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Abstract. The question whether there exists a commutative ring A for which there is an 
element in the 2-torsion of the Brauer group not represented by a Clifford algebra was raised 
by Alex Hahn. Such an example is constructed in this paper and is arrived at using certain 
results of Parimala-Sridharan and Parimala-Scharlau which are also reviewed here. 
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1. Introduction 

A celebrated theorem of Merkurjev [M] asserts that if k is a field, every element in 
the 2-torsion of the Brauer group of k is represented by the Clifford algebra of a 
quadratic form over k. The following question was raised by Alex Hahn: Does there 
exist a commutative ring A and an element in the 2-torsion of the Brauer group of 
A which cannot be represented by the Clifford algebra of a quadratic form over A? 
Examples of smooth projective curves X over local fields for which the Clifford 
algebra classes do not fill up the 2-torsion in the Brauer group of X were given in 
[P-Sr].  These were arrived at in the following manner: While comparing the graded 
Witt ring of a curve with graded unramified cohomology ring, necessary and sufficient 
conditions were given in [P-Sr],  under which the 'Clifford invariant' map surjects 
on to the 2-torsion in the Brauer group, for a smooth projective curve over a local 
field. In a joint work with Scharlau [P-S],  the above mentioned conditions were 
shown to be equivalent to the condition that the canonical class of the curve is "even" 
for smooth projective hyperelliptic curves over local fields. An explicit condition was 
also given in this case as to when the canonical class is even. This leads to the requisite 
examples of smooth projective curves over local fields for which the Clifford invariant 
map is not surjective. In this paper we review these results and use them to construct 
an affine algebra A for which the Clifford invariant map is not surjective, thus 
answering the question of Alex Hahn. 

Throughout this paper, k denotes a field of characteristic not 2. 

2. The CHfford invariant map 

Let X be a smooth integral variety over field k. A quadratic space on X is a locally 
free sheaf r on X together with a self-dual isomorphism q:d'--*d'v = Hom(8,~x).  If 
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the rank of 8 is even, the Clifford algebra ~(q) of the space (v ~, q) is a sheaf of Azumaya 
algebras on X and its class in the Brauer group of X is called the Clifford invariant 
of (o ~, q), denoted by e2(q) (the second invariant, the first being the discriminant). Let 
W(X) denote the Witt group of X, namely the quotient of the Grothendicck group 
of quadratic spaces over X under orthogonal sum modulo the subgroup generated 
by metabolic spaces [K]. Let I2(X) denote the subgroup of W(X) generated by spaces 
of even rank and trivial discriminant. The Clifford invariant is well defined on Witt 
equivalence classes [Kn-Oj]  and defines a homomorphism e 2 :I2 (X) --* 2 Br(X),2 Br(X) 
denoting the 2-torsion subgroup of the Brauer group of X. If X -- Spcc k, the theorem 
of Merkurjev mentioned earlier assures that e 2 is surjcctivc. The next non-trivial case 
is that of a smooth integral curve X. 

We recall from [P-Sr]  some results concerning this question for curves over local 
fields. We look at the case when k is a non-archimcdean local field. Let X be a smooth 
integral curve over k and X (~) the set of closed points of X. We have an exact sequence 

i (~x) 

0--+ W(X)--+ W(k(X))--+ ~ W(k(x)), 
x e X (  l ~ 

where i is the restriction to the generic point and 6~: W(k(X))--, W(k(x)) is a residue 
homomorphism defined with respect to a choice of the parameter for the discrete 
valuation corresponding to x~X "). The powers of the ideal l(k(X)) of even rank 
forms in W(k(X)) induces a filtration 

I.(X) = W(X)c~I"(k(X)) 

on W(X). The above exact sequence respects this filtration and yields the following 
exact sequence 

