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Aimtraet. Let K be a quadratic field, and let R(N) be the number of integer ideals in K with 
norm at most N. Let Z with conductor k be the quadratic character associated with K. Then 

]R(N) - NL(1,X)] ~< BkS~ 

for N ~> Ak, where A and B are constants. For N I> Ak c, C sufficiently large, the factor k s~ 
may be replaced by (d(k))a/~3k a6173. 
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1. Introduction 

Let K be a quadratic number field, and let r(n) be the number of integer ideals in K 
whose norm is n. Then 

r(n) = Y.z(d), 
a I. 

where x(d) is a real primitive character whose conductor k is the absolute value of 
the discriminant of K. Let R(N) be the number of integer ideals with norm at most 
N. Dirichlet (see [1,6])  showed that 

R(N) = ~ r(n) = NL(1,Z) + O(kNX/2); (1.1) 
n ~ N  

the factor k in the error term can be reduced to k 1/2 log k using the Polya-Vinogradov 
theorem. For  the Gaussian field Q(i), the sum R(N) is the number of lattice points 
in a quarter-circle. The remainder term in (1.1) has been studied in this case. Recently 
Iwaniec and Mozzochi [5] used a powerful new method to reduce the exponent of 
N in (1.1) to 7/22 + e. This work was generalized and taken further by Huxley [2, 3], 
who obtained the error  term 

O(N23/73(logN)31s/146). (1.2) 

For  a general quadratic field K we can apply the lattice-point method separately to 
each ideal class, with a remainder that depends on N as in (1.2) in the complex case, 
with the power of log N increased by one in the real case, and also on the ideal class 
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by way of the maximum radius of curvature of the ellipse or hyperbolic segment that 
contains the lattice points, and in the real case, also on the fundamental unit. In this 
paper we obtain results that depend on K only as a power of k, even for real fields; 
in fact X can be any primitive character. 

Theorem 1. There are absolute constants A and B such that for N >t Ak we have 

IR(N) - NL(1,Z)I ~< BkS~ 461/146. 

Theorem 2. There are absolute constants A, B and C such that for N >i Ak c we have 

IR(N) - -  NL(1, x)l ~< B(d(k))4/73k46/73N23/7300gN)461/146. 

The constants A, B and C could be calculated effectively. Theorem 2 comes from 
an upper bound with several terms involving different powers of d(k), k, N and log N. 
The other terms involve smaller powers of N, but powers of k which may be closer 
to one. To find the inlimum of those C for which Theorem 2 can be proved with 
some A and B would involve a large number of cases and alternative arguments. 

2. Preparation 

We obtain Theorem 1 from the following lemmas. 

Lemma 1. (Accelerated convergence for L(1, X)). For any non-trivial character mod k 
we have 

L(1,X) ~ x(n) 1 - ~  + 
1 n \ N 2 , / "  

I f  X ( -  1)= 1 and kiN, then 

~ Z(n) + 0(k3'2~ L(I,x)-, --f 

Proof. Let 

p(t) = I t ]  -- t + �89 e(t) = p(x)dx. 

Since e(t) has a Lipschitz condition, the weighted Polya-Vinogradov bound gives 

amodk 

uniformly in x. Now 

M 

z '<">: = ,<a, r"+":'__<,r,<-<,l 
/ + 1  n =modk ~N+112 X L k J 
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=~,~o,r-'o(.-.)3"*"' +~,, . ,r '* '" '  ~ , ~ ,  ' , -o '  

_ , ~ , ,o , , ( -  + ~_~-,) + o(,~_;,~) 
N + 1/2 

+ ~ x(a)a dx. + l~  .Z~(a)"k~-~)J.+,,. ,,.,,, T 
(2.1) 

For large M all terms after the first term on the right of(2.1) are O(ka/2/N2). Similarly 

~ nx(n) r N , x / 2  x 

~= z(a) ~__3 ~n+'/2 / 'xdx . (x-a'~ ~ 
= Jo k-c + x ~ k T ) )  

