarks. (a) Since the Levi group L of P is anisotropic and the unipotent radical 
U is k-split, it follows from the compactness theorem that there is a compact set KI 
in L(A) ~ such that L(A) ~ = K~ .L(k). The fundamental set theorem then implies that 
G(A)~ Using 1.7 we conclude that there are compact sets 
K' c G(A) ~ and K" ~ U(A) with G(A)~ = K'.T(c).K".G(k). 
(b) Let V be a vector space over k such that G is a dosed k-subgroup of GL(V). Assume 
that C(G) is compact and let K o be a compact subset of G(A) ~ such that G(A) ~ = 
Ko.G(k). Choose an open neigbourhood U of 0 in V(A) such that U n  V(k) = s /0~ and 
that K o I . U  c U. Then G(A)~ U = {0}. It follows that 0 is an isolated point of 
G(A) ~ V(k). On the other hand, if G is isotropic over k there exists a non-trivial k-split 
subtorus S of the commutator  subgroup of G. Then S(A) is a subgroup of G(A) ~ Let 
~ V(k) of S be a weight vector of S whose weight ~ cannot be extended to a character 
of G and choose a sequence (s,) in S(A) such that X(s,) converges to zero in A. Then 
(s,.O converges to 0 in V(A). We conclude that G is anisotropic if C(G) is compact. 
Then proof of the converse statement is the crucial part of the proof of the compactness 
theorem. 

2.3. Auxiliary results 

The parabolic k-subgroups of G containing P are parametrized by the subsets of A. 
If 11 c A we denote by Pn the parabolic k-subgroup containing P such that the root 
system of the Levi group of Pn which contains S has basis H (so P o  = P)" 

We number the elements of A, say A = {~l . . . . .  ~,}. For  ie [0 , r ]  put 

Pi = P{~,+ l ....... }" 

So P0 = G, P, = P. For  ie [1 , r ]  let (p~, V~, ~,) be a representation adapted to P~. Notice 
that for j >1 i we have that the restriction of pj to L, is adapted to the parabolic 
k-subgroup Li n PI of L/. 

We fix a height II II, on V,(A). For  c > 0 we put 

~(c) = {geG(A)~ II pi(g)~i II~ ~< c II p~(g7)r I1= for /e l - l ,  r], ~ePi(k)}. 

It follows from property (d) of heights that G(A) ~ = ~(1).G(k). 
The next lemma gives a reduction to rank one, following I5, 9.3]. 

2.4. Lemma. Assume that (F) holds for the k-groups L~(1 ~< i ~< r - 1). 

(i) There is c' such tha t .~ (c )c  6e(c'); 
(ii) (F) holds for G. 

(ii) follows from (i), by the remark we just made. We prove (i) by induction on the 
rank r. If r = 1 then r is a weight vector for S whose weight is a rational multiple 
of the only simple root ~. It follows from (F) that there is a constant Co such that 
for gEG(A) ~ there is ~eG(k) with g~ = xsy, where x e K ,  seS(A)c~ G(A) ~ yeP(A)  ~ and 
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I~(s)l ~c0.  Hence infotk)llPt(g).~l I1~ ~Co. It follows that if g=xsye~(c )  we have 
Ilg.~ Ill ~ Co, from which one concludes that I~t(s)l must be bounded by a constant. 

Now let r > 1 and take g = xsye~t(c). We can write y = ylu~, where y~eLl(A) ~ 
U le U~(A) (U~ denoting the unipotent radical of P~). It is immediate that sy~ lies in 
a set like ~(c) for the group L~. By induction it follows that I~e(s)l is bounded by a 
constant for i > 1. A similar argument, using the rank one group L,_ 1 gives a bound 
for I~(s)l and (i) follows. 

2.5. For ~eA we denote by (p=, V=,~=) a representation adapted to the maximal 
parabolic subgroup P(=) = P~_{=}. Then ~= is a weight vector for S whose weight Z= 
is a strictly positive multiple of ~. 

We denote by W the Weyl group No(S)/Z~(S). It is the Weyl group of the root 
system R. If H c A denote by W n the Weyl group of the Levi group of Pn containing 
S, relative to S. Then W n is a parabolic subgroup of W. For =el-I we put W(=) = W A_ {=}. 

For we W denote by ~ a representative lying in the group of rational points 
N~(S)(k). By Bruhat's lemma we have G(k)= u ,~w U(k)~e(k). Fix yeG(k) and write 

= / ~ v  where/ze U(k), we W, veP(k). Put Se'(e') = K'.S(c').P(A) ~ where K'  is another 
compact set and e ' >  0. Let g = xsy = x's'y'7 with xeK,  x'eK',s,s'eS(A)r'~G(A) ~ 
y,y'eP(A) ~ be an element of ~ (e )n~ ' ( c ' ) 7 .  