0 ~ I.(X) ~ I"(k(X)) ~ (~ I"- '(k(x)). 
x e X  l 

Since the cohomological dimension of k is 2, by a theorem of [A-E-J] ,  there exist 
well defined surjectivc homomorphisms e,:V(k(X))-~ H"(k(X), with kernel precisely 
P+l(k(X)) (we'note that e 2 is simply the Clifford invariant map). The same is true 

for I"(k(x)) for xeX  (x). We have a homomorphism ~ = (~):H"(k(X))~ ~ H"- X(k(x)) 
x~X I 

whose kernel is the unramified cohomology group H~ J~"), where ~" denotes the 
Zariski sheaf associated with the presheaf U~--*H".t(U,#2 ) [B-O]. The following 
diagram of exact rows 

0 ~ I.(X) -+ V(k(X)) --+ ~x~x~,,I"-~(k(x)) 

J,e. l e .  J,(e~_ 1) 

0 --+ H~ Y6 ") --+ n"(k(X)) -+ @x~x,,,H"-l(k(x)) 

is commutative [Pa]. By [A-E-J ] ,  for n>~4, I"(k(X))=O, so that ea:Ia(k(X))-~ 
Ha(k(x)) is an isomorphism. Further, for xeX  "}, e2:I2(k(x))-.H2(k(x)) is also an 
isomorphism. This implies that e3: I3(X )-+ H~ ~f~3) is an isomorphism. Further, 
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the cokernel of the map 13(k(X)) -~ G 12(k(x)) is isomorphic to the cokernel of 
xeX(l) 

d:H3(k(X))~ (~ H2(k(x)), which, by Bloch-Ogus theory [B-O], is isomorphic to 
x E  X'  I 

H l (X, YC3), which is a subgroup of H~t(X,/~2). If X is .not projective, since cd2k = 2, 
an analysis of the Hochschild-Serre spectral sequence yields that H~,(X, P2)= 0, so 

that the map .3:I3(k(X))~ (~  1Z(k(x)) is surjective. The following commutative 
x c X  c 1 

diagram of exact rows and columns 

0 0 0 

0 ~ I3(X) --* la(k(X)) ~ @I2(k(x))~O 
x e X  1 

0 - - *  I2(X) --* 12(k(X)) ~ @l(k(x))  
x e X  t 

$e2 $e2 $(el) 

0 ~ H ~  2) ~ H2(k(X)) ~ @Hl(k(x))  
x e X  t 

0 0 

for an attine curve X over k, shows that e2:I2 (X)--* H ~ ~ 2 )  is surjective. By purity 
theorem (iGr],  Prop. 2.1), H~ ~e 2) ~2 Br(X) and e2 is the Clifford invariant map. 
We thus have proved the following 

Theorem 1. ([P-Sr], Th. 4.4) I f  X is an affine curve over a local field, the Clifford 
invariant map e2 :I2 (X) ~ 2 Br(X) is surjective. 

Suppose now that X is a projective curve which has a k-rational point. Let xo~X(k). 
By ([A]) Satz. 4.16), we have a complex 

c o r ~ s  

H'(k(X))~ @ H'-l(k(x)) , H'-'(k). 
xE XI 1 

If ~teH~(k(X)) is such that ~(~t) has at most one non-zero component at Xo, then 
a(~t) = 0 since cores: Hi-a(k(xo))~ Hi-l(k) is an isomorphism. Thus. if Y = X\{xo}, 
H ~  i) ~_ H~ Y,~t ~) for all i. In particular, 2Br(X)---2Br(Y). In the following 
commutative diagram 

I3(X ) :~ H~ 3) 

Ia(Y ) ~ H ~  3) 

where the vertical arrows are induced by the inclusion Y c X, all arrows, except 
possibly the left vertical arrow, are isomorphisms and hence the restriction map 
I3(X)~Ia(Y ) is an isomorphism. Finally, we look at the following commutative 
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diagram with exact rows. 

0 0 

0 ~ 13(X) --* I2(X) 

0 ~ Ia(Y) --' I2(Y) 

e2 

2Br(X) 

e2 

2Br(Y)-*0. 

