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Abstract 
Helper T lymphocyte (HTL) responses play an important role in the 
induction of both humoral and cellular immune responses. There- 
fore, HTL epitopes are likely to be a crucial component of prophy- 
lactic and immunotherapeutic vaccines. For this reason, Pan DR 
helper T cell epitopes (PADRE), engineered to bind most common 
HLA-DR molecules with high affinity and act as powerful immu- 
nogens, were developed. Short linear peptide constructs compris- 
ing PADRE and Plasmodium-derived B cell epitopes induced 
antibody responses comparable to more complex multiple antigen 
peptides (MAP) constructs in mice. These antibody responses were 
composed mostly of the IgG subclass, reactive against intact sporo- 
zoites, inhibitory of schizont formation in liver invasion assays, and 
protective against sporozoite challenge in vivo. The PADRE HTL 
epitope has also been shown to augment the potency of vaccines 
designed to stimulate a cellular immune response. Using a HBV 
transgenic murine model, it was found that CTL tolerance was 
broken by PADRE-CTL epitope lipopeptide, but not by a similar 
construct containing a conventional HTL epitope. There are a num- 
ber of prophylactic vaccines that are of limited efficacy, require 
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multiple boosts, and/or confer protection to only a fraction of the 
immunized population. Also, in the case of virally infected or can- 
cerous cells, new immunotherapeutic vaccines that induce strong 
cellular immune responses are desirable. Therefore, optimization 
of HTL function by use of synthetic epitopes such as PADRE or 
pathogen-derived, broadly crossreactive epitopes holds promise 
for a new generation of highly efficacious vaccines. 

Introduction: The Role of HTL Responses 
in General Immunity 

Helper T lymphocytes (HTL) play several 
functions that are key in establishing the im- 
mune capacity to fight pathogens. Firstly, they 
support the induction of both CTL and anti- 
body responses. By both direct contact and by 
secretion of lymphokines, such as IL-2 and 
IL-4, HTL promote and support the expansion 
and differentiation of CTL and B cell precur- 
sors into effector cells. In addition, in the case 
of tumors, and viral, bacterial, parasitic, and 
fungal infections (1-23), HTL can be effec- 
tots in their own right, an activity also medi- 
ated by direct cell contact and lymphokine 
secretion (e.g., IFN-y and TNF-c~). 

HTL recognize a complex formed by anti- 
genic peptides bound to Class II MHC mol- 
ecules. Antigenic peptides recognized in the 
context of Class II molecules are usually 
between 10 and 20 residues in length, with 
sizes between 13 and 16 amino acids being the 
most frequently observed (24-30). Peptide- 
Class II interactions have been analzyed in 
detail, both at the structural (31-34) and func- 
tional level (35-37), and peptide-binding 
motifs have been proposed for various human 
and mouse Class II specifities (35,38-52). 
Predictions based on these motifs appear, 
however, to be less accurate relative to the 
peptide binding motifs defined for Class I 
molecules. This situation may be the result of 
the peptide binding groove of Class II tool- 

ecules being "open" at both ends (24-34), and 
thus allowing a given peptide to potentially 
bind in several different registers. 

In the last few years, ep i tope-based  
approaches have been proposed as a possible 
strategy to develop novel prophylactic and 
immunotherapeutic vaccines (53-58). Selec- 
tion of appropriate T and B cell epitopes 
should allow the immune system to be focused 
on conserved epitopes of pathogens whose 
proteins are characterized by high sequence 
variability (such as HIV, HCV, and Plasmo- 
dium Falciparum) (13,59-66). Focusing the 
immune response toward selected determi- 
nants could be of specific value in the case of 
those chronic viral diseases and cancers where 
T cells directed against the immunodominant 
epitopes might have been inactivated, while T 
cells specific for subdominant epitopes might 
have escaped T cell tolerance (67-77). The 
use of epitope-based vaccines also might allow 
the circumvention of "suppressive" T cell 
determinants ,  which might  induce TH2 
responses, in conditions where a TH 1 responses 
is desirable, or vice versa (20, 78, 79). 