1 x - - a  

\ k / 3 o  

N +__1/2~_, ( N  + l / 2 - a )  ['k3/2'~ 
"- N2 = z(a)p k + 0k-N-2) '  

which cancels with (2.1) up to O(ka/2/N2). I f  Z ( -  1) = 1 and kiN, then 

N N N 

n Z(n) ---- ~ (N  - n) z ( N  - n) = ~ ( N  - n) z(n); 
1 1 1 

but the right hand and left hand sides s u m  to zero.  [] 

Lemma 2. (Dissection of the remainder term). Let x(n) be a nontrivial character rood k, 
and let 

r(n) = T . z (~ .  
41n 

The sum function R(N) of r(n) satisfies 

with 

N 

R(N) = ~, r(n) = NL(1, Z) + RI + R2 + O(~/k log k), 
1 

', fN/ek_- a) R2= Z ~(a) s P/ 
a rood k �9 <~ ~/(N/k) 
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Proof R(N) is the sum of x(d) over pairs of integers d, e with de ~g N. If x(d) # 0, 
then d is not a multiple of k, and either d < ke or d > ke. Hence 

R(N)=  E x(d) E 1 +  E E x(d) 
d~gx/(kN) d/k<e<~N/d egx/(N/k) ke<d<~N/e 

a ~< 4(kN) 

+ ~. ~.x(a)(N a ( e _ ~ ) +  /N/e--a)  
e<~/(N/k) a \ e g k  p~ , - -p (e - - : ) ) .  

Since p(e- a/k)= -p(a/k) when x(a) is nonzero, we have 

x(d) d 2 
R(N)=N ~ - - ( 1  --  - - ~  "~" RI  -.I.- R 2 

d <. 4(k~ d \ kN ] 

amodk \r~/  \eg~/(N/k) d<~x/(kbO 
d r= a(modk) 

,) 
The first term is NL(1,Z)+ O(x/k) by Lemma 1, and the last term is O(x/klogk ) by 
the Polya-Vinogradov theorem. [] 

There are three ways of proceeding. 

I. Split R 1 into sums with a condition n - a (mod k) for a = 1 . . . .  , k - 1, and consider 
each value of a separately in RI and R2. Theorem 1 follows at once from Theorem 4 
of [3], which is Theorem 5.2.4 of [4]. 
2. Split Rt and R 2 into k -  1 sums corresponding to nonzero residue classes mod k 
as above. They form a congruence family in the sense of Lemma 4.3.6 of [4]. A 
slightly better bound holds on average for the sums of a congruence family. 
3. Modify the method of [3] to take the character in Rt and R2 through all the 
Poisson summation steps. 

Method 3 should be the most powerful However the calculations produce characters 
of shifted arguments. In order to separate the varhbles in readiness for the large 
sieve, we must either subdivide or endure extra Gauss sums as factors in the upper 
bound. Also, the rank of the bilinear form in the large sieve is multiplied by a power 
of k. 

For methods 2 and 3 we expand p(t) as a finite Fourier series [4, Lemma 2.1.9]: 

p(t) = h'~O c(O) 21rih + 0 + \ H s 11 t II 3 , 

where c(h) are the coefficients of the second Fejer kernel, expressed in terms of 
binomial coefficients by: 

c(__ h) --, 
'2H-h+ 1 C3 -- 4a , -h+l  C3 

2/'/- h + 1 C3 
0 

for0~<h < H - 2 ,  

f o r H -  1 <~h<~2H-2, 
forh ~> 2 H -  1. 
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Thus R~ can be written as 

Similarly 

R! --- 
~f(m' ~.c(h) e(hN/m) (~) 

~/(kN) h,~oC(O) 2nih l- 0 

0 ~. (l, N/m,]'))" + (,~4(kN) min HsII 

R 2 = )f(b)n~lVlk) ~ e(O)2nih \ kn bmodk h#O 

+0(~-) + 0(~ ~ min(l, 1 

(2.3) 

(2.4) 

In (2.3) the number of values of m in a range M ~ m < 2M for which II N/m U < ~ is 

O(r -t- N231730og N) 31 S/I,6) 

by Theorem 2 of [3], modified in the same way that Theorem 3 of [3] was modified 
to produce Theorem 4. When we sum M through powers of two, then the third error 
term in (2.3) is 

O(~/--~ + N23/73(logN)46t/~'6 ). (2.5) 

We obtain the same estimate for the error term in (2.4). 
This account is over-simplified. It is better to divide R 1 and R2 into blocks in 

which m or n have fixed order of magnitude, M ~< n < 2M for some M, and then to 
choose H = H(M) in (2.2) to be constant within the block, but different for different 
blocks. In each block, the error term in (2.2) can also be estimated by double exponential 
sums (without characters) as in [3]. 