The map e2:I2(X)~2Br(X) is surjective if and only if the map I2(X).--,I2(Y ) is 
surjective. This leads to the following definition 

DEF INI TI ON 

Let X be a smooth projective curve over a field k. We say that X has extension 
property (for quadratic spaces) if there exists a rational point xoeX(k) such that every 
quadratic space over X\xo extends to X. 

Theorem 2. ( [P -Sr ] ,  Th. 4.4). Let X be a smooth projective curve over a local field 
with a rational point. The Clifford invariant map e2:I2(X)~2Br(X) is surjective if 
and only if X has extension property. 

Proof. Let xoeX(k) and Y = X \ { x o } .  We need only to verify that if the map 
I2(X)~I2(Y)  is surjective then every quadratic space on Y extends to X. Suppose 
I2(X)~I2(Y)  is surjective. Let q be any quadratic space on Y. We check that the 
second residue 6xo(q)= 0. If rank q is odd, we replace q by q_l_ ( 1 )  and assume that 
rank q is even. The space disc q~Hl( Y, !~2) = H ~ (X, #2), so that disc q is nonsingular 
on X. Replacing q by q 3_ ( - 1, disc q) which has the same residue as q at any point, 
we assume that disc q is trivial so that qEI2(Y). Then by assumption, q extends to X. 

[] 

Remark 1. The extension property for a smooth projective curve X over any field 
could be defined as above with. respect to a given rational point Xo. It is interesting 
to study the equivalence classes on X(k) defined by x ,-, y if and only if X has extension 
property 'with respect to x' is equivalent to X has extension property 'with respect 
to y'. The theorem implies that for a smooth projective curve over a local field there 
is only one  equivalence class: i.e., the extension property defined with respect to x 
does not depend on the choice of x. 

Remark 2. It may be shown that the map e2:12(X)~ 2Br(X) is surjective if and only 
if every ?, e 2Br (X) is the class of a Clifford algebra of some even rank quadratic space 
over X. In fact if ~e2Br(X ) is such that ~ = C(dr, q) with rank q even, ~ = e2(q' ) where 
q '=  q_l_ ( -  l, disc q)EI2(X ). 

3. Canonical class of a curve and extension property for quadratic spaces 

We now go on to analyse when the extension property holds for a smooth projective 
curve X. In view of a theorem of Geyer -Harder -Knebusch-Schar lau  [ G - H - K - S ] ,  
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a sufficient condition for the extension property to hold for X is that the canonical 
line bundle f x  on X even; i.e., f x  is a square in PicX. This is due to a certain 
reciprocity for quadratic spaces on X if f x  is even. We explain this reciprocity. 

Let X be a smooth projective curve over a field k with char k # 2 and k perfect. 
Let f x  = f be the canonical sheaf on X. We can define the Witt group W(.X, f )  of 
quadratic spaces on X with values in the line bundle f .  There are canonical residue 
homomorphisms 

r~: W(k(X), fh(x))  -~ W(k(x)) 

for each closed point x of X. Any non-singular quadratic form q over k(X) with 
values in fl~(x) may be written as 

q = q , d n l q 2 ( ~ ) .  

with q, and q2 regular over ~x.x and n a parameter at x. Then 0~(q) is the reduction 
of q2 modulo n, which is independent of the choice of n. It is proved in [ G - H - K - S ]  
that the sequence 

(Ox) s 

W(k(X),Dktx)) --* O) W[k(x))-~ W(k) 
xsX~, t ) 

is a complex, s being the transfer induced by the trace map. If f x  is a square in PicX, 
we have isomorphisms of the following complexes 

(O,d 
0 --} W(X, f x )  --} W(k(X),f, ,x} ) ----* ( ~  W(k(x))-~ W(k) 

x ~  X l 

z~ z~ z~ 

0 --} W(X) ~ W(k(X)) --} ~ W(k(x)) 
xe X l 

for 6x defined through certain choice of parameters at x, xeXtX)[P2]. In particular, 
if a form qe W(k(X)) has non-zero residue at possibly one rational point Xo, then 
the residue at this rational point is necessarily zero. Hence q on X \ x  o extends to X. 
Thus if f x  is even, X has extension property. 