Epitope-based vaccines also offer the 
opportunity to include in the vaccine construct 
epitopes that have been engineered to modu- 
late potency, either by increasing MHC bind- 
ing affinity, or by alteration of their TCR 
contact residues, or both (80-82). In this con- 
text, we have recently described the engineer- 
ing of the nonnatural T helper epitope called 
(PADRE) (80). The use of completely syn- 
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thetic, nonnatural epitopes, or epitopes geneti- 
cally unrelated to the pathogen of interest 
(80,83-85), also represents a possible means 
of modulating the HTL response toward aTH 1 
or TH 2 phenotype. 

Once appropriate epitope determinants 
have been defined, they can be assorted and 
delivered by various means, including lipo- 
peptides (86), viral delivery vectors (87-92), 
particles of viral or synthetic origin (93-95), 
adjuvants (96,97), liposomes (98,99), and 
naked or particle-absorbed cDNA (100-102) 
(for reviews, see refs. 13 and 94). 

Development of High Potency, Universal 
DR Restricted Helper Epitopes (PADRE) 

PanDR-binding peptides were originally 
developed by introducing the main DR anchor 
residues necessary for binding to a representa- 
tive set of common DR molecules, into a 
polyalanine backbone. In addition, empirical 
screening of the binding capacity of single 
amino acid analogs of the initial construct 
maximized binding affinity, perhaps by 
ensuring that residues that may negatively 
affect binding capacity because of steric hin- 
drance and disruption of backbone hydrogen 
bonding were not included in the Pan DR bind- 
ing sequence (80). 

PanDR peptides bound 10 of 10 DR mol- 
ecules tested, with affinities in most instances 
in the nanomolar range, and in several in- 
stances significantly higher than known natu- 
rally occurring broad DR binding peptides, 
such as the Ii chain derived CLIP, or the HA 
307-319 or TT830-843 immunodominant 
epitopes. In PanDR peptides only, the small 
methyl groups of the polyalanine backbone 
are exposed for T cell recognition. Accord- 
ingly, when tested for biological activity, these 
peptides were indeed shown to be extremely 
powerful  competi t ive blockers of DR- 
restricted antigen presentation (80). 

To engineer powerful immunogens, we 
started from the observation that if bulky and/ 
or charged side chains are present at crucial 
peptide positions, pointing up and away from 
the DR-peptide complex, they are often rec- 
ognized as main determinants of immuno- 
dominant peptides, both in mouse and human 
systems. Introduction of bulky and charged 
residues at these positions, accessible for T 
cell recognition, indeed yielded extremely 
powerful immunogens, denoted PADRE. 
Table 1 illustrates the broad specificity pat- 
tern and the high binding affinity of PADRE, 
as compared to TT830-843 and CLIP peptides. 

These peptides were highly immunogenic 
in vitro for human PBMC, and several orders 
of magnitude more active than the control 
TT830-843 epitope (80). Because PADRE 
peptides also bind certain mouse Class II 
molecules, the in vivo activity of these pep- 
tides could also be analyzed. It was found that 
PADRE peptides were up to 1000-fold more 
powerful than natural T cell epitopes in their 
capacity to deliver help during induction of 
antigen-specific CTL responses (80). 

It is currently assumed that elicitation of 
specific antibody responses against protein 
antigen requires that two independent signals 
be delivered to B cells. According to this com- 
monly held view simple, monovalent synthetic 
peptides cannot be effective immunogens, 
since they would not be anticipated to effec- 
tively crosslink surface Ig and thus generate 
the necessary signals (103,104). For this rea- 
son, single antigens are routinely conjugated 
to complex carrier systems. 

In a recently published series of experi- 
ments (105), the immunogenicity of short lin- 
ear peptide constructs comprising Plasmodium 
vivax (P. vivax) B cell epitopes (PVB) and 
nonnatural Pan-DR T helper cell epitopes (PA- 
DRE) was assessed in mice and compared to 
other types of antigen constructs. A 33-resi- 
due long PADRE-PVB linear construct was 
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Table ! .  PADRE Binding Affinity 

