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Abstract. A solution is given for the following Problem of G Fejes Toth: In 3-space find
the thinnest lattice of balls such that every straight line meets one of the balis.
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1. Introduction

1.1 The object of this note is to give a solution of the following problem of G Fejes
Toth [2]:

In 3-space find the thinnest lattice arrangement of closed balls-such that every straight
line meets these balls.

As pointed out by G Fejes Toth himself this is in some sense the first unsolved case
of the more general problem:

In n-space find the thinnest lattice arrangement of closed balls such that every k-
dimensional (0 < k < n— 1) flat meets one of these balls.

For k=0, this is the problem of thinnest lattice coverings by spheres, while for
k =n— 1, Makai [4] has shown that the problem can be reduced to that of the closest
lattice packings of spheres. Thus the solution is knownfork=0,n<Sand forO0< k=
n—1<7. (See any book dealing with packings and coverings, e.g. Lekkerkerker and
Gruber [3]). The problem above can be generalised to one for other “bodies” also.
In the case of convex bodies, Makai [4] has shown that a theorem analogous to
the one for spheres holds if k = n — 1. Our solution to the Fejes Toth problem stated
in the beginning is contained in the following Theorems I and II and the remark
after Theorem II.

(We shall throughout be working in the three-dimensional Euclidan space R®).

Theorem L. Let K be the sphere |x| < 1. Let A be a lattice with determinant d(A). If
every straight line meets a ball K + A, AeA, then d(A) < 2(4/3)%.

Theorem 1. Let K be the sphere |x| <1 and A be the lattice generated by 4/3(1,1,0),
4/3(0,1,1) and 4/3(1,0, 1). Then every straight line meets a sphere K + A, AeA.
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138 R P Bambah and A C Woods

Remark Our proof of Theorem I (see §4.4) shows that “up to” orthogonal trans-
formations the lattice A of Theorem II is the only “critical” lattice.
For convenience we replace Theorems I and I1 by the equivalent Theorems I', IT':

Theorem I'. Let K be the sphere |x| <3/4 and A a lattice with determinant d(A). If
every straight line meets a ball K + A, AeA, then d(A) < 2.

Theorem II'. Let K be the sphere |x| < 3/4 and A the lattice generated by (1,1,0),
(0,1,1) and (1,0, 1). Then every straight line meets a K + A, AeA.

2. Proof of Theorem I

2.1. Let K be the sphere |x| <3/4 and A a lattice. Let A, €A. Let II be the plane
through O perpendicular to OA;. Let A* be the (orthogonal) projection of A on II.
Let C be the circle K N I1. All lines parallel to OA, meet a K + A, A€A is equivalent
to the statement: the circles C + A*, A*eA* cover I1, i.e. the “covering radius” p(A*)
of A* is < 3/4.

22. LetA,,A,,A, bea basis of A. Let L be the matrix (A;,A,,A;) with A;,A,,A,
written as column vectors. The positive definite quadratic form f(x) = f(x,,x,,x3) =
X' L' LX, where X' =(x,,Xx,,X,) is called the quadratic form of A w.r.t. the basis
A;, A, A, Its determinant d(f) = det(L’' L) =d*(A). If (B,,B,,B;)=(A;,A,,A;)U
is any other basis of A, the UeGL(3,Z) and the corresponding quadratic form
X'U' L' LUX is equivalent to f(X). In fact the quadratic forms corresponding to
different bases of A consist of the class of quadratic forms equivalent to f.

Again if f(x)=X'L'LX=X'M'MX, then M = TL, where T is orthogonal and
the lattice TA with basis TA,, TA,, TA, is an orthogonal transform of A. We may
note that TK = K, and A has the property of Theorem I’ if and only if TA has.

23. Let f(x)=Za;x;x;, a;=a, be the real positive definite quadratic form
corresponding to a basis A;,A;,A; of A. Write

4, a3 2
f=a,{x +a—x2 +—2x3 | +9(x;,x3)
=0y %5 + 05X + 8 3 X3)% + (05X, + 0,3 X3)% + (A, Xa + A3 X3)%,

and f is the quadratic form of a lattice A, = TA, T orthogonal, with respect to the
basis B, = TA,,B,=TA,,B;=TA,, and B,=(,,,0,0), B,=(a,,,0,,,a,,)
B3 =(a,;,a,,,a,,). Every line parallel to OA; meets a K + A, AeA if and only if
every line parallel to OB, meets a K + B, BeA,. Since B, is the point (a,,0,0), the
plane IT of 2.1 is x; =0 and the projection A* of A, on I is the lattice generated
by 0,a,,,2,,) and (0,a,,,«,,), while

g(x2,%3) = (ay, X3 + 03 X3)7 + (23, %, + ay3%3)%

Let p = p(A*) be the covering radius of A* and R(g) = p. (R(g) depends only on g,



