In Search of Exotic States.

M. Jacob and J. Weyers
CERN - Geneva
(Nuovo Cimento, 69 A, 521 (1970))

We are indebted to Professor Rosner for pointing out to us that there should be a negative sign in front of T_{A}^{8} as it appears in eq. (3). As a result, one obtains $\alpha=-\frac{1}{3}$ and values for R which are respectively equal to $\frac{8}{3}$ and

$$
\frac{2}{|9 \alpha+\mathbf{1}|}(|\mathbf{l}+3 \alpha|+2|\mathbf{1}-\alpha|) .
$$

Since these tho values were merely calculated as to provide an illustrative order of magnitude, this has no implication on our paper as a whole.

There is a misprint in eq. (2)

$$
\frac{1}{2 \sqrt{5}} T^{3} \quad \text { should read } \quad \frac{1}{4 \sqrt{5}} T^{1}
$$

We should also mention that if diffraction dissociation cannot be used at producing exotic multiplet members, as mentioned in Sect. 2, it could well modify the quark "content " of the incoming particle as to give a particle with nonexotic quantum numbers which could easily decay into an exotic particle and a pion. The association of Pomeranchon exchange to disconnected duality diagrams is yet loose enough as to leave such a possibility open.