DRI (DRB I *0101) 23 h 1.2 0.89 

DR2w2 131 (DRB I * 1501 ) 22,750 40 14 

DR2w2 132 (DRB5*0101 ) 20 5.6 31 

DR3 (DRB 1"0301) 3261 214 118 

DR4w4 (DRB 1"0401) 8036 2.8 141 

DR4w 14 (DRB 1 *0404) - -"  12 12 

DR4wl 5 (DRB 1 *0405) 1462 58 200 

DR5wl 1 (DRB l*1101) 20 11 444 

DR5w 12 (DRB 1 * 1201 ) 39,21 I c 392 

DR6w 19 (DRB 1 * 1302) 4.4 206 0.66 

DR7 (DRB 1"0701) 25 147 40 

DR8w2 (DRB 1 *0802) 49 96 258 

DR8w3 (DRB I *0803) 1600 762 889 

DR9 (DRB 1"0901) 74 168 53 

DR52a (DRB 3 *0101 ) 15,667 979 16,786 

DRw53 (DRB4*0101) 17,576 87 8.2 

Alleles bound (16 alleles) 7 15 15 

Hit rate 0.438 0.938 0.938 

~'Sequences: Tet Tox 830-843, QYI KANS KFIGITE; PADRE (965.10), aK(l 4)VAAWTLKAAa, 14 indicates 
cyclohexylalanine; lnvariant chain, LPKPPKPVSKMRMATPLLMQALPM. 

~Significant binding is defined as 1C50 nM _<1000. 
qndicates no significant binding. 

found to be highly immunogenic. This con- 
struct could induce responses comparable to 
those obtained with the multiple-antigen pep- 
tides (MAP) constructs, in terms of absolute 
immunoglobulin titers, isotype distribution, 
dose-response, and overall duration of the 
response. The anti-PVB antibody responses 
lasted for several months and were composed 
mostly of IgG subclass. These results were 
also generalized to B-cell epitopes from P. 
falciparum. In terms of biological signifi- 
cance, the antibody response was shown to be 
reactive with intact sporozoites. Finally, the 
PADRE-PVB constructs were also shown to 
be immunogenic when formulated in various 
different adjuvants, including Alum and 
Montanide ISA 51, thus underlining the rel- 

evance of these findings for human vaccine 
development (105). 

Induction of Protective Responses 
Against the Plasmodium yoelii 
Circumsporozoite Protein 
by Immunization with Peptides 
Containing B Cell and Universal 
T Helper Epitopes 

To further evaluate the biological relevance 
of PADRE B cell epitope constructs, we ana- 
lyzed the capacity of antibody responses elic- 
ited by this type of construct to inhibit schizont 
formation (106) in a liver cell invasion assay. 

Sera from mice immunized with PADRE 
constructs containing a P. yoelli B cell epitope 
inhibited invasion by P. yoelli sporozoite of 
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mouse liver cells. Sera from mice immunized 
with similar epitopes from P. falciparum had 
no inhibitory effect. Conversely, in the case of 
infection of human hepatoma cells by P. 
falciparum sporozoites, the sera from mice 
immunized with PADRE constructs incorpo- 
rating the P. yoelli B cell epitope was ineffec- 
tive, whereas sera from mice immunized with 
P. falciparum B cell epitope-PADRE con- 
structs was highly inhibitory. These results 
underlined the potency and specificity of anti- 
body responses induced by the linear monova- 
lent PADRE constructs (Franke et al., 
Vaccine, in press). 

Next, encouraged by these results, we 
investigated whether this type of construct 
could protect against mouse challenge with P. 
yoelli sporozoites. Previously, protection 
against challenge with sporozoites of Plasmo- 
dium yoelii had been achieved by immuniza- 
tion with a multiple antigen peptide (MAP) 
vaccine designed to induce the production of 
antibodies to the PyCSP repeat region (107). 
The PyCSP MAP vaccine contains the B-cell 
epitope of the P. yoelii circumsporozoite pro- 
tein (CSP) and two universal T-helper epitopes 
(p2 and p30) from tetanus toxin (107). Which 
have also been shown to induce lymphocyte 
proliferation in H-2 b, H-2 d, and H-2 k mice 
(108). In the experiments described herein, we 
compared the protective efficacy and antibody 
responses in C57BL/6 mice immunized with 
linear peptides or a MAP that was composed 
of the B cell epitope of the P. yoelii CSP and 
either p2p30, PADRE, or no T-cell helper 
epitope. 

Protective efficacy and antibody titers were 
highest in the group that was immunized with 
PADRE-PyB, followed by the group that was 
immunized with the much more complex 
MAP(QGPGAP)p2p30 construct. These stud- 
ies demonstrated that immunization with a 
single monovalent construct containing the 
B cell epitope of the P. yoelii CS protein and 

a PADRE induces high levels of protective 
efficacy, correlated with high antibody titers. 
Protection and antibody levels were higher in 
the mice immunized with PADRE-PyB com- 
pared to mice immunized with either a linear 
peptide containing the B cell only or a MAP 
containing the B cell epitope and the universal 
T helper epitopes from tetanus toxin. Nota- 
bly, the linear PADRE construct was more 
effective than cDNA immunization with the 
whole CSP antigen, both in terms of antibody 
titers and protective capacity. 