3. Co~gr~R~ families of s u m s  

A sum F,p(o(m)) over some range M ~< m < M2 corresponds to the remainder term 
in counting lattize points (re, n) in a region partly bounded by a curve y=o(x). 
Counting points with m - t'(mod k) corresponds to a sum 

Y.p(g(km + #))= Y.p(f(m + ~) ) (3.1) 

between suitable limits, with f(x) = o(kx). Counting points with n - ~'(mod k) corres- 
ponds to a sum 

where f(x)= O(x)/k. The family of sums of the form (3.1) or (3.2) as # varies is called 
a congruence family. Theorem 8 of [3], which deals with a family of sums given by 
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different values of a parameter, does not  apply, as the parameter  must occur non- 
trivially, not as a linear shift. The saving occurs because changing the parameter 
changes the first derivative of the argument of p(t). In a congruence family the change 
in the derivative is negligible, but the function itself changes in a predictable way. 
This idea was developed by Watt [7] for simple exponential sums. We obtain results 
that correspond to Theorems 7 and 8 of [3]. 

Lemma 3. (Congruence families of  double exponential sums). Let F(x) be a real function 
with four continuous derivatives for 1 <~ x <~ 2, and let g(x), G(x) be bounded functions 
of  bounded variation on 1 <~ x <~ 2. Let Co . . . . .  Cs be real numbers >>. 1. Let H and 
M (inteoers) and T (real) be large parameters. Suppose that 

IF~~ ~< C, 

for r = 1 . . . . .  4, that 

IF~')(x)l t> 1/C, (3.3) 

for r = 1, 2, and that either case I or case 2 holds: 

Case 1. M ~ C o T t/2 and (3.3) holds for r = 3 also. 
Case 2. M >. C o i T1/2 and 

[F 'F (3)-  3F"21 >t 1/Cs. 

Let k be a 

or the sum 

f ixed positive inteoer, and for g = O, . . . .  k - 1 let St denote either the sum 

2u-I  / h \ 2M-1 m h T  m St= ,~s O[-H),~=. G(--~)e(--~F(-~+~---M)) (3.4) 

2n-1  /h\2U-IGfm~e(hTFfm ~ 

Then there are constants C 6, C 7 and C s constructed from Co . . . . .  Cs such that if  

C 6 T 1/3 <~ M <~ C~ 1 T2/3 

and 

H <~ C 7 min(M3/2/T 1/2, M 1/2, M T -  7/27), 

then we have bounds of  the form 

(3.5) 

where the constant in the upper bound is constructed from C O . . . . .  C s, from the 
bounds for the functions O(X) and G(x). 

k-I 

[St] 2 = O(EkYl 2 T(log T)9/2), (3.6) 
~'=0 
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Case (a). In cases 1 and 2, for 

(d3(k)HT 
X~ 1/5 + 
} + \ n )  TM 

( M T " ' ~  d(k) 

M 2 H s T 2 
>I C~ 1 m i n ( ~ 2  + -~-, ~43 ,], (3.7) 

we have (3.6) with 

E = f d ( k ) ~ 4 / 3 S f H ~ 3 / 3 5 1  1 
\ k ,] \ M , ]  T 12/3~ + T 3/~8 

+ 

Case (b). In case 1 we have (3.6) with 

( d _ ~ )  2/7 H1/TM3/7 M9/tl  1 

E = T4/7 -I + HugMI/3 T2/9 HUt t TSll 1 

( ~ k ) )  t/2 H H:/*M 3/4 
+ - ~  + T3/4 (3.9) 

Case (c). In case 2 we have (3.6) with 

{ dtk~ \ 2/7 H x/7 1 M 5/9 

E = ~- -~- )  MS/V + H1/llM?/~t b H1/9T2/~ a 

(d(k )~  '`2 H T  '/2 H' /4T' /4 
+ k - k )  + M (3.10) 