2.6. PROPOSITION 

Assume that C(L) is compact. Let ~tcA. 
I f  the set of positive numbers I~(s)l, where g=xsy--~x's'y'~ runs through 

AC(c)n Ar is not bounded away from zero then yr 
This is a variant of [5, lemme 3]. Since C(L) is compact we may assume (changing 

K and K') that y and y' lie in U(A). Then 0' -- sY(Y)- ~(s'Y') -1 lies in the compact set 
K-I .K ' .  Let f l ea  and fix a height II It on Vp(,,l). We have 

II pp(g').~p II = Ixp(s')- x I'l(xp(w.s)l Ilsyv- is- ~ ~ -  t. G II. 

Since C(U, k) is compact it follows from properties (c) and (d) of heights, using that 
~p is a positive multiple of fl, that iP((s')-~(w.s))l lies in a compact set of R*. We 
conclude that there is a constant d such that for all f l ea  we have 

I(w- Lp)(s)l ~< dlP(d)l ~< c'd. (4) 

Now assume that wq~W(~). Then there is a positive root 6 such that w-1.6 = 
- Y_,pea, np~, with n= > 0. I t  follows from (4) that there is a constant e such that 

I(w- L~)(s)l ~ e. 

On the other hand we have 

Iw-l.~(s)i = I-I IP(s)-'fl ~ I~(s)l-" IF[ c-".  
p~A p ~  

Since the numbers np are bounded the last two inequalities imply that I~(s)l is bounded 
below by a strictly positive constant. So if I~(s)l is not bounded away from zero, we 
must have we W(~) and TeP(~), proving the proposition. 
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3. Proof of the main results 

3.1. A reduction 

The field k is a finite separable extension of a subfield k o which is either Q or a field 
of rational functions in one variable over a finite field. Let H = l'l~/ko G be the ko-grou p 
obtained by restriction of the ground field. We use the notations of 1.4. We have the 
following facts. 

(a) ~ induces isomorphisms H(ko) "~ G(k), H(A, ko) ~- G(A, k). 
See 1.4. We denote these isomorphisms also by ~b~. 
(b) ~a induces an isomorphism H(A, ko) ~ ~- G(A,k) ~ 
For the (easy) proof see [1, p. 14]. 
The maximal k-split torus S is a ko-group. The composite of O's and the canonical 
morphism FI~/~oS ~ H is a ko-homomorphism It:S ~ H. 
(c) S' = ItS is a maximal k o-split torus of  H and there is a bijection of  R onto the root 
system of  (H, S'). 
This is straightforward. 
(d) P' = IIt/ko P is a minimal parabolic subgroup over ko in H and 

ck~ (P' (A, k o)~ ) = p(A, k) ~ 

(e) For c > 0 there exists c' such that dp~(S'(c)) ~ S(c'). 

See [4, no. 6"1 and [1, p. 14.1 for (d) and (e). The facts just stated imply that it 
suffices to prove the statments (C) and (F) in the case that k = ko, which we assume 
from now on. 

3.2. Split groups 

We first prove (F) in the case that G is split over k(= ko), i.e. that S is a maximal 
torus of G. In that case P is a Borel group, which is a k-split connected solvable 
group. By 1.7 we know that C(L) is compact. Also, the groups Li of 2.3 are split over 
k. It then follows from 2.3 by an easy induction that property (F) for G is a consequence 
of the following lemma. 

3.3. Lemma. I f  G has semi-simple rank one and is split over k then (F) holds. 

A k-group G with these properties is k-isomorphic to a product H x T, where T 
is a k-split torus and H is one of the groups GL(2), SL(2), PGL(2). (This must be 
well-known, but as I do not know a reference a proof will be sketched below.) It suffices 
to prove the lemma for H. If H = PGL(2) there is the obvious map C(GL(2), k) 
C(H, k), which is surjective. (Notice that for any field I the canonical map GL(2, l)--, 
PGL(2, l) is surjective.) A set Se(c) for GL(2) is mapped onto a similar set for H. So 
we may assume that H = GL(2) or SL(2) and then 1.10 and 1.11 establish the lemma. 

The proof of the result on the structure of G uses the root datum of (G, S), say 
iX, X v, R, R v ). Here X is the character group of S, R = { + ~} the root system, X v 
the dual of X and R v = { + a  v } the dual root system. If a = 2 ~ 2 X  then X is the 
direct sum of ZX and Ca v )J. and G is k-isomorphic to the direct product of SL2 and 
a torus. Similarly, if a v E2X v then G is isomorphic to PGL2 times a torus. If ~r 
aVr  v choose AeX v with <a,2> = 1. Put Xo v = Z a  v +ZA. Then X is the direct 
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sum of (X v )• and a rank two sublattice X o containing 0t and X v is the direct sum 
of Xo v and X~. Then Xo v can be identified with the dual of Xo and these two lattices 
are ingredients of a root datum for GL2. It follows that G is k-isomorphic to the 
product of GL2 and a torus. 