The Need for HTL Optimization 
in Vaccine Development: 
Prophylactic Vaccines 

In most cases, prophylactic subunit vac- 
cines and vaccines based on killed and/or 
inactivated pathogens act by inducing vigor- 
ous antibody responses. Circulating antibod- 
ies can clear the infectious agent before 
clinical signs of infection become apparent. In 
other instances, especially in the case of 
"attenuated" vaccines, significant contribu- 
tions from cellular immunity might also come 
into play in protection from disease. 

Prophylactic vaccines save millions of lives 
annually, and without doubt represent the most 
dramatic contribution of immunology to medi- 
cine (109,1 lO). However, many of the exist- 
ing vaccines could still be significantly 
improved, and several diseases of worldwide 
concern go unchecked because of the lack of 
suitable vaccines (109,110). Vaccines for 
which improvements are desirable fall into 
diverse categories. Certain vaccines are of lim- 
ited efficacy, conferring protection to only a frac- 
tion of the immunized population, and/or require 
multiple boosts to achieve the level of immunity 
associated with protection from disease. 

Familiar examples include the current HBV 
vaccines, which are not effective in a signifi- 
cant fraction (approximately 10%) of the gen- 
eral population, and require three to four repeat 
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immunizations. Another example is flu vac- 
cines, which provide variable protection in the 
adult population, and are less effective in the 
elderly, the patient population where unfortu- 
nately the most serious morbidity occurs. In 
both cases, it is reasonable to hypothesize that 
potentiation and/or optimization of HTL func- 
tion might be of significant benefit. 

Specifically, in the case of the HBV-S sub- 
unit vaccine, it has been shown that laboratory 
mice can be classified as responders and 
nonresponders, as a function of their genetic 
background at the MHC Class IIlocus (111,112). 
The exact nature of the defect has been pin- 
pointed to deficient HTL function of these mice 
in recognition of the HBV-s antigen (113). 

Several studies have also pointed out that in 
humans, the nonresponder phenotype appears 
to be linked to the DR3 HLA Class II mol- 
ecule, although controversy still exists over 
the strength and role of this linkage (114,115). 
In conclusion, it is likely that increased HTL 
function would increase the immunogenicity 
of the current HBV-S vaccine and, conse- 
quently, increase the percentage of the popula- 
tion that would respond to the vaccine. It is also 
possible that a vaccine containing more potent 
T helper activity might decrease the number 
of immunizations required to achieve protec- 
tion from infection. 

In the case of decreased helper responses of 
the elderly population, it is also hoped that 
potentiation of the HTL response would lead 
to increase in responsiveness, since it has 
shown that decrease in HTL responsiveness is 
one of the earliest alterations associated with 
an aging immune system (116). 

In addition, an optimized HTL function 
might be crucial for development of vaccines 
for a significant number of new indications. In 
particular, development of efficacious and 
cost-effective vaccines against meningococ- 
cal and streptococcal infections have been 
hampered by the carbohydrate (CHO) nature 

of the well-characterized protective antigens 
(109,110). This is because it is commonly 
observed that CHO antigens elicit mostly IgM 
responses, which are poorly boostable and 
often T cell-independent, resulting in less than 
the optimal vaccine performance. It is antici- 
pated that linkage of these antigens to HTL- 
inducing protein antigens would be significant 
benefit, increasing the absolute titers achieved, 
facilitating the IgM to IgG switch, and facilitat- 
ing boosting of the responses. In fact, the cur- 
rently available vaccines for Haemophilus 
influenza (Hib) is a conjugate between Tetanus 
toxoid and various specific CHO antigens (117). 