On a problem of G Fejes Toth 139

because if g is a quadratic form of another lattice A}, then A} = TA®*, where T is
orthogonal and the covering radius of A} is the same as that of A*)

By §2.1 all lines parallel to OA, meet a K + A, AeA if and only if p(A)* < 3/4,
if and only if R(g) < 9/16. Since every primitive lattice point can be extended to a
basis of A, all lines parallel to lines OA, AcA meet the balls K + P, PeA if and only
if for all forms f’ ~ f, the corresponding “sections” g'(x,, x3) have R(g') < 9/16. More
precisely, the hypothesis of Theorem I' implies the following:
Let A be a lattice. Let f(x) = Za,;x;x;,a,;= a;, be any quadratic form of A. Let

2
flx)= a11(x1 + a‘l—zxz + aﬁ"s) + g(x2,x3).
a, a4
Then
R(g) < 9/16.

To prove Theorem I’ it is enough to prove

Theorem IA. Let f(x)=ZXa,x,x;, a,=a; be a real positive definite quadratic form
with determinant d(f). Let f' ~ f; write

U

) p ai, a4, YV,
f (X)=d“ xy+ , X;+—Xx3}) +4¢ (xz,xs)-
a5, a4,

If R(g')<9/16 for each f' ~ f, then d(f) < 4.

24. Let f(x)=Za,x;x;, a,;=a, be a positive definite quadratic form. Let

2
a a
12 13
f(x)=au(x1 +——x2+—x3) + g(xz, x3).
a4, a,
Then
— _ 23,2 _ 2 V42
4119 =(a,,8y, —a1,)%; +2(8,, 8,3 — a,,8,3)%, X3 +(a,, 853 — a13)X3
— 2_ 2
=A,,x;—2A,, %3+ A,, x5
= (', say,

where A, are the entries of the matrix adjoint to (a;;). Since g = a; LG, R(g)=a!R(G).
If

G=A,,x2+2A,,x,x; +A,,x2,
then G ~ G’ and R(G) = R(G"), and

R(g)=a; ' R(G). (a)
Let A =(a,), adjA=(A;;). Then AadjA =det(A)], and det(adj A) = (det A)>. Write

F(x)=adjf(x)=ZA ;x;x;
Then
d(F) = det(A,;) = (det A)? =d*(f). (b)
Since
A(adj A) = (det A)I = d(f)I, and (adj A) adj(adj A) = d(F)I = d*(f)1,
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we have
1
m dz D ———adj(adj A)
ie.
L @)=—1_aga,)
77~ 5 A

Equating elements in the leading position, we get

1

1
d_(f)a“ = dz—(f)(AzzAsa —AZ,)
dz(f)d(G)

and a;,' = d(f)/d(G) = \/d(F)/d(G), and, by (a),
R(g) = R(G),/d(F)/d(G).

Therefore,
R(g) < 9/16 iff R(G) <9/16 d(G)/d(F)'* ©
and

d(F) = d*(f). (d)

It is well known that if f ~ f”, then adj f ~ adj f* and vice versa, i.e., the class of forms
equivalent to adj f is the class of adjoints of forms ~ f.

Let F(x;,x;,x3)=ZA,x;x; be a definite quadratic form and F;~F. Let
G(x;,x3)=F(0,x;,x;) be called a partial sum of F and let S be the set of partial
sums of F. Since F(x,,x,,x3)~ F(x3,x,,X,) the set of partial sums of F consists of
the forms G(x,,x,) = F'(x,,x,,0) for all forms F’' ~ F(x).

We can replace Theorem IA by (see (c) and (d) above).

Theorem IB. Let F(x,,x;,Xx3)=2A;x;x;, A=A be a positive definite quadratic
Jform. Suppose for every partial sum G of F we have R(G)<9/16 d(G)/./d(F). Then
d(F)<16.

It is clear that we can replace F by any equivalent form without affecting the
hypothesis or conclusion of the theorem. For convenience we alter the notation a
little bit and state Theorem IB as:

Theorem IC. Let f(xy,x,, x3) = Za,;x;X;, a,; = a, be a positive definite quadratic form.
Suppose for every partial sum g(x,x,) = f'(x,,x,,0), wheref' ~ f, we have R(g) < 9/16

d(g)//d(f), then d(f) < 16.
3. Proof of Theorem IC

3.1 A basis A, B of a two-dimensional lattice A is said to be reduced if the angle O
of the A OAB is largest and lies between 60° and 90°, equivalently A OAB is acute
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angled with largest angle at O. In this case the covering radius of A is the circumradius
of A OAB. (see e.g. Dickson [1], pp. 160).