Proof. The proof is a variation on that of Theorem 7 in [3]. The sum over m is 
divided into short intervals labelled by rational numbers (Farey arcs), with an 
approximate equivalence relation that we call resonance. Approximate or fuzzy 
equivalence means that transitivity weakens the approximation. In [3] the extra 
structure given by the parameter is used only to compare corresponding Farey arcs 
in different sums of the family. Here we use the congruence structure in the same 
way. The congruence structure is simpler, so there is less constraint on the length of 
the short intervals. The comparison occurs differently, and the possible saving is less. 
The second term and the last term in the bounds for E dominate in cases when the 
maximum saving occurs. The other terms correspond to terms and cases in Theorem 
7 of 1"3]. [] 

We make some changes of notation in order to apply Lemma 3 to the sums RI 
and R 2. In RI we must classify the values ofm into residue classes ~' (modk), so that 
m = kn + ~ for some n. In R2 we merely write z' for b. The variable n in Rt and R2 
becomes m for Lemma 3. We write HI for H(M) in (2.2), so that we can use H as a 
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parameter for blocks H ~< h < 2H of the finite sum. We only consider positive h; 
negative h gives the complex conjugate sum. 

The block sums of R~ take the form (3.4), and those of R2 take the form (3.5), with 

F(x) = l/x, T= N/k, 

and with g(x) a continuous function with 

h ) H c(h) 
g H =2-n-hc-~ 

(the factor H is inserted for homogeneity), and 

for x > ~/ (N/k). 

To prove Theorem 2 we need 

/ k \4/73 
H,=C9~'~))) MT-23/'30ogT) -,'s̀ '4" (3.11) 

for some C9 (which affects the constant B), to overcome the term I/Hx in (2.2), and 

((?)"" ) ~IStl 2 = O kH 2 T46/73(log 7') 315173 (3.12) 
t 

for each block sum. There are O(Iog 2 T) different block sums, for different size ranges 
of H and M. The various cases of Lemma 3 give ranges H2(M) ~< H ~< Hs(M) in 
which (3.12) holds, actually with an extra factor of the form 

(H2(M)/H) a' + (H/H3(M)) a2 

for some positive 6t and 6 2 .  The sum over blocks of h gives a constant factor, not 
a logarithmic one. We always have M -- O(~/T). The terms in case (a) of Lemma 3 
have H ,to a power greater than two. If the first term in (3.8) gives the order of 
magnitude of E, then (3.12) holds for H ~< H t . The second term is smaller for 

kid(k) <~ Clo y3/64(log 7') -9/16, (3.13) 

and the third and fourth terms in (3.8) do not matter for H ~< H1. For 

(d~)) I/6 C-I/d(k)~l/6T9/16 (3.14) Cll TT/le<~M<<" 11~ k / 

the condition (3.7) is satisfied for all H. For smaller M we use case (b) for small H. 
The order of magnitude of E changes smoothly as we pass from case (a) to case (b). 
The terms in (3.9) with H in the denominator may make (3.12) fail for small H. We 
must also consider H and M below the ranges permitted in Lemma 3. 

As in [3], for small H or M we use the simple exponential sum bound from the 
exponent-pair (2/7, 4/7) to get 

S{ = O(HT) 2/7, 
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which implies (3.12) for 

H ~< Ho - T15/1~6(10g T) 2205/292. 

This range contains H ~< HI for 

(~_~) 18/73 
M ~< C12 T6X/x46(log T) 2835/292. (3.15) 

We find that blocks with H > Ho satisfy (3.12) by case (b) of Lemma 3 for 

~ ~__k_~86/219T179/438(logY)-573/292~M 
C13 ~ d(k) ,] 

/d(k)~ 34/219 
~ C13~T ) T$8911314(logY) t79/292 . (3.16) 

For 
k _ _  <~ C14 Tl/7OOog ]")639/35 (3.17) 

d(k) 

the range of M in (3.16) overlaps the ranges (3.14) and (3.15), and we have covered 
all cases. Since T= N/k, we have proved Theorem 2 for any C > 71, with A chosen 
so that (3.13) holds. The lower bound for C can be reduced,by using deeper bounds 
for simple exponential sums, which would increase Ho, and relax (3.15), (3.16) and 
(3.17). However we must have C > 67/3 to satisfy (3.13). 
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