## Light propagation in weakly guiding optical fibres. A Laplace-transform approach

## G. PAIANO

Dipartimento di Fisica, Università di Bari - Bari, Italy INFN, Sezione di Bari - Bari, Italy

(Nuovo Cimento B, 111 (1996) 701)

PACS 04.40 - Continuous media; electromagnetic and other mixed gravitational systems.

PACS 02.30.Qy - Integral transforms and operational calculus.

PACS 42.25.Bs - Wave propagation, transmission and absorption.

PACS 99.10 - Errata.

On p. 705, a factor 1/2 was erroneously inserted in the refraction index profile. Formula (3) must read

(3) 
$$f(r) = 1 - \operatorname{sech}^{2} \frac{r}{\varrho} = 1 - \frac{1}{(\exp[r/\varrho] + \exp[-r/\varrho])^{2}}.$$

Subsequent formulas must accordingly be corrected. From (6) onwards they take the right form by replacing V with 2V and  $V^2$  with  $4V^2$ . We note, in particular,

i) Formula (10) for the basic differential equation:

(10) 
$$\frac{\mathrm{d}^2 u}{\mathrm{d}R^2} + \frac{2\nu + 1}{R} \frac{\mathrm{d}u}{\mathrm{d}R} + (-W^2 + V^2 \mathrm{sech}^2 R) u = 0.$$

(ii) The recurrence relation (29), useful in view of future work:

(29) 
$$(2n+2)^2 \alpha_{2n+2} + 2\nu(2n+2)\alpha_{2n+2} - W^2 \alpha_{2n} + V^2 \beta_{2n} = 0.$$

(iii) The result (34) for cut-off frequencies:

(34) cut-off frequency of the 
$$LP_{\nu 1}$$
 mode =  $(2\nu)^{1/2}$ 

which modifies accordingly table I.

(iv) Formulas (35) and (36) for the eigenvalues W:

(35) 
$$\frac{4V^2 - W^2}{(W+2)^2} - \frac{W^2}{(W+4)^2} = 1,$$

(36) 
$$W = 2V - 2 = 2(V - 1) \qquad (V > 1).$$

Whereas cut-off frequencies compare still less favourably with the exact numerical values, the eigenvalue reproduces up to a factor two the result of Snyder and Sammut quoted in the paper and has the same «validity threshold» at V = 1.