Now suppose A, B generate a two-dimensional lattice and A OAB is acute angled.
Then (A,,B;)=(A,B) or (— A,B — A) or (— B, A — B) is a reduced basis of A and its
covering radius is the circumradius of A OA, B, = the circumradius of A OAB. Thus
if A,B generate A and A OAB is acute angled, then the covering radius p(A) of A is
the circumradius of A OAB.

Let g(x, y) = ax* + 2b xy + cy? be positive definite. Let g(x, y) = (ax + By)* + (yx + 6y)*.

Let A=(a,y), B=(B,8). Then A,B generate a lattice A and R(g) = p*>(A). The
triangle OAB is acute angled if the square of each side < sum of squares of the other
two sides, i.e., if

asc+(a+c—2b),
c<a+(a+c—2b),
at+c—2b<a+c,
ie.
b<e,b<a, b>=0,ie.
0 < b < min(a, ¢).
Therefore, if 0 < b < min(a, ¢), then

R(g) = (circumradius of triangle OAB)=ac(a + ¢ — 2b)/4 d(g). (If ABC is an acute
angle triangle with sides a, b, ¢ circumradius p and area A, then

_a b

P=2sinA_ 2sinB_ 2sinC’

s abc _ a*b’c?

= 8sinAsinBsinC 64(1/2 bc sin A)(1/2ca sin B)(1/2ab sin C)
a3b363

64A%

so that
a’b?c?
pr=—".
4(24)

32 Letf(x1)= Zaux,x,, a;=a; be a positive definite form, all of whose partial sums

g(x,,x,) have R(g) <9/16 d(g)/./d(f). We have to show d(f) < 16.
By replacing f, by an equivalent form reduced in the sense of Gauss and Sieber
(see, e.g. Dickson [1], Th 103, pp. 171), we can suppose

0<a,, <a,,<ay,,
20a,,l<a,,,2|a,,l<a,,, 2|a,,]<a,,, and (A)
a,;, i #j, all have the same sign,

a,,+a,,+2a,,+a;+a,;)=0.



142

R P Bambah and A C Woods

We divide the proof into two cases:

case I: all a,;,i #}, are negative (or 0),
case IL: all a;;, i #, are positive (or 0).

4. Proof of Theorem IC Case 1

4.1 Clearly g, = f(0,x;,X3), g, = f(x,,0,x3) and g3 = f(x,,x;,0) are all partial
sums of f. If ZA, x;x; is adjoint to f, then

Also each g is equivalent to one with the cross term of opposite sign.

d(gl) = All’ d(gz) = A22’d(93) = A33.

Therefore, applying the formula of §3.1,

R(g,) = a,,8,4(a,, + 833 + 2a,,)/4A, |,
R(gy) = a53a,,(a,; +a,, +2a,,)/4A,,, and

R(g3)=a,,0,,(a,, +8,,+2a,,)/4A;,

By the hypothesis R(g;) <9/16 d(g;)//d(f), and we have

or
Similarly,

and

,,8,3(a,, + 835+ 2a,,)/4 A, <Y/16A,, //d(f)
4a22a33(azz+a33+2a23)~/d(f)<9Af1.
day,a,,(ay,+a,, +2a,,)/d(f)<9AZ,,

4a,,a,5,(a,, +a,,+2a,,), /d(f)<9AZ,.

42 Define B,,,B,,,8,, by

and put

ay, =~ B1,/8,10;3, 83= — B13/4,,855,
ay3 = — B33/ 822833

L= (a“/azz)llza ty = ((122/033)”2.

The reduction conditions (A) of §3.2 give

and

0<ty, t,<1

1 1 1
Osﬁlzsitl’0<513<5t1t2,0<ﬁz3$532,

a,, +a,,+2a,,+a,+a,;) >0 becomes

@y + 8y, 22(B1,4/a,,8,5, + Bi33/ay,55 + B3\ /ay,053)

0

@

&)

@)

)

(6)
M
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so that, dividing by \/a,,a,,, we get
ti, + 6,2 2(8,,t, 0, + B3t + B,,). (8)

Now, if we write

glty,t)=t2t, +1, —2(B,,tita + B sty + By3),

then
o9
T=2t152 ~2B,,t,— 2B, =2t t, —t 8, —~t1t, (By (7))
1
20,
o9

ét—z=tf+ 1-28,,1,

=1+1t,(t,—28,,)21>0. (By(7)
Therefore, (8) remains true if we replace t,, t, by 1, i.e.

