Skip to main content
Log in

Phragmites australis invasion and expansion in tidal wetlands: Interactions among salinity, sulfide, and hydrology

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Through their physiological effects on ion, oxygen, and carbon balance, respectively, salinity, sulfide, and prolonged flooding combine to constrain the invasion and spread ofPhragmites in tidal wetlands. Initial sites of vigorous invasion by seed germination and growth from rhizome fragments appear limited to sections of marsh where salinity is <10‰, sulfide concentrations are less than 0.1 mM, and flooding frequency is less than 10%. In polyhaline tidal wetlands the invasion sites include the upland fringe and some high marsh creek banks. The zones of potential invasion tend to be larger in marshes occupying lower-salinity portions of estuaries and in marshes that have been altered hydrologically. Owing to clonal integration and a positive feedback loop of growth-induced modification of edaphic soil conditions, however, a greater total area of wetland is susceptible toPhragmites expansion away from sites of establishment. Mature clones have been reported growing in different marshes with salinity up to 45‰, sulfide concentration up to 1.75 mM, and flooding frequency up to 100%. ForPhragmites establishment and expansion in tidal marshes, windows of opportunity open with microtopographic enhancement of subsurface drainage patterns, marsh-wide depression of flooding and salinity regimes, and variation in sea level driven by global warming and lunar nodal cycles. To avoidPhragmites monocultures, tidal wetland creation, restoration, and management must be considered within the context of these different scales of plant-environment interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, J. andG. Bate. 1999. Growth and photosynthetic performance ofPhragmites australis in estuarine waters: A field and experimental approach.Aquatic Botany 64:359–367.

    Article  Google Scholar 

  • Amsberry, L., M. A. Baker, P. J. Ewanchuk, andM. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  • Armstrong, J., F. Afreen-Zobayed, andW. Armstrong. 1996.Phragmites die-back: Sulphide- and acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems.New Phytologist 134:601–614.

    Article  CAS  Google Scholar 

  • Armstrong, J., F. Afreen-Zobayed, S. Blyth, andW. Armstrong. 1999.Phragmites australis: Effects of shoot submergence on seedling growth and survival and radial oxygen loss from roots.Aquatic Botany 64:275–289.

    Article  Google Scholar 

  • Armstrong, J. andW. Armstrong. 1991. A convective through-flow of gases inPhragmites australis (Cav.) Trin. ex Steudel.Aquatic Botany 39:75–88.

    Article  Google Scholar 

  • Armstrong, J., W. Armstrong, andP. M. Beckett. 1992.Phragmites australis: Venturi- and humidity-induced pressure flows enhance rhizone aeration and rhizosphere oxidation.New Phytologist 120:197–207.

    Article  Google Scholar 

  • Baldwin, A. H. andI. A. Mendelssohn. 1998. Effects of salinity and water level on coastal marshes: An experimental test of disturbance as a catalyst for vegetation change.Aquatic Botany 61:255–268.

    Article  Google Scholar 

  • Bart, D. J. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.

    Article  Google Scholar 

  • Bart, D. J. andJ. M. Hartman. 2002. Environmental constraints on early establishment ofPhragmites australis in salt marshes.Wetlands 22:201–213.

    Article  Google Scholar 

  • Bart, D. andJ. M. Hartman. 2003. The role of large rhizome dispersal and low salinity windows in the establishment of common reed,Phragmites australis in salt marshes: New links to human activities.Estuaries 26:436–443.

    Article  Google Scholar 

  • Burdick, D. M., R. Buchsbaum, andE. Holt. 2001. Variation in soil salinity associated with expansion ofPhragmites australis in salt marshes.Environmental and Experimental Botany 46:247–261.

    Article  CAS  Google Scholar 

  • Burdick, D. M. andM. Dionne. 1994. Comparison of salt marsh restoration and creation techniques in promoting native vegetation and functional values. Office of State Planning, Concord, New Hampshire.

    Google Scholar 

  • Burdick, D. M., M. Dionne, R. M. Boumans, andF. T. Short. 1997. Ecological responses to tidal restoration of two northern New England salt marshes.Wetlands Ecology and Management 4:129–144.

    Article  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Chambers, R. M., T. J. Mozdzer, andJ. C. Ambrose. 1998. Effects of salinity and sulfide on the distribution ofPhragmites australis andSpartina alterniflora in a tidal saltmarsh.Aquatic Botany 62:161–169.

    Article  CAS  Google Scholar 

  • Chambers, R. M., D. T. Osgood, andN. Kalapasev. 2002. Hydrologic and chemical control ofPhragmites growth in tidal marshes of SW Connecticut, USA.Marine Ecology Progress Series 239:83–91.

    Article  Google Scholar 

  • Clevering, O. andJ. Lissner. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics ofPhragmites australis.Aquatic Botany 64:185–208.

