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AImtraet. A solution is given for the following Problem of G Fejes Toth: In 3-space find 
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1. Introduction 

1.1 The object of this note is to give a solution of the following problem of G Fejes 
Toth [2]: 

In 3-space find the thinnest lattice arrangement of  closed balls,such that every straioht 
line meets these balls. 

As pointed out by G Fejes Toth himself this is in some sense the first unsolved case 
of the more general problem: 

In n-space find the thinnest lattice arrangement of  closed balls such that every k- 
dimensional (0 <~ k <~ n - 1) .flat meets one of  these balls. 

For k = 0, this is the problem of thinnest lattice coverings by spheres, while for 
k = n - 1, Makai [4] has shown that the problem can be reduced to that of the closest 
lattice packings of spheres. Thus the solution is known for k = 0, n ~< 5 and for 0 ~< k = 
n - 1 ~< 7. (See any book dealing with packings and coverings, e.g. Lekkerkerker and 
Gruber [3]). The problem above can be generalised to one for other "bodies" also. 
In the case of convex bodies, Makai [4] has shown that a theorem analogous to 
the one for spheres holds if k = n - 1. Our solution to the Fejes Toth  problem stated 
in the beginning is contained in the following Theorems I and II and the remark 
after Theorem II. 
(We shall throughout be working in the three-dimensional Euclidan space R3). 

Theorem L Let K be the sphere Ixl <~ 1. Let A be a lattice with determinant d(A).  I f  
every straight line meets a ball K + A, A~A,  then d(A) ~< 2(4/3) 3. 

Theorem II. Let K be the sphere [xl ~< 1 and A be the lattice generated by 4/3(1, 1,0), 
4/3(0, 1,1) and 4/3(1,0, 1). Then every straight line meets a sphere K + A, A~A.  

137 



138 R P Bambah and A C Woods 

Remark Our proof of Theorem I (see w 4.4) shows that "up to" orthogonal trans- 
formations the lattice A of Theorem II is the only "critical" lattice. 

For convenience we replace Theorems I and II by the equivalent Theorems I', II': 

Theorem I'. Let K be the sphere Ixl ~< 3/4 and A a lattice with determinant d(A). /f  
every straight line meets a ball K + A, A~A, then d(A) ~< 2. 

Theorem II'. Let K be the sphere [xl ~< 3/4 and A the lattice generated by (1, 1,0), 
(0,1,1) and (1,0, 1). Then every straight line meets a K + A, A~A. 

2. Proof of Theorem I' 

2.1. Let K be the sphere Ix[ ~< 3/4 and A a lattice. Let AreA. Let II be the plane 
through O perpendicular to OA x . Let A* be the (orthogonal) projection of A on H. 
Let C be the circle Knr I .  All lines parallel to OAt meet a K + A, AeA is equivalent 
to the statement: the circles C + A*, A*eA* cover H, i.e. the "covering radius" p(A*) 
of A* is ~< 3/4. 

2.2. Let Ax,A2,A 3 be a basis of A. Let L be the matrix (A1,A2,A3) with A1,A2,A3 
written as column vectors. The positive definite quadratic form f ( x )  = f ( x l ,  x2, x3) = 
X' L' LX, where X' =(xx,x2,x3) is called the quadratic form of A w.r.t, the basis 
A1, A2, A 3 . Its determinant d(f) = det(L' L) -- d2(A). If (B1, B2, B3) -- (A1, A2, A3) U 
is any other basis of A, the U~GL(3,Z) and the corresponding quadratic form 
X'U' L' L U X  is equivalent to f (X) .  In fact the quadratic forms corresponding to 
different bases of A consist of the class of quadratic forms equivalent to f. 

Again if f (x) = X' L '  L X = X'M' MX,  then M = TL, where T is orthogonal and 
the lattice TA with basis TAx, TA2, TA3 is an orthogonal transform of A. We may 
note that T K  = K, and A has the property of Theorem I' if and only if TA has. 

2.3. Let f(x)~-Y.,aoxixj, au=aji be the real positive definite quadratic form 
corresponding to a basis A1, A 2, Aa of A. Write 

+a12x2+ax3x3~ 2 f = a l i  xl +O(X2,X3) 
all axl / 

: (~ZlX X 1 "1- 0[x2X 2 "~" 0Cx3X3) 2 "[" (0~22X 2 -~ 0~23X3) 2 ~ ((Z32X 2 "[" 0~33X3) 2, 

and f is the quadratic form of a lattice Ax = TA, T orthogonal, with respect to the 
basis B I =  TAI ,B2=  TA2,Ba= TA3, and Bx=(~ql,0,0), B2=(~q2,cte2,~t32), 
B3 = (~q3,~2a,~taa). Every line parallel to OA x meets a K + A, A~A if and only if 
every line parallel to OB x meets a K + B, BeA 1 . Since B 1 is the point (~xx,0,0), the 
plane H of 2.1 is x x = 0 and the projection A* of A x on H is the lattice generated 
by (0, 0t22 , ~a2) and (0, ~23, :t3a), while 

g(x2,  X 3 ) =  (0~22 X 2 "~ 0~23X3) 2 + (0~32X 2 + ~33X3) 2. 

Let p = p(A*) be the covering radius of A* and R(g) = p2. (R(g) depends only on 0, 
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because if g is a quadratic form of another lattice A*, then A* = TA*, where T is 
orthogonal and the covering radius of A* is the same as that of A*.) 