312+ﬂ13+ﬁ23<1' (B)
Also,

- _ 2 2 2
d(f)=a,,a,,8,,+2a,,8, a,, —a,,a3, —a,,a3,—a,,a},

— 2 2 2
=0a,,0,,853(1 —2B,,8,3B,,— B;, — Bis — B33)

=a,,a,,a,,A, say. ©)

4.3 Using inequality 1 of § 4.1, together with the arithmetic geometric mean inequality,
we get

9A?, >4a,,a,,(a,, +a,, + 2a,,)/d(f)
=8a,,0,3(/0,5,05; + aza)\/m
=8a,,a,,. /anazza”A(\/;z;_a; +a,,)
= 8\/‘11—1&(022‘133)3/2(\/ 32823 + a33),

'8 a,,A<9%a,,a,,— a§3)2/(a22a33)312(v ;043 +ay3)
a%s 2 9,3
=9{1— P £
42293 V82923
=9(1-p2,)* /1 - B,,)
= 9(1 - ﬂzg)(l + ﬂ23)2’ and

— 9
Ja, A< (1= B )X+ By ©)

so that

Similarly, (2), (3) give

— 9
\/@Asg(l — B, )1 +B,,)% (10)
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and
Va33A<§(l—ﬂu)(l+ﬁm)2 (11)

Multiplying (9), (10), and (11), we get

Vv d(f) = ‘211022033A <(9/8)3(1 - Blz)(l - 523)(1 - 313)
(1+ B, (1 + B,5)*(1 + B,,)7/A
=h(ﬂ12sﬂ23aﬂ13)s say (D)

44 Our object now is to use (D) above to show that the condition (B) of §4.2 (i.e.

B,,+ B, + B,; <1) implies \/d(f) <4. (This will, of course, prove theorem IC in
case I).

We note that if §,, + B,, + B,5 < 1, one of the f’s must be < 1/3. Increasing the
B increases the numerator of h and decreases its denominator

A=(1‘2512323ﬂ13_ %2— fs_ﬁgs)’
because

i(l —x)1+x?=—-(1+x?+2(1—x?
dx

=(1+x)(1-3x)=>0if x<1/3.
Increasing the f’s appropriately, we can assume

Bz + By +B5=1 (E)

Putting f,,=1—B,, — B,,, we have

A=1-28,,B,3b,3— fz— fa_ %3
=.1‘2312513(1—&2_[313)_/332— f3—(1—-ﬁ12—ﬁ13)2
=1-2ﬁ12513+2ﬂ12B13(B12+B13)"ﬂ§2— 33

_1+2(ﬂ12+513)"(ﬂ12+ﬂ13)2
=2(B,, +B,3)(1 + B3B3 — By —B13)
=2(B,, +B,,)1 — B,,)(1 = B,3), (12)

while
(1 _ﬂlz)(l —B13)(1 _ﬂ23)(1 +B12)2(l + ﬂ13)2(1 + ﬁ23)2
=(1—B,,)1=B B, + B )+ B+ B 2—B,,—Bi5),

so that (D) gives
vV d(f)<(9/8)3(1 '-ﬂlz)(l —ﬁls)(ﬂlz + ﬂ13)(1 + ;812)2(1 + ﬂ13)2

(2— ﬂlz - 513)2/2(ﬁ12 + ﬂl;«))(l - 512)(1 - 513)
=(93/2'%(1 + 1)1 + B1)2 - B, — B30 ¥
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Also (7) gives 0< 8,,<1/2,0< f,, < 1/2. We now observe

Lemma. The maximum of f(x,y)=(1+x)(1+ y)(2—x—y), subject to 0<x,y<lis
attained only when x =y = 1/3 and has the value (4/3)>.

Proof. By the inequality of arithmetic geometric mean

l+x+1+y+2—x—y
3

3
f(x,y)=(1+X)(1+Y)(2-X—Y)<( ) = (4/3)%,

and the equality occurs if 1 + x=1+y=2—x—y=4/3,ie. x=y=1/3
Using the Lemma in (F), we get

VMU)<;;@ﬂf=22=«

which proves Theorem I(C) in this case.
We also note that d(f) can be 16 only if

ﬂlz = 1/3: ﬂ13 = 1/3’ ﬂ23 = 1/39

222
A=2522220273),
333~ 2¢7)

and by (9), (10), (11)

Vagh=22/3 43

ie.
2 33
a;= (4/3) ig = 3,
ie.,

f(xl,xz,x3)=3l Z x‘2—2 z x;xj

€ig<3 1gi<jg3

5. Proof of Theorem IC, Case II
5.1 In this case f = Za,;x;X;,a,;,=a,; and

0<a,, <a,,<ay,,

0<2a,,,2a,,<a,,,0<2a,,<a,,.

a,;= B/ a,a,, 1 #]

Writing

We have

0<p,<

N | =
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We divide this case into two subcases:

(a) at least one f,; <0459, i #j,
(b) 0459 < B, < 1/2 for i,j,i #).
6. Proof of Theorem 1C Case II (a)

6.1 Asin§4.1, considering the partial sums f(0, x,,x3), (x,,0,x3), f(x;,%5,0), and
noting a;= 0, we get

4a,,a,,(a,, + a3~ 20,,)y/ d(f)<9A,, Y]
4a,.a, (ay, +a,, ~2a,,)/d(f)<9AZ,, )
and
Al da,,a,,(a,, +a,,—2a,,)/d(f) <9A], 39
S0

- 2 2 2
d(f)=a,,8,,8,,+28,,8,,8,,—a,,83,— a,,87; — 83,47,

_ _p2 _p2 _p2

=a,,0,,8,5(1+2B,,8,,833— B1>— B33 — B31)

— ’ 1

=a,,4d,,a4,A’, say ()

from (1') and (C') we get, applying A—G mean inequality,

9A%, 2 8a,,8,,(:/,,855 — a,,)/d(f)
=8y allA’(a22033)2(1 = B,5),

so that

8./a,, A <9(a,,a,;5 ~ a2;)*ay,8,,)* (1 - B,3)

=9(1 - B3, /(1 — By3)

=9(1~ B, )1 +B,,) )
Similarly, (2'), (3') and (C') give

8./a,, N <91 —B,)(1 +B,,)? (5)
8./a,, A <9(1 - B, )1+ B,,)% 6
Multiplying (4'), (5"), (6'), we get

8 /d(f)A' <9*(1 = B,,)(1 — B,3)(1 - B,5)

1+ B, + B, (1 +8,35)%
and

VA <O/8° (1= B,,)(1 —B,3)(1 ~B,3)
( ""?12)2(1 +ﬁ13)2(1 + ﬂ23)2/1 +2ﬁ12513323 - fz - fa - ga
= F, say. (F)
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Make the substitution

xy=148,,%=1+p,,x3=1+8,,.
Then
1 €< x; €£3/2, and at least one x; < 1.459.
Noting

2%, %, X3 — (X; + X5 +x3—2)2
=2(1+ ﬁu)(l + »813)(1 + ﬁza) -1+ ﬁlz + 513 + ﬂza)z
=1+ 2»812B13ﬂ23 - fz - 33 - §3 =4,
We get, from (F'),

JA) < OB (2~ x,)2 — x3)2 — x3)x3x3x3/
2%, Xpx3 — (X1 + X5 + X3~ 2)%

= F(x,,X5,X3), say.

It is, therefore, enough to prove that if 1 <x;<3/2 and at least one x; < 1-459,
then F(x,,x,;,Xx;)<4.
Now 0F/0x, has the same sign as

(4x; — 3x3)(2x, X, X3 — (X; + X2 + X3 — 2)7)
—(2x,%3 = 20x + X3+ X3 — X7 (2 — x,),
which has the same sign as
(4 — 3%, )(2x; X3 — (X1 + X3 + X3 — 2)%)
—2x,(2— % )(X2X3— X — X3 —X3+2)
=4x;%,%3(1 = x, )+ (x; + X3 + X3~ 2)
{4x; — 2x2 — (4 = 3x,)(%; + X, + X3 — 2)}
=4x,%x,%3(1 —x )+ (x; + X3 + X3 —2)
{x} —(@—3x)(x, + %3~ 2)}
= G(x,Xz5X3), 5aY.
Writing x = ((x, + x3)/2), and noting,
X3%3 ((x2 +%3)/2 =x%, 1-x,<0,
G(xy,%5,%3) = 4x, x3(1 — x;) + (x; +2x —2)
{x2 — (4~ 3x;)2x ~2)}
=(x; —2)*{x, —4(x~1)?}
=(x; —2)*{x; —1+1—4(x—-1)*}
= (x; — 2)%(x, — 1), (because 0<x—1<1)

=20.
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Therefore, (0F/0x,) = 0. Similarly (0F/0x,) 20, (8F/0x5) = 0, and the maximum of
F will occur at x; = 1-459, x, = 1-5, x5 = 1-5,so that F < F(1-459,1:5,1-5)=399... <4,
and the Theorem is proved in this case.

7. Proof of Theorem IC Case II (b)

7.1 In this case 0-459 < B, <05 for all i, j, i # j. We first note that the inequality (1),
(2'), (3") of §6.1 is valid in this case also.
Since

S(xg,%5,%3) ~ f(x) —x3,%3,X3),
The form
g(x2,%3) = f(— x5, X3, %3) =(ay, + @y, —2a,,)x% + 2(a,5 — A, 3) X2 X3 + Ay X2
is a partial sum of f.

