668 W. THIRRING

depend on the substance. In AgBr the distance between two atoms is about 10 Bohr radii so that some electrons will go into n > 3 states which have a lifetime $> 10^{-8}$ s and will, therefore, not reach the ground state. For spin > 1 the angular correlations will persist unless the meson has an exceedingly large magnetic moment $(\gamma^{-1} > 50)$ which makes the interaction with the $p_{\frac{3}{2}}$ electrons strong enough.

* * *

I would like to thank Prof. M. FIERZ for a stimulating discussion.

ERRATA - CORRIGE

W. Czyż and J. Sawicki — Polarization of Nucleons from Photonuclear Reactions: Nuovo Cimento 3, 864-869 (1956).

	instead of:	should read:
p. 865, line 2, 3 from the top	${\stackrel{\wedge}{Y}}{}^{2}$	$\overset{\wedge}{J^2}$
p. 867, line 6 from the top	_	$I = \frac{4}{3} \left R_{\frac{1}{2}} + \frac{1}{10} R_{\frac{3}{2}} + \frac{9}{10} R_{\frac{5}{2}} \right ^2 + \frac{9}{25} \left R_{\frac{5}{2}} - R_{\frac{5}{2}} \right ^2$
p. 867, line 8 from the top	$C = R_{\frac{1}{2}} + \frac{5}{2}R_{\frac{5}{2}} - \frac{9}{10}R_{\frac{5}{2}}$	$C = R_{\frac{1}{2}} + \frac{2}{5}R_{\frac{3}{2}} - \frac{9}{10}R_{\frac{5}{2}}$
p. 867, line 11 from the bottom	= 1.6 MeV	= 1.63 MeV (according to (3)). However, the last experimental value is 1.66 MeV. This difference has little influence on the numerical results.
p. 868, line 8-11 from the top	This result Austern (5)	This result may, for instance, be applied to the calculation of polarization of photoneutrons from the 29 Si nucleus close to the threshold of the 29 Si($\dot{\gamma}$, n) reaction.