By w all lines parallel to OA1 meet a K + A, AeA if and only if p(A)* ~< 3/4, 
if and only if R(g) <~ 9/16. Since every primitive lattice point can be extended to a 
basis of A, all lines parallel to lines OA, A e A  meet the balls K + P, P e A  if and only 
if for all formsf '  ~ f ,  the corresponding "sections" O'(xz,x3) have R(O') <~ 9/16. More 
precisely, the hypothesis of Theorem I' implies the following: 
Let A be a lattice. Let f ( x ) =  Y~aqx~xj, a~j =ai~ be any quadratic form of A. Let 

( +a12x2+a13x3~ 2 f ( x ) = a l l  x I -1Lg(X2,X3). 
all all / 

Then 
R(g) <~ 9/16.  

To prove Theorem I' it is enough to prove 

Theorem IA. Let f ( x )  = Y~aox I x i, a o = aji be a real positive definite quadratic form 
with determinant d(f). Let f ' . ~  f ;  write 

; - -12~ ~_--13,,. | f ' ( x ) = a l l  xl "J'/--~"--"~2T--~--"~'3~ "4-g'(x2,X3)" 
a l t  a l l  / 

I f  R(g') <~ 9/16 for each f '  ~ f ,  then d(f)  ~ 4. 

2.4. Let f (x )  = Y, aqx~xj, aq = ai~ be a positive definite quadratic form. Let 

Then 

a 2 
.[. a t 2 x 2  13x3 ~ f(x)=a11 X 1 - -  - ~ - -  "~g(x2,X3). 
all atl / 

2 2 
a l l g  ---- (a l  la22 --  a122)x 2 -I- 2 ( a l l  a23 --  a12a13)x2x 3 -t- ( a l i a 3 3  --  a13)x  3 

---- A33x22 --  2A 23x2x  3 d- A22 X2 

= G', say, 

where A~j are the entries of the matrix adjoint to (aq). Since g = axl I G', R(ff) = al~ R(G'). 
If 

T h e n  

Since 

_ 2 2 
G - A22x  2 -I- 2 A 2 3 x 2 x  3 -I- A33x3,  

then G ~ G' and  R(G) = R(G'), and 

e(g) = R(C). (a) 

Let A = (aq), adj A = (Aq). Then A adj A = det(A)I, and det(adj A) = (det A) 2. Write 

F(x) = adj f (x) = Y Aqxtxj  

d(F) = det(Aq) = (det A) 2 = d 2 (f). (b) 

A(adj A) = (det A)I = d(f)I ,  and (adj A) adj(adj A) = d(F)I = d2(f)l ,  
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we have 

i.e. 

1 1 
A = ~ adj (adj A) 

d(f) a+tl ) 

1 1 
d (f)  (au) -- d - ~  adj (Au) 

Equating elements in the leading position, we get 

1 1 
d (f----) all = d-T~ (A22A33 - A~3) 

1 
- de(.f)d(G), 

and a~-~ x = d(f)/d(G) = dv/-~/d(G), and, by (a), 

Therefore, 

and 

R(o) = n(G) 

R(O) <~ 9/16 iff R(G) <~ 9/16 d(G)/d(F) ~/2 (c) 

a(F) = d 2 ( f ) .  (d) 

It is well known that i f f  ~ f ' ,  then a d j f  ~ ad j f '  and vice versa, i.e., the class of forms 
equivalent to a d j f  is the class of adjoints of forms ~ f. 

Let F(x , , x2 ,xa)=EAux+X ~ be a definite quadratic form and F I ~ F .  Let 
G(x2,x3)- FI(0,x2,x3) be called a partial sum of F and let S be the set of partial 
sums of F. Since F(xl ,  x2 ,x3)~  F(xa ,x , ,x2)  the set of partial sums of F consists of 
the forms G(x~,x2)--F'(xl ,x2,0)  for all forms F' ... F(x). 

We can replace Theorem IA by (see (c) and (d) above). 

Theorem lB. Let F ( x l , x z , x 3 ) = Z A o x ~ x  j, A o = A j t  be a positive definite quadratic 
form. Suppose for every partial sum G of  F we have R(G) <<. 9/16 d(G)/ dx//-~. Then 
d(F) ~< 16. 

It is clear that we can replace F by any equivalent form without affecting the 
hypothesis or conclusion of the theorem. For convenience we alter the notation a 
little bit and state Theorem IB as: 

Theorem IC. Let f (x 1 , x 2, x3) = Zaux~x j, a u = a j+ be a positive definite quadratic form. 
Suppose for every partial sum g(x 1, x2) = f ' ( x  1, x2,0), where f '  ..~ f ,  we have R (g) <<. 9/16 
d(g)/x/~(f), then d(f)  <~ 16. 

3. Proof of Theorem IC 

3.1 A basis A,B of a two-dimensional lattice A is said to be reduced i f tbe angle O 
of the A OAB is largest and lies between 60 ~ and 90 ~ equivalently A OAB is acute 
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angled with largest angle at O. In this case the covering radius of A is the circumradius 
of A OAB. (see e.g. Dickson [1], pp. 160). 

Now suppose A, B generate a two-dimensional lattice and A OAB is acute angled. 
Then (A1, BI ) = (A, B) or ( -  A, B - A) or ( -  B, A - B) is a reduced basis of A and its 
covering radius is the circumradius of A OAI B1 -- the circumradius of A OAB. Thus 
if A, B generate A and A OAB is acute angled, then the covering radius p(A) of A is 
the circumradius of A OAB. 