Since
g(x2,%3) ~g(x2, — x3),

g(x2,%3) ~ (8, +a,, —2a,,)x3 — 2la,, — a,,|1x, X3 + ay;x2 = g'(x,x,), say.

Then R(g) = R(g).

Since
0<2a,, —a ,l <max(2a,,,2a,,)<a,,<4a,,+a,, —2a,,,
and
12(ay3 —a,3) < @, < ay;,
R(g)=R(g')=as,(a,, +a,, —2a,,)
(a,, +a,, —2a,, +ay, — 2|a,, — a,,|)/4d(g),
where
d(g)=(a,, +ay,—2a,,)a,; —(a,, —a,,)?
=A,; +A,, +2(8,5a,5—a,,a,,)
=A;; +A,;+2A,.
Since
9
R(g) < Rd(g)/\/ d(f),
we have

ay3(a,, +a,, —2a,,)a,, +a,;, + a3, —2a,, —2|a,; —a,l)
- 9
,/d(f)SZ(A“ +A22+2A12)2. (13)

Permuting x,, x,, x5, we get two similar inequalities.
Using

ﬂij(aﬁaﬂ)l/z =a,, t) =/ay,/a,,, 12 =/a,,/a,,, we have

@y, +a,,—2a,,)=(a,,a,,)"*(t, + ;' — 28,,),
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(a,, +a,,+ay,—2a,a,~2la,, —a,,l)
= (auazz)l/z{tl +et+ é —2B,,— ﬂ%}'ﬂ“ - B13t1|}’
A +A,,+2A =050, a3 +a,,85,— a3,
+2(a,38,5,— a,,a5;5)
=0,,855(1 - B3;) +a,,a5,5(1 — B33)
+2(ay,8,,)' "2 (B538,3033 — B12953)
=0435(a,,0,,)" 2 {t7 (1 = B3) + t:(1 — B33) + 281385, — B2)}

and (13) becomes
d <9 2 1 2 —11 2
vV U)\Zassauazz[tl( —Bis)+t (1= B35)

_ - 1
+2(B,3B33— B12)Va53a,,a,,(t + 2, ! _2ﬁ12)<t1 +e7! +F
1%2

2
- zﬂlz - ;l_t;lﬂzsﬂxstll)

or
9
\/d(f)Sza”[tl(l— )+,
+2(ﬂ13ﬂz3_ﬂ12)]2/(t1+t_l"2ﬁ12)
1
(tl+t;1+ﬁ— ﬁ |ﬂ23 ﬂlatl) (14)

1%2

Now (3') can be written as
9.2
Va4 SZAz,a/“nazz("u +a,,—2a,,)
9 2 32
= Z(auazz —aj,)’/a, 8,500, +a,,—2a,,)
9 12 2 2 -1
=Z(a11a22) (1 - 12) /(tl + t1 _2ﬁ12)’

using (C'), we have

;9 -
V81,185,053 SZ(anazz)m(l —BL)? /e + 171 —2B,,)

so that
a3, <(9/42(1 — BL,) /e, + ¢ — 2B, ,)* A
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Substituting in (14), we get
VA <O/ - B2,) [1,(1~ B3,)
+ tl-l(l —ﬂ§3) + 2(ﬁl3ﬂzg - ﬂlz)]z/
1 2
Ny, +1t]t - 2/312)3(1.‘1 +e! +t—t3—2/312 -

163 5% 2}

|ﬂ23_ﬂ13t1|)~ (15)
Since
t < 1, |ﬁ23 —ﬂlgtll < 1’ 1/t2 = 1’

o1
20— 2,3~ Bista| Z0if x=->1,
2

JA) SO/ - B2,)* e, (1 - B2,) + 1711 - B2,)
+2(ﬂ13ﬂ23_ﬁ12)]2/A’{(t1 +t1_l —2ﬂ12—2t;1
1By3— Bystal(ty + 171 —2B,,)°}. (16)

Writing ¢ for ¢, for convenience, we have

0<t<],
and
VA SOMP U= BL) [t +171 =28, — By — 7' B35 + 281385577/
A+t t— 2ﬂ12)3(t +2t7 2B, 27! [By3 — B,5tl) an
Since
1
0< 813,823,851, gi’

t(1- fs)'*' t—l(l - ﬁ%s) + 2(513323 - sz)
?3/4(t-+—t‘l)—2ﬂ12
232-1>0,

2[’13/323 < tﬂf: + t_lﬁga’

we have, from (17),
JA)<OMPA - B2 e+ —28,,)%
A+t =28, +2t71 -2, —2t 7 |B,, — B, ,1l)
=(9/4°(1 - B2,)*/
A+t =28 )t +2"1 =28, —2t7|B,, — B, t]). (18)
Now, let

2
F(t)=t+§—2ﬂu —;lﬁzs — B4t
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If Bza >B13t’

28 2 1
g Sl-ata

, 2
F(t)=1—t_2+

1
=1—t~2<0, because t < 1,

while, if 8,, < 8,1,
, 2 28 2

Therefore, in all cases,

F()=2F(1)
=3-2B,,—21B,3— 8,5l
23-28,,—2x0041
=2918-28,,,

because |B,, — B,51 <05 — 0459 = 0-041.
Also

1
t+-=26,,>2~25,,.

