CORRECTION TO "PERTURBATIONS OF REGULARIZING MAXIMAL MONOTONE OPERATORS" AND A NOTE ON INJECTIVENESS

BY

ERIC SCHECHTER

ABSTRACT

Let A be a maximal monotone operator. Let u_t be the solution of $f(t) \in u'(t) + Au$. We investigate the injectiveness of the mapping $f \mapsto u_t$.

In this note we consider the quasiautonomous initial value problem

(1)
$$f(t) \in u'(t) + Au(t) \quad (a \leq t < \infty),$$
$$x = u(a),$$

where A is a maximal monotone operator in a Hilbert space $(H, | \cdot |)$. Here $x \in \overline{D(A)}$, $a \in \mathbb{R}$, and $f: \mathbb{R} \to H$ is assumed to be locally integrable. For any such A, x, a, f, it is well known that (1) has a unique solution $u_f: [a, \infty) \to \overline{D(A)}$. The solution depends continuously on the data, in the following sense:

(2)
$$|u_{f}(t)-u_{g}(t)| \leq |u_{f}(a)-u_{g}(a)| + \int_{a}^{t} |f(s)-g(s)| ds$$
 $(a \leq t < \infty)$

(see lemma 3.1 in [1]). For later reference, we also note that

(3)
$$|u_f(t) - u_g(t)|^2 \leq |u_f(a) - u_g(a)|^2 + 2 \int_a^t (f(s) - g(s), u_f(s) - u_g(s)) ds$$

(see inequality (28) on page 65 of [1]). We assume the reader is familiar with the most basic properties of this class of operators and initial value problems. For a brief introduction to this subject see §6–10 of [4], or §II.1–II.4 and III.1–III.2 of [1].

In this paper we shall hold A fixed, and vary x, a, f, t. To display dependence on these data, we shall often denote the solution u(t) of (1) by $u_f(t, a, x)$. Let \mathcal{M}

Received August 10, 1983

be the set of mappings from $\{(t, a, x) \in \mathbb{R} \times \mathbb{R} \times \overline{D(A)} : t \ge a\}$, into $\overline{D(A)}$. For each $f \in L^{1}_{loc}(\mathbb{R}; H)$, the function u_f is an element of \mathcal{M} .

Inequality (2) shows that the mapping $f \mapsto u_f$ is continuous from $L^1_{loc}(\mathbf{R}; H)$ with its usual topology, into \mathcal{M} with the topology of uniform convergence on compact sets. Results in [5, 6] show that for certain classes of A's and f's, the mapping is still continuous if $L^1_{loc}(\mathbf{R}; H)$ is given a weaker topology. For some classes of A's and f's, arguments in [6] and in example 2 of [5] show that the mapping $f \mapsto u_f$ is actually a homeomorphism.

Example 3 of [5] asserts that if $H = \mathbf{R}$ and

(4)
$$A(x) = \begin{cases} \operatorname{sign}(x) & \text{when } x \neq 0, \\ [-1,1] & \text{when } x = 0, \end{cases}$$

then the mapping $f \mapsto u_f$ is not injective. That assertion is erroneous, as we shall see later in this note. The brief argument in example 3 of [5] actually shows only that the mapping $f \mapsto u_f(\cdot, 0, 0)$ is not injective. Clearly, this is a weaker conclusion. But there do indeed exist maximal monotone operators A for which the mapping $f \mapsto u_f$ is not injective. This fact will also follow from our main result, below.

THEOREM. Let A be a maximal monotone operator in a real Hilbert space $(H, | \ |)$. Let $x_0 \in D(A)$. Let H_0 be the closed linear span of the set $D(A) - x_0$. Let P be the orthogonal projection of H onto the closed linear subspace H_0 . Let $f_1, f_2 \in L^1_{loc}(\mathbf{R}; H)$. Then $u_{f_1} = u_{f_2}$ if and only if $Pf_1(t) = Pf_2(t)$ for almost every $t \in \mathbf{R}$.

REMARK. It is easy to show that H_0 depends only on the set D(A), and not on the particular choice of the element x_0 in D(A).