Let g(x, y) = a.y.2 -1L 2b X y  "[" Cy 2 be positive definite. Let g(x, y) = (0oc + fly)2 4. (yx 4- @)2. 
Let A=(a,7) ,  B=(fl ,6) .  Then A,B generate a lattice A and R(0)----p2(A). The 

triangle OAB is acute angled if the square of each side ~ sum of squares of the other 
two sides, i.e., if 

i.e. 

a ~< c + (a + c - 2b), 

c <<. a + (a + c - 2b), 

a + c - 2 b < < . a + c ,  

b <~ c, b <~ a, b >~ O, i.e. 

0 ~< b ~< min(a, c). 

Therefore, if 0 ~< b ~< min(a, c), then 
R(O) = (circumradius of triangle OAB) = ac(a + c - 2b)/4 d(0). (If ABC is an acute 
angle triangle with sides a, b, c circumradius p and area A, then 

so that 

a b c 

P=2sinA 2sinB 2sinC' 
abc a3b3c 3 p3 _ 

8 sin A sin B sin C 64(1/2 bc sin A)(1/2ca sin B)(1/2ab sin C) 

a3bac3 
I 

64A 3 

a 2 b 2 c 2 

p2 = 4(2A) 2" 

3.2 Let f (x l )  = Y.aux~xj, ao = a~ be a positive definite form, all of whose partial sums 

g(Xx,X2) have R(g)<~ 9/16 d(o) /dx /~ .  We have to show d(f)~< 16. 
By replacing f ,  by an equivalent form reduced in the sense of Gauss and Sieber 

(see, e.g. Dickson ['1], Th 103, pp. 171), we can suppose 

0<al l  ~022 ~a33 ,  

2[a12 [ ~<011, 210131 ~<011 , 2[a23 [ ~<022 , and 

au, i ~ j ,  all have the same sign, 

Oll q- 022 4. 2(a12 + ala + d23 ) t> O. 

(A) 
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We divide the proof into two cases: 

case I: all a~, i # j ,  are negative (or 0), 
case II: all a o, i # j ,  are positive (or 0). 

4. Proof of Theorem IC Case I 

4.1 Clearly gl =f(O, x2,X3), g2 =f(xz,0, X3) and g3 =f(xl ,x2 ,0)  are all partial 
sums off. If ZAqx,x i is adjoint to f,  then 

d(gt) --- Al l ,  d(g2) = A22, d(@3) --- A33. 

Also each g is equivalent to one with the cross term of opposite sign. 
Therefore, applying the formula of w 3.1, 

R(01) = a22033(022 + 033 d- 2a23)/4 Alt ,  

R(g2) - aaaaxl(a33 + all + 2031)/4 A22, and 

R(g3) ----- 011022(all + 022 -t- 2012)/4 A33 

By the hypothesis R(gl) <<. 9/16 d(g~)/dx/~), and we have 

022023(022 d- a33 d- 2023)/4 Al l  ~ 9 / 1 6 A l x / d x / ~  
or 

4022033(022 -~ 033 + 2023) d ~ ~ 9 A21. (1) 

Similarly, 

4a33at1(033 + at1 -t- 2013) d x / / ~  ~ 9 A22 , (2) 

and 

4OllO22(011 -t" 022 -t" 2012) dN/~-~ ~ 9A 2 33" (3) 

4.2 Define fl12'f123'fl13 by 

012 = - - f l 1 2 ~ ,  a13 ~'~" -- f l 1 3 ~ ,  

and put 
t1=(alt/a22)1/2, t2--(a /a ~x/2 22/ 33J �9 

The reduction conditions (A) of w 3.2 give 

and 

O~<tt, t2~<1 

1 1 1 

at1 + a22 + 2(012 + Ota + a23 ) >1 0 becomes 

all  + 022 I> 2 ( f l 1 2 ~  + f l 1 3 ~  + f123x~22033 ), 

(4) 

(5) 

(6) 

(7) 
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so that, dividing by ~ ,  we get 

tit22 + t2 >/ 2(f112tlt2 _l_ fl13tl _F fl23). 

Now, if we write 

g(t  I , t2) = t 1 2t 2 -F t 2 -- 2(fl12t I t 2 4- f l l3 t l  "~" fl23)' 
then 

~__~g = 2t i t  2 - -  2fl12t 2 -- 2fll 3 > / 2 t i t  2 -- t i t  2 - -  t i t  2 
at z 

>/0, 
0g 
Ot-~ = t~ + 1 - 2 f l 1 2 t  1 

= 1 + tx(t 1-2fl12)~> 1 >0 .  (By (7)) 

Therefore, (8) remains true if we replace t I , t 2 by 1, i.e. 

Also, 
2 2 

d(f)  = a 11 a22aa3 + 2a12aiaa23 - a33a12 - a11a2a - a12a~3 

= at1 a22a33( l  -- 2 f l 1 2 f l 1 3 f 1 2  3 - -  f 1 2 2  - -  fl213 - -  fl23) 

---- a l l a 2 2 a 2 3  A, say. 