Therefore, (18) implies
JAU) <O/ (1 - B2,)*/2:918 — 28,,)(2 - 2B, ,)A.. (19)

Now
A’=1+2ﬂ12ﬁ13ﬂ23— fz" fa_pgs’
oA’
=26,,6,,~28
aﬁla 12723 13
< 211 —2(0-459)
22
<0.
Similarly
0A 0,
aﬂ23
therefore,
, 11 1 1
A >1+231255— fz—z—z

1
=‘2’(1 +B12 _zﬁiz)

- -;-(1 — B )1 +28,,) (20)
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Writing B for B, ,, for convenience, (19) gives

V) < 9/43(1 - B*)*/(2:918 - 28)(1 + 28 (1 - p)*
_1 /4 (1-p*a+p*
2 (1-459 — B)(1 + 2B)
- _1,(9/4)3 1- ﬂ (1 - ﬁ)(l + ﬂ)‘
2 |1-459 -8 1428

- %(9/4)3g(ﬂ)h(ﬂ), say. @)

Now
1—-8 1 0-459

1O =Tas9— 5~ "Ta9_p

is a decreasing function of §. Therefore,
g(B) < g(0-459). (22)

W) = (1 — AL + B/ + 28,
K_ -1, 4 2
hp) 1—-8 1+8 1428
4+4B—8F—1-3F— 267 —2+2p°
N (1-By*(1 +2p)
(82— p—1)
T Tu-pras2p =’

Again

b4

because
862 — B — 1 > 8(0-459)* — (0-459) — 1
> 8(0459)2 — (0-459) — 1

=162 — 1459 > 0.
Therefore
h(B) < h(0-459), and

VAN < —;—(9/4)3 g(0-459)h(0-459)

_ 729(1 - 0:459)%(1 + 0459)*

=393...<4.
128 1(1 +0918)

Thus d(f) < 16 in this case also and the proof of Theorem IC is complete.

8. Proof of Theorem II’

8.1 Let K be the sphere |x| <3/4 and A the lattice generated by (1,1,0), (0,1, 1),
(1,0,1). We have to show that every straight line ! meets a k + A, AeA.
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We divide the proof into two parts:

(a) The lines [ are parallel to “lattice lines” OA, A€eA,
(b) [ is not parallel to any lattice line.

9. Proof of Theorem II' Case (a)

9.1 The quadratic form
Sy, %3, %3) = (X1 + %5)2 + (X3 + X3)* + (x5 + %)

=2Ex} 42 Y xx,

1gi<j<g3

is the quadratic form of A corresponding to the given basis. The adjoint of f is

F(xl,xz,X3)=32xl.2—2 Z x"xl'.
1<i<j<3
As explained in §2.3, Theorem II' in case (a) will follow if we can show that for

every partial sum G of F, R(G)<%d(G)/\/d(F). We note that F(x,x,,x3)=
(e + X5 —x3)2 4+ (x5 + x3 — %)% + (x5 + x; — x,)>. For integers x;, x; +x;— X3,
X, + X3 —X;, X3 + X, — X, are all even or all odd. Therefore, the possible non-zero
values of F for integers x; are 3, 4, 8, 11,... in ascending order, i.e. the values can
be 3,4 or > 8.

Let G'(x,, x,) be a partial sum of F and G (x,x,) = ax? + 2bx, x, + ¢x3,0<2b <
a<c, a>0, be the reduced form equivalent to G'. Then

R(G') = R(G) = ac(a + c — 2b)/4(ac — b?)
and we have to prove
ac(a + ¢ — 2b) < 9/16 (ac — b?)?, O

because d(F) = 16.
We shall prove this by contradiction, i.e. we shall show that

ac(a + ¢ — 2b) > 9/16(ac — b?)?

is not possible.
Since the values of G for integers x; are a subset of the values of F for integers
x;, we have the following possibilities:

@) a=3, (ii) a =4, (iii) a > 8.
(i a=3,sothatb=0or 1, c23.
If b=0, ac(a + c — 2b) > 9/16(ac — b*)?, then
3ac(3 + ¢) > 9/16(3¢)?

ie.
11¢> —48¢ <0
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ie.

c(l1c — 48) <0,
and

c=3orc=4,and

G(xy,X,) =3x2 4+ 3x2 or 3x? + 4x2

takes the value 6 or 7 for integers x;. Since 6, 7 are not possible values of F, this case
is not possible. If

b=1, ac(a + c — 2b) > 9/16(ac — b?)?,

then

16¢(1 +¢)>3(3c—1)?
ie.