PROOF OF THE "IF" PART. Assume $Pf_1(s) = Pf_2(s)$ for almost all $s \in \mathbb{R}$. Since u_{f_1} and u_{f_2} take values in $\overline{D(A)}$, it follows easily that $u_{f_1} - u_{f_2}$ takes values in H_0 . Hence $u_{f_1}(s) - u_{f_2}(s)$ is orthogonal to $f_1(s) - f_2(s)$ for almost all s. Now apply (3); it follows that $u_{f_1} = u_{f_2}$.

PROOF OF THE "ONLY IF" PART. Assume that

$$(5) Pf_1(a) \neq Pf_2(a),$$

for all a in some set of positive measure. By the vector version of Lebesgue's Theorem [3, theorem III.12.8], almost every point $a \in \mathbf{R}$ is a Lebesgue point of f_1 and f_2 ; that is, a number such that

E. SCHECHTER

(6)
$$f_i(a)$$
 is defined and $\lim_{h\to 0} \frac{1}{h} \int_a^{a+h} |f_i(a) - f_i(s)| ds = 0$ $(j = 1, 2).$

Fix some $a \in \mathbf{R}$ satisfying both (5) and (6); it suffices to show that $u_{f_1}(\cdot, a, \cdot) \neq u_{f_2}(\cdot, a, \cdot)$.

Let $\xi = f_1(a) - f_2(a)$. It follows from (5) that $(\xi, x_1 - x_0)$ is nonzero for some $x_1 \in D(A)$. Define the operator $A + \xi$ by taking $(A + \xi)(x) = A(x) + \xi$ for all $x \in D(A)$. We claim that the operators A and $A + \xi$ are not identical.

Indeed, suppose that $A = A + \xi$. Then $A = A + k\xi$ for all integers k. Since $x_j \in D(A)$, the set Ax_j is nonempty; let $y_j \in Ax_j$ for j = 0, 1. Then $y_j \in Ax_j + \theta_j k\xi$ if $\theta_j \in \{0, 1\}$. That is, $[x_j, y_j - \theta_j k\xi] \in A$. Since A is monotone,

$$0 \leq ((y_1 - \theta_1 k\xi) - (y_0 - \theta_0 k\xi), x_1 - x_0)$$

= $(y_1 - y_0, x_1 - x_0) - k(\theta_1 - \theta_0)(\xi, x_1 - x_0)$

Holding x_0 , x_1 , y_0 , y_1 fixed, choose θ_0 and θ_1 so that $\theta_1 - \theta_0 = \text{sign}(\xi, x_1 - x_0)$. Then take k very large; we obtain a contradiction. Thus A and $A + \xi$ are indeed distinct. That is, $A + f_1(a)$ and $A + f_2(a)$ are distinct.

For any constant $z \in H$, the operator A + z is also maximal monotone, and so it generates a nonexpansive, strongly continuous semigroup S_z on $\overline{D(A + z)} = \overline{D(A)}$. The maximal monotone operators are in one-to-one correspondence with their semigroups ([1], theorems 3.1 and 4.1). Since $A + f_1(a) \neq A + f_2(a)$, it follows that $S_{f_1(a)} \neq S_{f_2(a)}$.

For r > 0, let

$$\delta(\mathbf{r}) \equiv \max_{j=1,2} \sup_{0 < h \leq \mathbf{r}} \frac{1}{h} \int_{a}^{a+h} |f_j(a) - f_j(s)| ds.$$

Then $\delta(r) \downarrow 0$ as $r \downarrow 0$, by our choice of *a* satisfying (6). For any $x \in \overline{D(A)}$, note that $S_{f(a)}(h)x = u_{f(a)}(a+h, a, x)$; hence from (2) we have

$$|S_{f_i(a)}(h)x - u_f(a+h,a,x)| \leq \int_a^{a+h} |f_i(a) - f_i(s)| ds \leq h\delta(h)).$$

This inequality holds for j = 1, 2. Taking the difference of these two results, we obtain

$$|S_{f_1(a)}(h)x - S_{f_2(a)}(h)x| \leq 2h\delta(h)$$
 for all $x \in \overline{D}(A)$ and $h \geq 0$.