4.3 
we get 

so that 

143 

(8) 

(By (7)) 

(B) 

(c) 

Using inequality 1 ofw 4.1, together with the arithmetic geometric mean inequality, 

9A~1 I> 4a22ass(a22 + a33 + 2a23) d,~-d-- ~ 

> 1 8 a 2 2 a 3 3 ( ~ + d 2 : ~ )  d ~ 

= S a 2 2 a 3 3 ~ 3 A ( ~ / a 2 2 a 3 - -  3 + a23) 

= 8 ~ ( ~ , x a , 3 ) ' I ' ( ~  + ~2,) ,  

�9 8 ~  ~< 9(a22a33 -- a ~ 3 ) 2 / ( a 2 2 a , 3 ) 3 / 2 ( ~  + a23 ) 

a22a23 N//a 2~2d23 ) 

= 9(1 - p~3)2/(1 - P23) 

= 9(1  - -  f l23)(1 -F f l23)  2, and 

< 9(1 -- fl23)(I =~ ~23 )2. (9) 
0 

Similarly, (2), (3) give 

~< 9(I - ~ ) ( I  + p~)~, 
0 

(10) 



144 

and 

R P Bambah and A C Woods 

0 
~<8(1 - f l12)(1 + ~ 1 2 )  2 

Multiplying (9), (10), and (11), we get 

4 .4  

(11) 

= ~/a~1a22a33A <~ (9/8)3( 1 - ]~12)( 1 --  f l23)( 1 --  P13)  

(1 + f l12)2(1 + f f23)2(1  -t- f l13)2 /A 

---- h(f112, f l23,  fl13 ), say (D) 

Our  object  now is to use (D) above  to show that the condi t ion (B) of  w 4.2 (i.e. 

]~12 "~- fl23 "F/~13 ~< 1) implies d x / ~  ~< 4. (This will, of course, prove theorem IC in 
ease I). 

We note that  if P12 + P23 + P13 ~< 1, one of the ffs must  be ~ 1/3. Increasing the 
/~ increases the numera tor  of  h and decreases its denomina tor  

A = ( 1  - -  2f112f123 fl13 - -  fl22 __fl213 - - f l 2 3  ) ' 2  
because 

d 
~ ( 1  - x ) (1  + x )  2 = - (1 + x )  2 + 2(1  - x 2) 

=(1  + x)(1 - 3x)>~O if x ~< 1/3. 

Increasing the ffs  appropriately,  we can assume 

i l l 2  "F fl23 + fl13 ~-" 1. 

Putting P23 = I - / ~ 1 2 -  #13, we have 

while 

R2 p2 _ p~ A = 1 - 2f l12fl13f123 - e '12 - 13 23 

--- "1 - 2fl12f113(1 - fl12 - f l13)  - fl22 - fl23 - (1 - fl12 - fl13 )2 

f12 2 = 1 - - 2 f l 1 2 f l 1 3 + 2 f l 1 2 f l 1 3 ( f 1 1 2 + f 1 1 3 ) - -  1 2 - - f l 1 3  

-- 1 + 2(fl12 + f l13)  - -  ( i l l2  -F p 1 3 )  2 

---- 2(fl12 + fl13)( 1 + f112f113 --  i l l2  --  fl13) 

= 2(fl12 + fl13)( 1 -- fl12)( 1 -- fl13)' 

(E) 

(1 - -  f l12)(1 - -  i l lS ) (1  - -  f l23)(1 + fl12)2(1 4" f l13)2(1 + fl23 )2 

= (1 - fl12)(1 - f113)(f112 + fl13)( 1 + fl12 )2(1 --F fl13)2(2 --  P12 --  fl13 )2' 

(12) 

so that  (D) gives 

~< (9/8)3( I - Px2)( I - PI3)(PI2 + P13)( I + P12)2( I + P13) 2 

( 2 -  P,2 - PI3)2/2(PI~ + P13)( I - PI~)( 1 - P13) 

--(93/21~ 1 + ~22)(1 + ]~23)(2 - fl12 - fl,3) 2- (F) 
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Also (7) gives 0 ~< fl12 ~< 1/2, 0 ~< ill3 ~< 1/2. We now observe 

Lemma. The maximum of f (x ,y)  = (1 + x)(1 + y)(2 - x - y), subject to 0 <<. x, y <<. 1 is 
attained only when x = y = 1/3 and has the value (4/3) a. 

Proof. By the inequality of arithmetic geometric mean 

f (x ,y)  ( l + x ) ( l + y ) ( 2 - x  y ) ~ < ( l + x + l + ~ + 2 - x - Y )  a . . . .  (4/3) a, 

and the equality occurs if 1 + x = 1 + y = 2 -  x - y  = 4/3, i.e. x = y = 1/3: 
Using the Lemma in (F), we get 

d x / ~  ~< 2~o (4/3)6 = 22 = 4, 

which proves Theorem I(C) in this case. 
We also note that d(f)  can be 16 only if 

fix2 -- 1/3, fl~3 - 1/3, f l23  = 1/3, 

A = 2 -222 = 2(2/3) 3, 
333  

and by (9), (10), (I1) 

= ~2/3 (4/3) 2 

i.e. 
33 

all = (4/3)2-77 = 3, 
1 0  

i.e., 

f ( x l , x2 , x3 )=  3 ~, x ~ -  2 ~, x,xj 
1 ~ t ~ 3  l ~ i < j ~ 3  

5. Proof  o f  Theorem IC, Case II 

5.1 In this c a s e f  = Y.aox~x J, a 0 = aj~; and 

0 < a l l  ~<a22 ~<a33, 

0<<.2a12,2a13 ~< a11,0 ~< 2a23 ~<a22. 
Writing 

ao = f l o ~ '  i ~ j  
We have 

1 
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We divide this case into two subeases: 

(a) at least one/?o ~< 0.459, i ~ j ,  
(b) 0.459 </?q ~< 1/2 for i,j, i #j .  