3.4. Now assume that G is arbitrary. We fix a maximal torus T of G which is defined 
over k and contains S. We also fix a finite separable Galois extension ! of k which 
splits T. Denote by F the Galois group of ! over k. We denote by/~ the root system 
of (G, T) and by ITV= N6(T)/T its Weyl group. If wr we denote by 6,~W a 
representative in G(l). The roots of the relative root system R are the non-trivial 
restrictions to S of the roots of/~. We fix a system of positive roots/~ + such that 
the roots in R + are restrictions of roots in R+. Let A be the basis defined by R+. If 
H ~ A we denote by Pn the corresponding parabolic/-subgroup. 

Since T is split over 1, all characters of T are defined over I. Hence the Galois 
group F acts on/~. Let B D P be the Borel subgroup defined by/~ + and let U be its 
unipotent radical. For sE F there is w,~ I?d such that s.B = Int(~,)B. There is an action 

of F on A such that for seF,  ct~A we have s.0t = w,(L(s).ot). We then have s.Pn = 
Int(~b~)P,(~).n if H ~ A. 

3.5. Proof of (C). As we remarked in 2.2 the burden of the proof of (C) is to show 
that C(G, k) is compact if G is anisotropic. This we now assume. We identify G(A, k) ~ 
with a closed subgroup of G(A, l) ~ The Galois group F acts on the latter group, and 
G(A, k) ~ is the set of elements fixed by all of F. Since G is/-split, we know that (C) 
and (F) hold over I. Put ba'(c) = K.T(c).U(A, l), where K is a compact set. We assume 
that G(A, l) ~ = Ae'(c).G(l). Take geG(A, k) ~ There are x~K, t~T(c), u~ U(A, l), ?eG(l) 
with g = xtu?. For all seF we have s(xtuT) = xtuT. This can be rewritten as 

( (s.x) ~s ) (w~  l (s.t) ).u' = xtu(~,(s.~) -1  ~v), 

where u'= Int(fv~l)(s.u)eU. Let ~t~A. It follows from 2.6 that there is a constant d 
such that if I~(t)l ~< d we have ?(s.?)-1 ~ P ( c t ) ,  for all s~F. Then s.Int(?-l)P0(s )- 1.~t) = 
Int((s.?)-t~b~)/3(~) = Int(~-l)P(~) and the proper parabolic subgroup 

Q = N Int(y- l)/50(s).~ ) 
$~r 

is F-stable, hence is defined over k. But this is impossible if G is anisotropic. It follows 
that for all creW, we have I~(t)l >t d. Since U(A, I)/U(I) is compact we conclude that 
the image of G(A, k) ~ in C(G, 1) is relatively compact. By 1.2 we have that C(G, k) is 
compact and (C) follows. 

3.6. Proof of (F). Let G be arbitrary. By (C) we know now that C(G, l) is compact. 
Application of 2.4 shows that it suffices to establish (F) in the case the G has semi-simple 
rank one. This we now assume. We proceed as in 3.5 and use the notations introduced 
there. In the present case, the parabolic k-subgroup Q must be k-conjugate to P. This 
means that, after multiplying g on the right by an element of G(k), we may assume 
that Q = P. But it is known (see [4, r/o. 6]) that there is a unique F-orbit ~ in A such 
that P is the intersection of the P(~) with ~t~r The roots in 0 restrict to the simple 
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root of A. We conclude that the =cA such that I=(t)[ is not bounded away from zero 
lie in ~ and also that if Q = P the element 7 must lie in P(l). 

Let (p, V, ~) be a k-representation of G adapted to P. Then ~ is a weight vector for 
the maximal k-split torus S, whose weight Z is a positive multiple of the only simple 
root ~ of the root system R. Fix a height [I [[ on V(A,k). Let g~G(A,k) ~ and write 
g = ysz, where s~S(A, k)r~ G(A, k) ~ z~P(A, k) ~ and y lies in a fixed compact set (see 
2.1). Then 

II p(o).,~ II = Ix(s)l II : 0 ' ) .~  II. 

By property (b) of heights we conclude that IX(s)[-~[IP(g).~ Jl lies in a compact subset 
of R*+. 

On the other hand we can view g as an element of G(A, I). As in 3.5 we write 
g = xtuT. We may assume that 7~P(1). Now (p, V, ~) obviously is an/.-representation 
of G adapted to P, and ~ is a highest weight vector for that representation (relative 
to the Borel group B). Its weight ~ is a linear combination of the roots in A, with 
non-negative rational coefficients. It follows that for t~ T(c) the numbers [~(t)[ lie in 
a compact set of R. Take a height on V(A, l). We denote it by II I[ and we assume (as 
we may) that its restriction to V(A, k) is the previous height. Then 

II p(g).~ II = I~'(01 II p (x) .~  II, 

and we see that [[p(g).~[[ lies in a bounded set. Then the same holds for [X(s)l and 
I~(s)l, which means that g lies in a set ~(/'(c'). It follows that G(A,k)=~(c') .G(k),  
which we had to prove. 
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