    Article  Google Scholar 

  • Crawford, R. M. M. andR. Braendle. 1996. Oxygen deprivation stress in a changing clinate.Journal of Experimental Botany 47:145–159.

    Article  CAS  Google Scholar 

  • Dahl, T. E. andC. E. Johnson. 1991. Status and trends of wetlands in the conterminous United States, mid-1970s to mid-1980s. U.S. Fish and Wildlife Service, Washington, D.C.

    Google Scholar 

  • Emery, N. C., P. J. Ewanchuk, andM. D. Bertness. 2001. Competition and salt marsh zonation: Stress tolerators may be dominant competitors.Ecology 82:2471–2485.

    Google Scholar 

  • Furtig, K., A. Ruegsegger, C. Brunold, andR. Brandle. 1996. Sulphide utilization and injuries in hypoxic roots and rhizomes in common reed (Phragmites australis).Folia Geobotany Phytotaxonomy 31:143–151.

    Article  Google Scholar 

  • Gries, C., L. Kappen, andR. Losch. 1990. Mechanism of flood tolerance in reed,Phragmites australis (Cav.) Trin. ex Steudel.New Phytologist 114:589–593.

    Article  Google Scholar 

  • Hanganu, J., G. Mihaila, andH. Coops. 1999. Responses of ecotypes ofPhragmites australis to increased seawater influence: A field study in the Danube Delta, Romania.Aquatic Botany 64:351–358.

    Article  Google Scholar 

  • Hartzendorf, T. andH. Rolletschek. 2001. Effects of NaCl-salinity on amino acid and carbohydrate contents ofPhragmites australis.Aquatic Botany 69:195–208.

    Article  CAS  Google Scholar 

  • Havens, K. J., W. I. Priest, III, andH. Berquist. 1997. The investigation ofPhragmites australis within Virginia's constructed wetland sites.Environmental Management 21:599–605.

    Article  Google Scholar 

  • Hellings, S. andJ. L. Gallagher. 1992. The effects of salinity and flooding onPhragmites australis.Journal of Applied Ecology 29:41–49.

    Article  Google Scholar 

  • Hootsmans, M. J. M. andF. Wiegman. 1998. Four helophyte species growing under salt stress: Their salt of life?Aquatic Botany 62:81–94.

    Article  Google Scholar 

  • Howes, B. L., J. W. H. Dacey, andD. D. Goehringer. 1986. Factors controlling the growth form ofSpartina alterniflora: Feedbacks between above-ground production, sediment oxidation, nitrogen and salinity.Journal of Ecology 74:881–898.

    Article  Google Scholar 

  • Koch, M. S., I. A. Mendelssohn, andK. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes.Limnology and Oceanography 35:399–408.

    Article  CAS  Google Scholar 

  • Lissner, J. andH.-H. Schierup. 1997. Effects of salinity on the growth ofPhragmites australis.Aquatic Botany 55:247–260.

    Article  CAS  Google Scholar 

  • Lissner, J., H.-H. Schierup, F. A. Comínb, andV. Astorgab. 1999. Effect of climate on the salt tolerance of twoPhragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation.Aquatic Botany 64:317–333.

    Article  CAS  Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management, monitoring.Natural Areas Journal 14:285–294.

    Google Scholar 

  • Mauchamp, A., S. Blanch, andP. Grillas. 2001. Effects of submergence on the growth ofPhragmites australis seedlings.Aquatic Botany 69:147–164.

    Article  Google Scholar 

  • Mauchamp, A. andF. Mésleard. 2001. Salt tolerance inPhragmites australis populations from coastal Mediterranean marshes.Aquatic Botany 70:39–52.

    Article  CAS  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Michener, W. K., E. R. Blood, K. L. Bildstein, M. M. Brinson, andL. R. Gardner. 1997. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands.Ecological Applications 7:770–801.

    Article  Google Scholar 

  • Minchinton, T. E. 2002. Precipitation during El Nino correlates with increasing spread ofPhragmites australis in New England, USA, coastal marshes.Marine Ecology Progress Series 242:305–309.

    Article  Google Scholar 

  • Mitsch, W. J. andJ. G. Gosselink. 2000. Wetlands. Wiley and Sons, New York.

    Google Scholar 

  • National Research Council. 2001. Compensating for wetland losses under the Clean Water Act. National Academy Press, Washington, D.C.

    Google Scholar 

  • Niering, W. A. andR. S. Warren. 1980. Vegetation patterns and processes in New England salt marshes.BioScience 30:301–307.

    Article  Google Scholar 

  • Nuttle, W. K. andJ. W. Portnoy. 1992. Effect of rising sea level on runoff and groundwater discharge to coastal ecosystems.Estuarine, Coastal and Shelf Science 34:203–212.