Large carrier proteins are a powerful source 
of helper epitopes, but suffer from several 
disadvantages, such as relatively high produc- 
tion costs and poor batch-to-batch reproduci- 
bility because of the cumbersome conjugation 
process. Carrier suppression effects can also 
raise doubts concerning whether the optimal 
potency has indeed been reached and 
exploited. Other examples of important dis- 
eases for which potentially protective CHO 
antigens have been identified that could ben- 
efit from linkage with strong HTL-inducing 
epitopes are Salmonella typhi, Cholera, and 
Group B Strep (118-120). In conclusion, in all 
these cases, use of high-potency, well-defined 
HTL epitopes, such as PADRE, might offer sig- 
nificant potency, safety, and cost advantages. 

HTL Activity and Therapeutic Vaccines: 
The Case of Chronic HBV Infection 

As described in the preceding sections, 
antibody responses can, to a large extent, allow 
prevention of the disease process. By contrast, 
therapeutic intervention, after the disease pro- 
cess is established, is often likely to require 
induction of CTL responses, specifically to 
recognize and eliminate infected or cancerous 
cells. A significant degree of controversy 
existed regarding whether induction of CTL 
responses required concomitant induction of 
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HTL responses, to support the expansion of 
CTL precursors, and facilitate their conver- 
sion into mature effector or memory cells. 

Our first target in development of therapeu- 
tic immunomodulators has been chronic HBV 
infection. This choice was based on evidence 
suggesting that individuals that are acutely 
infected with HBV and successfully clear the 
infection develop a vigorous HBV-specific, 
HLA Class I-restricted CTL response. By con- 
trast, spontaneous CTL responses are weak or 
absent in chronically infected individuals, and 
reactivation of such responses is associated 
with clearance of HBV infection either spon- 
taneously or in response to IFN-c~ treatment 
(10). Finally, using HBV transgenic mice, it 
has been directly shown that transfer of acti- 
vated CTL can lead to clearance of expression 
of HBV antigens by a nonlytic mechanism 
(121,122). 

Based on data obtained using mouse model 
Class I and Class II epitopes, we constructed 
a potential HBV immunomodulator (Theradigm- 
HBV) by covalently linking an immuno- 
dominant, A2-restricted CTL epitope, with the 
broadly restricted HLA DR epitope TT830- 
843. We opted to utilize a non-HBV-derived T 
helper epitope, for two reasons. First, we pos- 
tulated that the crucial therapeutic variable 
was induction ofHBV-specific CTL response. 
Second, potential T cell tolerance at the level 
of Class II HBV epitopes could be circum- 
vented by the use ofa  non-HBV-derived HTL 
epitope. Vaccination of healthy normal volun- 
teers indeed demonstrated that Theradigm- 
HBV could induce powerful CTL responses 
(86,123). Furthermore, simultaneous induc- 
tion of good HTL activity was highly corre- 
lated (p = 0.001 ) with successful induction of 
CTL act ivi ty ,  and HTL responses  also 
appeared to be crucial for development of 
long-term memory CTL. When chronically 
infected HBV patients were immunized, sig- 
nificant CTL responses were also observed but 

their overall magnitude was lower relative to 
the normal volunteers, and not yet sufficient to 
clear the infection. In addition, a dysfunctional 
helper response was observed, even against 
the non-HBV-derived TT830-843 epitope, 
suggesting that a generalized defect in the 
HTL function may be associated with chronic 
HBV infection. 

Overall, these data suggest that successful 
therapeutic intervention in chronic HBV 
infection may be feasible, but is likely to 
require further optimization of HTL responses. 
It should be noted that the PADRE epitope 
was not utilized in Theradigm-HBV, simply 
because at the time the clinical trials were 
originally planned, PADRE had not yet been 
discovered. 

Based on the data available to date, we 
would anticipate that PADRE might be a much 
more effective inducer of HTL activity and 
thereby potentially associated with effective 
clearance of HBV chronic infection. This 
notion is also corroborated by data recently 
obtained in the HBV transgenic mouse model, 
where Theradigm lipopeptide constructs 
incorporating either PADRE or conventional 
Class II HTL epitopes were utilized. It was 
observed that tolerance at the CTL level was 
broken by a PADRE-CTL epitope lipopeptide, 
but not by a similar construct containing a 
conventional HTL epitope (Livingston et al., 
submitted). 

Identification of Pathogen-Derived, 
Broadly Crossreactive HTL Epitopes 

The preceding section illustrates the use of 
broadly reactive HTL epitopes, unrelated to the 
disease causing antigen, to increase the potency 
of therapeutic and prophylactic vaccines. 