6. Proof of Theorem IC Case II (a) 

6.1 As in w considering the partial sums f(O, xz,x3), f(xl,0,x3),f(x~,x2,0),  and 
noting aq t> 0, we get 

4a22a33(a22 -6 a33 -- 2a23) dN/" ~ ~ 9A211, (1') 

4as3all(a33 + alt - 2a13) d x / ~  ~< 9A222, (2') 
and 

4al 1 a22(ax i -6 a22 -- 2 a l Z ) X / ~  ~< 9A323 
Also 

d(f) = all a22a33 + 2a,2a13a23 - 011023 -- a22a213 -- a33 a212 

-"--" ala a22a23( 1 + 2/712//22/733 --//212 --/?23 --/721) 

= alla22a33A', say 

from (1') and ((7) we get, applying A - G  mean inequality, 

9A2t > > - 8 a 2 2 0 2 3 ( ~ - a 2 3 )  dv/~) 

= 8 ~ ( a 2 2 a 3 3 ) 2 (  1 -/723), 
so that 

(3') 

(c') 

8V~I 1 A' < 9(a22a33 - a23)2/(a22a33)2(1 -/?23) 

= 9(1 -/723)2/(1 -/?23) 

= 9([ --/723)(1 -6/?23) 2 (4') 

Similarly, (2'), (3') and (C') give 

8 ,~22A'  ~< 9(1 -/?13)(1 +/713) 2 (5') 

8x/~33 A' ~< 9(1 -/?12)(1 +/?,2) 2. (6') 

Multiplying (4'), (5'), (6'), we get 

8 3 ~ / ~  A' ~< 93( 1 - /? ,2 )0  -/?13)( 1 -/?23) 

(1 -6/?12)2(| +/713)2(1 +/?23) 2, 
and 

~< (9/8)3( 1 -/?x2)( 1 --/?a3)( 1 -/?23) 

(l +/712)2(1 -6/713)2(I -6/723)2/1 + 2/712/?x3/723 --/7212 --/?2 -- j/2 13 23 
= F, say. (F') 
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M a k e  the subst i tut ion 

x 1 = 1 + fl12, x 2 =  1 +f l13,  x 3 =  1 +f l23.  
Then  
1 ~< xt ~< 3/2, and  a t  least one xi ~< 1 . 4 5 9 .  

Not ing  

2Xl X2X 3 --  (X 1 + X2 + X3 --  2) 2 

= 2(1 +/~12)(1  +/~x3)(1  +/~23)  - (1 +/~12 +/~x3 +/~23)  2 
2 ~ P 

= 1 + 2p~2/~13/~23 -/~212 - / / ~ 3  - t~23 - A ,  

We get, f rom (F'), 

x /d  ( f )  <~ (9/8)3(2 - x l ) (2  - x2)(2 - x3)xZtx~x~/  

2XxX2X3 - (Xx + x2 + x3 - 2) 2. 

= F ( x l , x 2 , x 3 ) ,  say. 

I t  is, therefore, enough  to prove  tha t  if 1 ~< xz ~ 3/2 and  a t  least  one  x~ ~ 1.459, 

then F ( x , ,  x2 ,  x3) ~< 4. 
N o w  c~F/C~Xl has  the same sign as 

(4x 1 - 3 x ~ ) ( 2 x l x 2 x 3  - (x l  + x2 + x3 - 2) 2) 

- (2x2x3 - 2(xl  + x2 + x3 - 2))x2t (2 - x l ) ,  

which has the same sign as 

( 4 -  3 x 1 ) ( 2 x l x 2 x 3  - ( X l  + x2 + x3 - 2 )  2) 

- 2x t (2  - x l ) ( x 2 x 3  - x t  - x2 - x3 + 2) 

= 4 x l x 2 x 3 ( 1  - x l )  + (x l  + x2 + x3 - 2) 

{4x 1 - 2x~ - (4 - 3x l ) (x l  + x2 + xa - 2)} 

= 4 x l x 2 x 3 ( 1  - x l )  + (xt  + x2 + x3 - 2) 

{x~ - ( 4 -  3xl)(x1 + x3 - 2)} 

= G(Xx,X2,X3) ,  say. 

Wri t ing x = ((x2 + x3)/2), and  noting,  

X2X3<~((X2+X3)/2) 2---X 2, 1 - - g  1~<0, 

G ( x t ,  x2 ,x3)  >t 4xl  x2(1 - x l )  + (Xl + 2x - 2) 

{Xl z - (4 - 3x1)(2x - 2)} 

= ( x l  - 2) 2 {xl - 4 ( x  - 1 )  2 } 

= ( x l - 2 ) 2 { x l -  1 + 1 - 4 ( x -  1) 2 } 

~>(xt - 2 ) 2 ( x t -  1), (because 0 ~ x -  1 ~-~) 

3 0 .  
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Therefore,  (dF/~xt) >10. Similarly (t~F/t3x2) >1 0, (c3F/tgX3) >1 0, and  the m a x i m u m  of  
F will occur  at  x~ = 1.459, x2 = 1.5, x3 = 1.5, so that  F ~< F(1.459, 1.5, 1.5) --- 3.99... < 4, 
and the T h e o r e m  is proved in this case. 

7. Proof of Theorem IC Case H (b) 

7.1 In this case 0-459 ~< flo ~ 0.5 for  all i,j, i ~j .  We first note  tha t  the inequali ty (1'), 
(2'), (3') of  w is valid in this case also. 

