Correction to "Some remarks on weakly compactly generated Banach spaces", by W. B. Johnson and J. Lindenstrauss, Israel Journal of Mathematics, Vol. 17, No. 2, 1974, pp. 219-230.

David Yost has pointed out that the norm constructed for the space U^{*} in part (e) of example 1 in our paper is not locally uniformly convex. A dual norm on $U^{*}=l_{1} \oplus l_{2}(\Gamma)$ which has this property is given by

$$
\|(y, z)\|=\|y\|_{h_{2}}+\left(\|y\|_{L_{1}}^{2}+\|y\|_{l_{2}}^{2}+\|z\|_{2_{2}(\Gamma)}^{2}\right)^{1 / 2} .
$$

To see that $\|\left|\left|\left|| |\right.\right.\right.$ is the dual to a norm on U, let $\left(y_{\alpha}, z_{\alpha}\right)$ be a net in the
 $\left\|\|(y, z)\| \mid \leqq 1\right.$. The net $\left(y_{\alpha}\right)$ in l_{1} must converge coordinatewise to the vector y, so we can write $y_{\alpha}=y_{\alpha}^{1}+y_{\alpha}^{2}$, where the supports of y_{α}^{1} and y_{α}^{2} are disjoint for each fixed α, and $\left\|y-y_{\alpha}^{1}\right\|_{L_{1}} \rightarrow 0$. By passing to a subnet, we can assume that ($y_{\alpha}^{2}, 0$) weak ${ }^{*}$ converges in U^{*}, necessarily to an element of the form ($0, z_{1}$), and, a fortiori, $\left(0, z_{\alpha}\right)$ weak ${ }^{*}$ converges to $\left(0, z_{2}\right) \equiv\left(0, z-z_{1}\right)$. This last statement just means that (z_{α}) converges weakly in $l_{2}(\Gamma)$ to z_{2}.

We thus have the following inequalities:

$$
\begin{aligned}
& \left\|y_{\alpha}\right\|_{l_{1}}=\left\|y_{\alpha}^{1}\right\|_{h_{1}}+\left\|y_{\alpha}^{2}\right\|_{L_{1}}, \\
& \left\|y_{\alpha}\right\|_{l_{2}}^{2}=\left\|y_{\alpha}^{1}\right\|_{l_{2}}^{2}+\left\|y_{\alpha}^{2}\right\|_{l_{2}}^{2}, \\
& \lim _{\alpha}\left\|y_{\alpha}^{\prime}\right\|_{h_{1}}=\|y\|_{h_{2}}, \\
& \lim _{\alpha}\left\|y_{a}^{1}\right\|_{h}=\|y\|_{h}, \\
& \left\|z_{2}\right\|_{h(T)} \leqq \liminf _{\alpha}\left\|z_{\alpha}\right\|_{h(\sigma)} .
\end{aligned}
$$

Moreover - and this is the main point - one has from the form of the duality between U and U^{*} that

$$
\left\|z_{1}\right\|_{l(r)} \leqq \underset{\alpha}{\liminf \|}\left\|y_{\alpha}^{2}\right\|_{l_{1}} .
$$

Therefore,

$$
\begin{aligned}
\|(y, z)\| & =\|y\|_{l_{1}}+\left(\|y\|_{l_{1}}^{2}+\|y\|_{l_{2}}^{2}+\left\|z_{1}+z_{2}\right\|_{L_{2}(\mathrm{\Gamma})}^{2}\right)^{1 / 2} \\
& \leqq\|y\|_{l_{1}}+\left\|z_{1}\right\|_{L_{2}(\mathrm{\Gamma})}+\left(\|y\|_{i_{1}}^{2}+\|y\|_{l_{2}}^{2}+\left\|z_{2}\right\|_{l_{2}(\mathrm{\Gamma})}^{2}\right)^{1 / 2} \\
& \leqq \liminf _{\alpha}\left\{\left\|y_{\alpha}^{1}\right\|_{l_{1}}+\left\|y_{\alpha}^{2}\right\|_{L_{1}}+\left(\left\|y_{\alpha}^{1}\right\|_{L_{1}}^{2}+\left\|y_{\alpha}^{1}\right\|_{L_{2}}^{2}+\left\|z_{\alpha}\right\|_{l_{2}(\mathrm{\Gamma})}^{2}\right)^{1 / 2}\right\} \\
& \leqq \lim _{\alpha} \inf \left\|\left(y_{\alpha}, z_{\alpha}\right)\right\|=1 .
\end{aligned}
$$

Now we check that $\|\|\cdot\| \mid$ is locally uniformly convex and hence is dual to a Frechét differentiable norm on U. Suppose that $\left\|\left\|\left(y_{\alpha}, z_{\alpha}\right)\right\|\right\|=1,\| \|(y, z)\| \|=1$, and $\left\|\left\|\left(y_{\alpha}+y, z_{\alpha}+z\right)\right\| \rightarrow 2\right.$. It follows that

$$
\begin{gathered}
\left(\left\|y_{\alpha}+y\right\|_{l_{1}}^{2}+\left\|y_{\alpha}+y\right\|_{l_{2}}^{2}+\left\|z_{\alpha}+z\right\| \|_{l_{2}(\mathrm{\Gamma})}^{2}\right)^{1 / 2} \sim \\
\left(\left\|y_{\alpha}\right\|_{l_{1}}^{2}+\left\|y_{\alpha}\right\|_{l_{2}}^{2}+\left\|z_{\alpha}\right\|_{l_{2}(\mathrm{\Gamma})}^{2}\right)^{1 / 2}+\left(\|y\|_{l_{1}}^{2}+\|y\|_{l_{2}}^{2}+\|z\| l_{l_{2}(\mathrm{\Gamma})}^{2}\right)^{1 / 2}
\end{gathered}
$$

(where " $s_{\alpha} \sim t_{\alpha}$ " means " $s_{\alpha}-t_{\alpha}$ " $\rightarrow 0$). That is, in the locally uniformly convex space $\left(\mathbf{R} \oplus l_{2} \oplus l_{2}(\Gamma)\right)_{l_{2}}$, we have

$$
\left\|\left(\left\|y_{\alpha}+y\right\|_{1}, y_{\alpha}+y, z_{\alpha}+z\right)\right\| \sim\left\|\left(\left\|y_{\alpha}\right\|_{1}, y_{\alpha}, z_{\alpha}\right)\right\|+\left\|\left(\|y\|_{1}, y, z\right)\right\|
$$

which implies that $\left\|y_{\alpha}\right\|_{1_{1}} \rightarrow\|y\|_{1_{1}},\left\|y_{\alpha}-y\right\|_{L_{2}} \rightarrow 0$, and $\left\|z_{\alpha}-z\right\|_{h_{2}(\Gamma)} \rightarrow 0$. Hence also $\left\|y_{\alpha}-y\right\|_{1_{1}} \rightarrow 0$, whence $\left\|\left\|\left(y_{\alpha}-y, z_{\alpha}-z\right)\right\|\right\| \rightarrow$. Therefore $\|\|\cdot\| \mid$ is locally uniformly convex.

In conclusion, it should be noted that a similar correction should be made in example 2, part (b) of our paper.

The Ohio State University

Columbus, Ohio, USA

AND

[^0]
[^0]: The Hebrew University of Jerusalem
 Jerusalem, Israel