In certain situations, optimization of HTL 
function is likely to also require the identifica- 
tion of disease-related HTL epitopes. This 
type of situation is best exemplified by chronic 
HIV and HCV infection where positive clini- 

HTL Function 85 



cal outcomes have been associated with rec- 
ognition of particular HTL epitopes. Recognition 
of the NS3.1748 has been to associated with 
resolution of HCV infection (3). Similarly, in 
the case of HIV, recognition of certain 
epitopes has been associated with long-term 
nonprogression to AIDS (125). Finally, in the 
case of cancer, elegant data presented by 
Riddell, Greenberg, and associates have dem- 
onstrated that adoptive transfer of T cell lines 
is dependent not only on the antitumor cyto- 
toxic activity, but also on the presence of HTL 
activity, potentially implicated in allowing 
persistence of the CTL themselves (126). Data 
supporting these concepts have also been pro- 
duced in the Ras feline leukemia model (127). 

However, one major obstacle to the practi- 
cal feasibility of the epitope approach has to 
be overcome: the extremely high degree of 
polymorphism of human MHC molecules. 
Hundreds of different types of HLA Class I 
and Class II molecules have already been iden- 
tified (128,129). Previous studies demon- 
strated that peptides capable of binding several 
different HLA Class I molecules can indeed 
be identified, and in fact, a majority of the 
known HLA Class I molecules can be grouped 
into four broad HLA supertypes characterized 
by similar overlapping peptide binding speci- 
ficities (HLA supermotifs) (130-135). Fur- 
thermore, we have also shown that humans 
naturally present such peptides in the course 
of natural infections (136-138). 

There are also HLA, Class II peptides, 
which bind and are immunogenic in the con- 
text of different HLA molecules (46,47,80, 
84,85,139-144). It has been hypothesized that 
such antigenic peptides could be identified 
through the use of allele-specific motifs (38- 
48). In fact, in a recent report (145), we have 
described the development and validation of 
specific motifs and assay systems for various 
DR molecules. The subset of DR molecules 
studies was chosen to be representative of the 

worldwide population, and it was shown how 
a relatively simple strategy can be applied to 
the identification of broadly degenerate HLA 
Class II binding peptides. 

More specifically, the study initially ana- 
lyzed the peptide binding specificity of three 
common DR types (HLA DRBI*0401,  
DRB 1 * 0101, and DRB*0701 ). Nearly all pep- 
tides binding to these DR molecules carried a 
motif characterized by a large aromatic or 
hydrophobic residue in position 1 (Y, F, W, L, 
I, V, M) and a small, noncharged residue in 
position 6 (S, T, C, A, P, V, I, L, M). On defi- 
nition of allele-specific secondary effects and 
secondary anchors, allele-specific algorithms 
were derived and utilized to identify peptides 
bindingDRB I*0101,DRB 1 *0401,andDRB*0701. 
Further experiments identified a large set of 
DR molecules, which includes at least the 
DRBI*0101, DRBI*0401, and DRB*0701, 
DRB 1' 1501, DRB 1 '0901, and DRB 1" 1302 
allelic products, and is characterized by largely 
overlapping peptide binding repertoires. In 
addition to their implications for understand- 
ing the molecular interactions involved in 
peptide-DR binding, these results also have 
obvious potential practical implications for the 
development of epitope-based prophylactic 
and therapeutic vaccines, as described in the 
preceding sections. 

Conclusions 

A large set of data, reviewed herein, under- 
lines the crucial importance of HTL in devel- 
opment of antibody and CTL responses, as 
well as the potential direct effector role of HTL 
in control of infectious diseases and cancer. 

Development of high-potency, nonnatural, 
synthetic epitopes, such as PADRE, offers an 
opportunity to optimize and potentiate both 
CTL and antibody responses. Consequently, 
it may allow development of novel prophylac- 
tic and therapeutic vaccine applications, as 
well as improvement of existing vaccines 
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without the drawbacks, in terms of potency, 
manufacturing challenges, and safety con- 
cerns of more conventional vaccine carriers. 

Herein we have also reviewed development 
of experimental strategies that allow the iden- 
tification of broadly reactive, pathogen, or 
tumor antigen-derived, Class II epitopes. 
These epitopes could be utilized above or in 
conjunction with PADRE peptides, this offer- 
ing a complementary approach to optimiza- 
tion of HTL function in the context of vaccine 
development. 
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