Since 

f (Xx,  X2, X3) '~" f ( x  1 -- x2, x2, x3), 
The form 

#(x2, x3) = f ( -  x2, x2, x3) = (alx + a22 - 2at 2)x 2 + 2(a23 - ala)x2x3 + a33x23 

is a part ial  sum o f f .  
Since 

g (x2 ,  x3) ~ g(x2 ,  - x3), 

g(X2, X3) '~ ( a l l  "l" a22 - -  2a12)x  2 - -  21a23 - ax3lX2X 3 + a33 x2 = O'(x2x3), say. 

Then R(g) = R(g'). 
Since 

0 ~< 21a 23 - a l 3[ "-< max  (2a 23,2al  3) --< a22 ~< a22 + a x i - 2al  2, 
and 

12(a23 - -  a13)[ ~ a22 ~< aa3, 

R(g) = R(g')  = a33(al l  + a22 - 2a12 ) 

(a l l  + a22 - 2a12 + aaa - 21a23 - a13 I)/4d(o), 
where 

d(0) = ( a l l +  a22 - 2a12)a33 - (a2s - a l s )  2 

--- Axl + A22 + 2(a23a13 - a12a33 ) 

= A l l  + A22 + 2A12. 
Since 

R 

we have 

a3a(axt + a22 - -  2a12)(at i + a22 + ass -- 2ax2 -- 21a23 -- a131) 

+ A22 + 2A12) (13) 

Permut ing  Xl, x2, x3, we get two similar  inequalities. 
Using 

flij(aiiaji) 1/2 ----- aiy, tl = ~ ,  t2 = ~ ,  we have  

(a11 + a22 - 2a12 ) = (aala22)l/2(tl + t~ 1 _ 2fl12) , 
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(a l l  + a22 + a33 -- 2axa  2 -- 21a2s -- alsl) 

=(alla22)1/2 (tl + tll  +t~2-- 2fli2--t~[f123-- f113tl[ }, 

A l l  4- A22 + 2A12 = a22a33 - a23 -t- a l i a33  - a222 

d- 2(a23013 -- a12a33) 

= a e e a 3 3 (  1 - + a,la  (1 - 

"~- 2(al l d22 )l/2(f123fl13a33 -- flt2a33 ) 

= a33(al,a22) x/2 {t-~ x(1 -- fl23) + t i t1  -- fl2s) + 2(flx3f12 a -- fit2)}, 

and  (13) becomes  

9 2 dx/r~) <. ~a33allae2[tl(1 - f l23 )+  t11(1 -- fl23) 

+ 2(ill  3fl23 -- f112)]/assal I a22(t l  + t l  i _ 2fl12 ) ( t  1 + t l  I + _ _  

- - 2 f l 1 2 - t ~ 2 1 f 1 2 3 f l , s t 1 1 )  

or  

X / / ~  ~< ~ a33 It1(1 -- f12t3 ) + tt- ' (1 -- fl23) 

+ 2(fllsfl23 - fl12)]2/(tl + t~ x _ 2fl12 ) 

( t ,  + t-l l + t~2 - 2flx2 - t~lf123 - fl,stl l ) .  

Now (3') can be written as 

<~A23/alla22(all + a22 -- 2a12 ) 

9 2 2 2a12 ) = ~ ( a l l a 2 2  -- a12 ) /atla22(atx + a22 -- 

---- ~ (a t  1 d22 )1/2(1 -- f122)2/(tl -I- t I t _ 2fl12), 

using (C'), we have  

%/alld22a33A, <~ ~(alla22)l/2(1 2 2 - ~ , 2 )  I( t l  + t - ( '  

so tha t  

as 3 ~< (9/4)2(1 2 )4 --fl12 /(tx+t-I t 2fl12 )2A'" 

1 
t I tz 2 

(14) 
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Subs t i tu t ing  in (14), we get  

Since 

x / ~  ~< (9/4)3( 1 -- f1122)'[t1(1 -- [323) 

+ t 11(1 --[323) + 2(fl131323 -- [312)'12/ 

( , 
A ' ( t t  + t~- ~ - 2[3/ , , )  3 t~ + t~-x + tlt---~ - 2131~ - - -  

[[323 --  [313t l  I ) "  

t 1 ~ l; l[323 --[3x3tl l  ~ 1, l / t2 >t 1, 

1 
2 x -  2l[323 --[313t1[ t>0  i f x  = - - > / 1 ,  

t2 

dx/'d- ~ ~< (9/4)3(1 - [3122)'t It1 ( I  -- [3123) -I- t 1 1(1 -- f123) 

+ 2([3131323 __ [312)']2/A, {(tt  + t l  I __ 21312 __ 2t~- 1 

11323 - -  [313tl [(tl -I- t 1 1 - -  21312)3}. 

Wri t ing  t for  t I for  convenience ,  we have  

0 ~ t ~ < l ,  
and  

Since 

2 

t l  t2 

~< (9/4)3(1 -- [322)4[t + t -  1 

A'(t  + t -  t _ 21312)3(t + 2 t -  1 _ 21312 _ 2 t -  x[[323 -- [313 t [). 

1 
0 ~ P/ `3 , [323, [312 ~<~, 

t(1 - [3123) + t -  t(1 - [323) + 2([3131323 - [3/`2) 

> /3 /4 ( t  + t - / , )  - 21312 

> 1 3 / 2 - 1 > 0 ,  

213131323 :~ t[3123 "+ t-113223' 

(15) 

(16) 

- -  2[3/, 2 - -  t[323 - -  t -  11323 -I- 2 [3 / ,3[323]2 /  

(17) 

we have,  f r om (17), 

x /~-(f )  ~< (9/4)3(1 - f122)4(t + t -1 _ 21312)2/ 

A' (t + t - 1 _ 21312 )a (t  + 2 t  - 1 _ 2[312 - 2 t -  1 [[32 a - [313 tl)  

= (9/4)3(1 _ [322)4/ 

A'(t  + t -  1 - -  21312)(t + 2 t -  1 _ 21312 _ 2 t -  1[[323 --[313t[). 