    Article  Google Scholar 

  • Odum, W. E., T. J. Smith, III,J. K. Hoover, andC. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: A community profile. FWS/OBS-83/17. U.S. Fish and Wildlife Service, Washington, D.C.

    Google Scholar 

  • Oost, A. P., H. de Haas, F. Jensen, J. M. van den Boogert, andP. L. de Boer. 1993. The 18.6 year lunar nodal cycle and its impact on tidal sedimentation.Sedimentary Geology 87:1–11.

    Article  Google Scholar 

  • Osgood, D. T., D. J. Yozzo, R. M. Chambers, andD. Jacobson. 2003. Tidal hydrology and habitat utilization by resident nekton inPhragmites and non-Phragmites marshes.Estuaries 26: 522–533.

    Article  Google Scholar 

  • Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, G. Daily, J. C. Castilla, J. Lubchenko, andR. T. Paine. 1996. Challenges in the quest for keystones.BioScience 46:609–620.

    Article  Google Scholar 

  • Rice, D., J. Rooth, andJ. C. Stevenson. 2000. Colonization and expansion ofPhragmites australis in upper Chesapeake Bay tidal marshes.Wetlands 20:280–299.

    Article  Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Rooth, J. andJ. C. Stevenson. 2000. Sediment deposition patterns inPhragmites australis communities: Implications for coastal areas threatened by rising sea-level.Wetlands Ecology and Management 8:173–183.

    Article  Google Scholar 

  • Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment.Science 171:1008–1013.

    Article  CAS  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by non-native genotypes of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences 99:2445–2449.

    Article  CAS  Google Scholar 

  • Seliskar, D. M. and J. L. Gallagher. 2000. Sulfide sensitivity of five species of tidal marsh plants. INTECOL's VI International Wetlands Conference, August 6–12, 2000. Quebec City, Canada.

  • Sinicrope, T. L., P. G. Hine, R. S. Warren, andW. A. Niering. 1990. Restoration of an impounded marsh in New England.Estuaries 13:25–30.

    Article  Google Scholar 

  • Taylor, N. 1939. Salt tolerance of Long Island salt marsh plants. Circular 23. New York State Museum, Albany, New York.

    Google Scholar 

  • Van der Putten, W. H. 1997. Die-back ofPhragmites australis in European wetlands: An overview of the European Research Programme on Reed Die-back and Progression (1993–1994).Aquatic Botany 59:263–275.

    Article  Google Scholar 

  • Vretare, V., S. E. B. Weisner, J. A. Strand, andW. Granéli. 2001. Phenotypic plasticity inPhragmites australis as a functional response to water depth.Aquatic Botany 69:127–145.

    Article  Google Scholar 

  • Warren, R., P. Fell, J. Grimsby, E. Buck, C. Rilling, andR. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.

    Article  Google Scholar 

  • Wijte, A. H. B. M. andJ. L. Gallagher. 1996a. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. I. Different germination strategies ofSpartina alterniflora andPhragmites australis (Poaceae).American Journal of Botany 83:1337–1342.

    Article  Google Scholar 

  • Wijte, A. H. B. M. andJ. L. Gallagher. 1996b. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. II. Early seedling development advantage ofSpartina alterniflora overPhragmites australis (Poaceae).American Journal of Botany 83:1343–1350.

    Article  Google Scholar 

  • Windham, L. andR. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marshes of the Mullica River, New Jersey.Estuaries 22:927–935.

    Article  Google Scholar 

  • Windham, L. M., J. S. Weis, andF. Weis. 2001. Patterns and processes of mercury release from leaves of two dominant salt marsh macrophytes,Phragmites australis andSpartina alterniflora.Estuaries 24:787–796.

    Article  Google Scholar 

  • Winogrond, H. G. andE. Kiviat. 1997. Invasion ofPhragmites australis in the tidal marshes of the Hudson River, p. 1–29.In W. C. Nieder and J. R. Waldman (eds.), Final Reports of the Tibor T. Polgar Fellowship Program 1996. Hudson River Foundation and New York State Department of Environmental Conservation, Hudson River National Estuarine Research Reserve, New York.

    Google Scholar 

  • Yang, X., D. R. Miller, X. Xu, L. H. Yange, H. Chen, andN. P. Nikolaidis. 1996. Spatial and temporal variations of atmospheric deposition in interior and coastal Connecticut.Atmospheric Environment 30:3801–3810.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, R.M., Osgood, D.T., Bart, D.J. et al. Phragmites australis invasion and expansion in tidal wetlands: Interactions among salinity, sulfide, and hydrology. Estuaries 26, 398–406 (2003). https://doi.org/10.1007/BF02823716

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823716

Keywords

Navigation