11c¢2 —34c+3<0
1.e.

€ —3)(11c—1) <0,

which is impossible, because ¢ > 3.
(ii) Let a=4,so that b=0, 1 or 2 and ¢ > 4.
Then ac(a + ¢ — 2b) > 9/16(ac — b?)? implies

64c(4 + ¢ — 2b) > 9(dc — b2)?
or
80c% — c(72b* — 128b + 256) + 9b* < 0.

b =0 gives
80c? < 256¢

and c < 4, which is impossible,
b=1 gives

80c? —200c + 9 = 80c(c — 4) + 120c + 9 <O,

which is not possible, because ¢ > 4,
and b =2 gives

80c? — 288¢ + 144 = 80c(c — 4) + 32¢ + 144 <0,
which is again not possible.
(iii) a > 8.
By the Theorem of Lagrange, since G is reduced,

ac < 4/3d(G) =4/3(ac — b?),

so that

(ac — b?) > 3/4ac,
and

ac(a + ¢ — 2b) > 9/16(ac — b?)?
implies

ac(a +c —2b)>9/16 9/16a>c?
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and

@+0>

a+c 256ac,

so that
1+1>81
a c¢ 256

But
az8, c>=8 and
1 1t 1 1 1 8t
-+ -<-F+-=-<—,
a ¢ 8 8 4 25

which shows that this case is also impossible.
We have thus completed the proof of Theorem II' in case (a).

10. Proof of Theorem II' Case (b)

10.1 Let I be a straight line not parallel to a lattice line. Let IT be the plane through
O perpendicular to I. Let A, be the projection of A on II. Then the lines parallel to
I meet the spheres K + A, A€A if and only if the circles C + A, AeA, cover I1, where
C is the circle KnII, ie. C is the circle of radius 3/4. We have then to show that
every point of IT is within the distance 3/4 from some point of A,.

If Proj A = projection of the point A of R® on I, then Proj (A — B)=Proj A —
Proj B, and it follows that A, is an additive subgroup of the group IT under addition.
Also, since A is “three-dimensional”, A, is “two-dimensional”. One can easily see that
for A, we have the following possibilities:

(i) H O is not a limit point of A,, then A, is a two-dimensional lattice, and since
Proj (mA + nB) = m Proj A + n Proj B, one can easily see that [ is parallel to a lattice
line OA of A, and this case does not arise,

(i) If O is a limit point of A,, and all points of A, near enough to O lie on a straight
line o through O, then A, is dense on «, and consists of points lying dense on lines
parallel to a at the same distance J say, between consecutive ones, and

(ii)) A, is dense everywhere in II, in which case there is nothing to prove.

We have, therefore, to consider case (ii) only. In this case A is distributed in the
planes orthogonal to IT through the lines parallel to « of A,. These planes are at a
distance & apart (i.e. consecutive planes are at a distance § from each other). The
part of A in the plane through « is a two dimensional lattice A, and the parts in
other planes are its translates. The determinant d(A) = J. d(A,), where d(A,) is the
determinant of A,.

We notice that the squares of the distances between lattice points of A are the
values of f =2Xx? — 2Zx;x;, so that these squared distances are at least 2, and A
provides a packing for spheres of radius (1/2)\/5. Therefore, A, provides a packing

for circles of radius l/ﬁ. Since the density of the closest lattice packings of circles
is n/2\/§, we get

n/2d(A;) < /2./3
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and

d(Ay) = /3.

dN)=2,8<2//3<3/2

Since

Thus the distance & between consecutive lines parallel to [ on which A, is dense is
<3/2. Let PeIl, then P is at a distance < d/2 < 3/4 from one of these lines and at a
distance < 3/4 from some point of A,, which completes the proof.

Acknowledgements

This work was carried out during the visit of the first author to Ohio State University,
and we are grateful to the University for making this possible. We are also grateful
to Professors V C Dumir and R J Hans Gill for their assistance.

References

[1] Dickson L E, Studies in the theory of numbers, (Chicago: University Press), (1930)

[2] Fejes Toth G, Period Math. Hung., 7 (1976) 89-90

[3] Lekkerkerker C G and Gruber P, Geometry of numbers (Revised edition), (Amsterdam: North-Holland),
(1987)

[4] Makai E Jr., Stud. Sci. Math. Hung., 13 (1978) 19-27