F(O = t + 2 _  2 P , 2  _ ~1P23  - P13t l  �9 
t 

Now,  let 

( 1 8 )  
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I f  f l23 ~ fl13 t' 

F ' ( t ) -  1 - ~ +  < l - - ~ + t -  ~ 

- 1 -- ~2 ~< O, because t ~< 1, 

while, if fl23 < fl13 t, 

2 2t~3 ~< 1 - 2 r(t)=l p ~<o.  

Therefore, in all cases, 

F(t) >1 F(1) 

= 3 - 2 f l l  2 - 21fl23 - fix31 

1> 3 - 2 f l l  2 - 2 x 0 " 0 4 1  

= 2 " 9 1 8  - 2fl12, 

because [ f l 2 3  - -  fix31 ~< 0"5 - 0-459 = 0"041. 
Also 

f + - / - -  2f l l  2 > / 2  - -  2 f l l  2 . 
t 

Therefore, (18) implies 

d x / ~  ~< (9/4)3(1 - fl~2)4/(2.918 - 2fl12)(2 - 2fit 2)A'. 
Now 

Similarly 

therefore, 

A ' =  1 + 2 f l12 f l13 f123  2 2 2 -/~12 -/~13 - /~3,  
dA' 

- - _ _ _ _ .  2 f l X ~ f 1 2 3 - -  2 f l l  3 
~flt3 

211 - 2(0"459) 
~< 22 

<0.  

dA' 
- - <  O, 
~f l23  

1 1 - 2  1 1 

A'>- ' l+2f l ' 222  -p~2  4 4 

-- ~(1 + ~2 - 2r 

= ~(1 -/)~2)(1 + 2#x2). 

(19) 

(20) 
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Writing # for #12, for convenience, (19) gives 

~< t9/4)3(i  - #2) ' / (2 .918  - 2#)(1 + 2#)(1 - #)2 

= ~(9/4)3 ( 1 ~ 4 ~ 1 ~ # )  

1-#  (1-#)(1+#)" 
(9/4) 3 

~'459 - # I + 2# 
! 

= ~(9/4)30(fl)h(fl), say. 

Now 
1 -- fl 0"459 

a(#)  = = 1 
1"459 - fl 1.459 - fl 

is a decreasing function of ft. Therefore, 
O(p) ~< 0(0"459). 

Again 
h(#) = (1 - ~)(1 + #)'/(1 + 2#), 

h'(fl) - 1  4 2 - { . - -  
hr 1 - #  1 + #  1 + 2 ~  

4 + 4fl - S# 2 - 1 - 3fl - 2fl 2 - 2 + 2fl 2 
m 

(I - #)2(I  + 2#)  

(8# 2 - # - 1) 
< 0, 

(I  - f l)2(1 + 2fl)  

because 

Therefore 

8fl 2 - fl - 1 i> 8(0.459) 2 - (0.459) - 1 

> 8(0.459) 2 - (0.459) - 1 

= 1.62 - 1.459 > 0. 

h(fl) <~ h(0.459), and 

~ (9/4) 3 # (0"459) h (0.459) 

729 (1 - 0.459)2(1 + 0.459) ~ = 3"93... < 4. 
128 1(1 +0.918) 

Thus d ( f ) <  16 in this case also and the proof  of Theorem IC is complete. 

(21) 

(22) 

8. Proof  of Theorem II'  

8.1 Let K be the sphere Lx[ ~< 3/4 and A the lattice generated by (1, 1,0), (0, 1, 1), 
(1,0, 1). We have to show that every straight line I meets a k + A, AeA.  
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We divide the p roof  into two parts: 

(a) The lines l are parallel to "lattice lines" OA, A~A, 
(b) I is not parallel to any lattice line. 
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9. Proof of Theorem II' Case (a) 

9.1 The quadrat ic  form 

f ( x l  ' x2 ' x3 )  = (x  1 + x2)2 + (x2 + x3)2 + (x3 + xl  )2 

=2Zx~+2 Y. x,% 
l~<i<j~<3 

is the quadrat ic  form of  A corresponding to the given basis. The  adjoint  o f f  is 

F ( x l , x 2 , x 3 ) =  3~.xZi - 2 ~,  x i x j .  
l~<i<j~<3 

As explained in w 2.3, Theorem II' in case (a) will follow if we can show that  for 

every partial sum G of  F, R ( G ) < ~ d ( G ) / d x / - ~ .  We note  that  F ( X l , X z , X 3 ) =  
(Xx + x2 - x 3 )  2 + (x2 + x3 - xx) 2 + (x3 + x l  - x2) 2. For  integers xi, x l  + xz - x3, 
x2 + x3 - x l ,  x3 + x l  - x2 are all even or  all odd. Therefore, the possible non-zero 
values of F for integers xt are 3, 4, 8, 11 . . . .  in ascending order,  i.e. the values can 
be 3, 4 or  i>8. 