One is led into analysing when f x  is even. This is purely a rationality question, 
o since over the algebraic closure of k, degree f x  is even; Pic X bein~ divisible, fix- is 

a square. In particular, there is extenson property for curves over algebraically closed 
fields. In [P-S],  a necessary and sufficient condition was given as to when f x  is even 
for hyperelliptic curves over any field (see also [Su]). It so happens that for smooth 
projective hyperelliptic curves over local fields, extension property is equivalent to 
f x  being even. 

Theorem 3. ([P-S],  Th. 2.4). Let k be a local field with char k ~ 2 and X a smooth 
projective hyperelliptic curve of oenus at least two with X(k) ~ d?. Then the following 
are equivalent: 

(1) f x  is even. 
(2) X has extension property. 
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(3) genus X is odd or genus X is even and X satisfies one of the following for a 
double covering ~t:X - ,  p1, 

(a) 7t has a ramification point of odd degree. 
(b) All ramification points of 7t have even degree and there is a quadratic extension 

of k which is contained in the residue fields of all ramification points of n. 

Remark 3. The conditions (a) and (b) of (3) are intrinsic for X since the covering 
~:X-- ,P 1 is unique up to isomorphism, genus of X being at least 2. Condition (3) 
(b) as stated in ( [P-S])  includes a further condition, namely that for some choice 

of a rational point oo for P~, if oo is inert for n and k(oo) = k(x/~) , then r/is a norm 
from f. However, in our situation, X(k)  ~ c~ and we may choose oo to be lying below 
some rational point of X so that oo is split and the extra condition is vacuous. 

Now it is clear as to how to construct examples of curves X over a local field k 
such that fix is not even. Let k -- Q3, P~ (t) an irreducible polynomial of degree 2 and 
p2(t) an irreducible polynomial of degree 4 over Q3 such that Q3[t]/p~(t) is totally 
ramified and Q3[t]/(p2(t)) is unramified. (e.g. px(t) = t 2 - 3, p2(t) = t" + t 3 + t z + t + 1). 
The hyperelliptic curve y2 =p~(t)pz(t ) of genus 2 has two points of ramification. 
Clearly the residue fields at these points do not have a common quadratic extension 
since one is unramified and the other totally ramified. Hence by the'above theorem, 
fix is not even. Further there are choices for p~(t) and pz(t) (e.g., the example above) 
for which X(k)  ~ dp. One can even construct explicitly, a quadratic space over X \  a 
rational point, which does not extend to X. 

4. The example 

In this section, we construct a commutative ring A for which there is an element in 
2Br(A) which is not the class of the Clifford algebra of any quadratic space over A. 

We recall that a locally trivial affine fibration ~t: Y--* X of schemes is one for which, 
locally, at each point x~X,  ~: Y uxSpec~)x,~-.Spec~?x. ~ is isomorphic to the 
projection A' x x Spec d~x, ~ --* Spec d~x, ~. 

Theorem 4. Let X be a smooth projective curve over a field k and 7t:Spec A -~ X a locally 
trivial affine fibration. I f  ~2Br(X)  is not the Clifford invariant o f  any quadratic space 
on X, then ~*~2Br(A)  is not the Clifford invariant of  any quadratic space over A. 