Now, let any $y \in \overline{D(A)}$ and $t \in (0, \infty)$ be given. Temporarily fix any positive integer *n*. For $j = 0, 1, 2, \dots, n$, let $y_j = S_{f_2(a)}(jt/n)y$. Then

$$|S_{f_{1}(a)}(t)y - S_{f_{2}(a)}(t)y|$$

$$= \left|\sum_{j=1}^{n} \left[S_{f_{1}(a)}(t/n)^{j}S_{f_{2}(a)}(t/n)^{n-j}y - S_{f_{1}(a)}(t/n)^{j-1}S_{f_{2}(a)}(t/n)^{n-j+1}y\right]\right|$$

$$\leq \sum_{j=1}^{n} \left|S_{f_{1}(a)}(t/n)y_{n-j} - S_{f_{2}(a)}(t/n)y_{n-j}\right|$$

$$\leq \sum_{j=1}^{n} 2\frac{t}{n} \delta\left(\frac{t}{n}\right) = 2t\delta\left(\frac{t}{n}\right)$$

which tends to 0 as $n \to \infty$. Thus $S_{f_1(a)}(t)y = S_{f_2(a)}(t)y$ for all t > 0 and $y \in \overline{D(A)}$, a contradiction. This completes the proof of the theorem.

COROLLARY. Let A be a maximal monotone operator in a Hilbert space H. Let $x_0 \in D(A)$. Then the mapping $f \mapsto u_f$, from $L^1_{loc}(\mathbf{R}; H)$ into \mathcal{M} , is injective if and only if the closed linear span of the set $D(A) - x_0$ is all of H.

REMARKS ON SOME CONSEQUENCES

(1) If A is defined as in (4), then $D(A) = \mathbf{R}$. Hence, by the corollary above, the mapping $f \mapsto u_f$ is injective from $L^1_{loc}(\mathbf{R})$ into \mathcal{M} .

(2) We easily construct examples in which the mapping $f \mapsto u_f$ is not injective. For instance, suppose A is a maximal monotone operator in a Hilbert space H, and \tilde{H} is another Hilbert space. Let $B(x) = A(x) \bigoplus \tilde{H}$ for all $x \in D(A)$. Then B is easily seen to be maximal monotone in $H \bigoplus \tilde{H}$, with $D(B) = D(A) \subseteq H \subseteq$ $H \bigoplus \tilde{H}$. If \tilde{H} is not the trivial space {0}, then H is a proper subspace of $H \bigoplus \tilde{H}$; and so by the corollary above, the mapping $f \mapsto u_f$ for B is not injective.

SOME QUESTIONS FOR FURTHER STUDY

(1) Suppose $H = H_0$, so that $f \mapsto u_f$ is injective. What topologies on \mathcal{M} and $L^1_{loc}(\mathbf{R}; H)$ make the inverse map $u_f \mapsto f$ continuous? What topologies make it a homeomorphism?

(2) Suppose $H \neq H_0$. Then the map $Pf \mapsto u_{Pf}$ is injective. What topologies make its inverse continuous?

(3) The proof above used the fact that strongly continuous, nonexpansive semigroups on a closed convex subset C of a Hilbert space are in one-to-one correspondence with the maximal monotone operators A satisfying $\overline{D(A)} = C$; That fact seems to be stronger than is really needed for the proof. Indeed, the proof given above does not involve all maximal monotone operators A satisfying $\overline{D(A)} = C$; it only involves those which differ by a constant. Can a more direct proof be given, using less powerful tools and yielding more insight into the map $f \mapsto u_f$?

E. SCHECHTER

(4) To what extent does the theorem above extend to m-accretive operators in an arbitrary Banach space? It is not clear what should replace the notion of orthogonal projections in that setting. Also, m-accretive operators are *not* in one-to-one correspondence with their semigroups (pages 295–297 in [2]).

REFERENCES

1. H. Brézis, *Opérateurs maximaux Monotones*, North-Holland Mathematics Studies 5, Notas de Matemática 50, North-Holland/American Elsevier, 1973.

2. M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Am. J. Math. 93 (1971), 265-298.

3. N. Dunford and J. T. Schwartz, Linear Operators, I, Wiley, New York, 1957.

4. A. Haraux, Nonlinear Evolution Equations: Global Behavior of Solutions, Springer Lecture Notes in Mathematics 841 (1981).

5. E. Schechter, Perturbations of regularizing maximal monotone operators, Isr. J. Math. 43 (1982), 49-61.

6. E. Schechter, Evolution generated by semilinear dissipative plus compact operators, Trans. Am. Math. Soc. 275 (1983), 297-308.

MATHEMATICS DEPARTMENT VANDERBILT UNIVERSITY NASHVILLE, TN 37235 USA