Let  G'(xl ,  x2) be a partial  sum of F and G (x 1, x2) = ax~ + 2bx  i x2  + cx~,  0 <~ 2b <~ 
a ~< c, a > 0, be the reduced form equivalent to G'. Then  

R(G' )  = R (G)  = ac(a + c - 2b)/4(ac - b z) 

and we have to prove 

ac(a + c - 2b) ~< 9/16(ac  - b2) 2, (I) 

because d ( F ) =  16. 
We shall prove this by contradict ion,  i.e. we shall show that  

ac(a + c - 2b) > 9/16(ac - b2) 2 

is not  possible. 
Since the values of  G for integers x, are a subset of  the values of  F for integers 

x~, we have the following possibilities: 

(i) a = 3, (ii) a = 4, (iii) a t> 8. 

(i) a = 3, so that  b = 0 or  1, c t> 3. 

If b = 0, ac(a + c - 2b) > 9/16(ac  - b2) 2, then 

3ac(3 + c) > 9/16(3c) z 
i.e. 

1 lc  2 - 48c < 0 



154 R P B a m b a h  and A C W o o d s  

i.e. 

and 
c(1 lc  - 48) < 0, 

c = 3  or  c = 4 ,  and 

G ( x l , x 2 )  = 3x 2 + 3x 2 or  3x~ + 4x 2 

takes the value 6 or  7 for integers x~. Since 6, 7 are not  possible values of  F, this case 
is not  possible. I f  

b = 1, ac(a + c - 2b) > 9/16(ac  - b2) 2, 
then 

16c(1 + c) > 3(3c - 1) 2 
i.e. 

11c 2 - 34c + 3 < 0 
i.e. 

( c -  3 ) ( 1 1 c -  1 ) < 0 ,  

which is impossible, because c/> 3. 
(ii) Let a = 4, so that  b = 0, 1 or  2 and  c/> 4. 

Then ac(a + c - 2b) > 9/16(ac - b2) 2 implies 

64c(4 + c - 2b) > 9(4c - b2) 2 
or  

80c 2 - c(72b 2 - 128b + 256) + 9b 4 < 0. 
b = 0 gives 

80c 2 < 256c 

and c < 4, which is impossible, 
b = 1 gives 

80c 2 - 200c + 9 = 80c(c -- 4) + 120c + 9 < 0, 

which is not  possible, because c/> 4, 
and b = 2 gives 

80c 2 - 288c + 144 = 80c(c - 4) + 32c + 144 < 0, 

which is again not  possible. 
(iii) a f> 8. 
By the Theorem of Lagrange,  since G is reduced, 

so that 

and 

implies 

ac <~ 4/3 d(G) = 4/3(ac - b2), 

(ac - b 2)/> 3/4ac, 

ac(a + c - 2b) > 9/16(ac - -  b2) 2 

ac(a + c -- 2b) > 9/16 9 / 1 6 a 2 c  2 
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and 
81 

(a + c) > ~ a c ,  

so that 

But 

1 1 81 - + - ~ > - -  
a c 256 

a~>8, c~>8, and 
1 1 1 1 1 81 - + - ~ <  + = - < - -  
a c 8 8 4 256' 

which shows that this case is also impossible�9 
We have thus completed the proof of Theorem II' in case (a). 

10. Proof  of  Theorem II' Case (b) 

10.1 Let I be a straight line not parallel to a lattice line. Let II be the plane through 
O perpendicular to I. Let AI be the projection of A on II. Then the lines parallel .to 
I meet the spheres K + A, A~A if and only if the circles C + A, AEA1 cover I-I, where 
C is the circle K c~ II, i.e. C is the circle of radius 3/4. We have then to show that 
every point of II is within the distance 3/4 from some point of A~. 

If Proj A = projection of the point A of R 3 on II, then Proj (A - B) = Proj A - 
Proj B, and it follows that A~ is an additive subgroup of the group II under addition. 
Also, since A is "three-dimensional", At is "two-dimensional". One can easily see that 
for A~, we have the following possibilities: 

(i) If O is not a limit point of AI, then A~ is a two-dimensional lattice, and since 
Proj (mA + nB) = m Proj A + n Proj B, one can easily see that ! is parallel to a lattice 
line OA of A, and this case does not arise, 
(ii) If O is a limit point of A t, and all points of A ~ near enough to O lie on a straight 
line ~ through O, then A~ is dense on 0t, and consists of points lying dense on lines 
parallel to ~t at the same distance 6 say, between consecutive ones, and 
(iii) A1 is dense everywhere in II, in which case there is nothing to prove. 

We have, therefore, to consider case (ii) only. In this case A is distributed in the 
planes orthogonal to II through the lines parallel to 0t of A~. These planes are at a 
distance 6 apart (i.e. consecutive planes are at a distance 6 from each other). The 
part of A in the plane through ~ is a two dimensional lattice A 2 and the parts in 
other planes are its translates. The determinant d(A)= t$. d(A2), where d(A2) is the 
determinant of A 2 . 

We notice that the squares of the distances between lattice points of A are the 
values o f f  = 2Zx 2 -2Y, xixj, so that these squared distances are at least 2, and A 

provides a packing for spheres of radius (1/2).v/2. Therefore, A 2 provides a packing 

for circles of radius I/v/2. Since the density of the closest lattice packings of circles 

is n/2v/3, we get 

Ir/2d(A2) ~< n/2x/3 
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and 

d(A2)/> x/~. 
Since 

d(A) = 2, 6 ~ 2/x/~ < 3/2. 

Thus the distance 6 between consecutive lines parallel to l on which A1 is dense is 
< 3/2. Let PEFI, then P is at a distance ~< 6/2 < 3/4 from one of these lines and at a 
distance < 3/4 from some point of A1, which completes the proof. 
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