Proof. Suppose q is a quadratic space of even rank over A such that qf(q) defines 
the class of It*~. We may assume, by adding a hyperbolic plane, if necessary, that q 
contains a hyperbolic l~'-ane. We may also assume, by adding < - 1, disc q), if necessary, 
that [q]~12(A) and e2(q)= ~*r Since the fibration lt :SpecA-~X is locally trivial, for 
each closed point x e X  ~1~, 7t:SpecA x xSpec t~x .~SpecOx,  x is given by Sx,x r t~x.~ 
[ TI . . . .  T,] where T~ are indeterminates. Since ~x.~ is a discrete valuation ring, in view 
of ([PI] ,  Th. 3.2), there exists a quadratic space qx over r such that l t * q ~  
qlsp~cA x Sp~e �9 The spaces q~ become isometric, at the generic point Xo of X to the 

space qo definX6"d by 7t*qo "qlspecA• (Observe that SpecA x xSpeck(X)~-  
Spec k(X)[ T~, T 2 . . . .  , T,] and q restricted to Spec A x x Spec k(X) comes from the 
space qo over k(X) q being isotropic ([Oj]). Through a typical dimension one 
argument, one sees that there is a quadratic space q~ over X, which, when restricted 
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to the generic point Xo of X becomes isometric to qo. We note that disc ql = 1, since, 
locally, disc ql | ~x,~ = disc n*(ql | ~x,~) is trivial, so that qx ~I2(X). We show that 
e2(qt) = ~ which leads to a contradiction through our choice of ~. Since e2 is functorial 
and the map 2Br(X)~ 2Br(k(X)) is injective ([Gr], Prop. 2.1], it suffices to show that 
e2(qmx~) = ~x~" The map n*:Br(k(X))--* Br(Spec A x x Spec k(X))is a (split) injection 
and hence it suffices to show that n*(e2(ql )) = n*(~k~x~). We have 

k{X) 

n*(e2(ql ))=n*e2(qo) 
t(x} 

= e2 (n* qo) 

= e2 (q~x~) 

However, by choice, e 2 (q) = n*ff so that e 2 (qk(x)) = r~* ~k(x)" Thus n* e 2 (ql ) = n*  (~k(X))' 
leading to a contradiction. ~ 

Let X be a smooth projective curve over a field k. We recall the construction of 
a locally trivial affine fibration T: W ~ X  with W affine, due to Jouanolou iJ]. Let 
j :X  r P~, = P be a closed immersion. Let W(r) be the Stiefel variety over k given by 
the equation {E 2 = E, Trace E = 1} where E is the (r + 1) x (r + 1) generic matrix (xl~) 
over k. Clearly W(r) is affine and is a principal homogeneous space for the vector 
bundle Horn (~-, LP) where L# is the canonical line bundle d~(- 1) on P and ~- is 
defined by the exact sequence 

0--* .Z --* t~'+x --* ~ ' -~  0. v p  

The natural map n: W(r)-) P, given by E~-)image(E) is a locally trivial affme fibration. 
We define ~: W --) X by the Cartesian square 

W ~ W(r) 

J 
X ~ P 

The map n: W--, X is a locally trivial affine fibration with each fibre an attine r-space 
and W is affine. 

We now give the promised example. Let X be the smooth projective hyperelliptic 
curve over Q3 defined by yZ = (t2 _ 3)(t 4 + t 3 + t 2 + t + 1). Let lt:Spec A--,X be an 
A2-fibration described above. Then A is an affine algebra over Q3 of dimension 3. 
By the above Theorem and the discussion at the end of w 2, there is a Brauer class 
in A which is not the class of the Clifford algebra of any quadratic space over A. 

Remark 4. In view of Theorem 1, for any affine curve over a local field, the Clifford 
invariant map is surjective. The following example, pointed out to us by Kapil 
Paranjape, gives a locally trivial Al-fibration of a smooth projective curve C with 
total space affine. Let Y be the complement of a non-constant section in C x ~)1 and 
n: Y - ) C  the projection. This once again leads to examples of affine surfaces over 
p-adic fields for which the Clifford invariant map is not surjective. For an arbitrary 
ground field k, there are even perhaps examples of affine curves for which the Clifford 
invariant map is not surjective. 
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