Complex Angular Momentum and Energy in Three-Particle Amplitudes.

M. H. ('holditury

Tait Institute of Mathematical Ihysics, Umiversily of Edinburgh - Eidinburgh
(Nunco Cimento, 34, 956 (1964))

When this paper was in the press, the author received a communication form Dr., Anessindmasi who pointed out that celtain difficulties which he and Professor omises were having with regand to this problem are also present in this paper. This concerns the summations over the magnetic quantum numbers $m_{i k}^{\prime}$ and I_{i}^{\prime} in eq. (4.20). Though these summations are ordinarily finite, they an tend to infinite sums as $l_{j k}^{\prime}$ tends to infinity. Now it tums out that the Clebsch-Gordon coefficients occurring in (4.20) diverge exponentially as $\dot{z}^{m^{\prime} j k}$ for large values of $m_{j k}^{\prime}$ and this would destros the complete continuity of the kernel. Howerer, it may he worth-while pointing out that for large values of $m_{j k}^{\prime}$ with $m_{j k}^{\prime}+M M_{j}^{\prime}=M$ (M fixed) the function $J+l_{i}^{\prime} M_{i}^{\prime}\left|\theta_{i}^{\prime} f_{i}^{\prime}\right\rangle$ occurring in (4.20) behaves as (see ref. (12), p. 147)

$$
\left\langle J: \cdot t_{i}^{\prime} M_{i}^{\prime} \theta_{i}^{\prime} \varphi_{i}^{\prime}\right\rangle \sim\left(\operatorname{cotg} \frac{\theta_{i}^{\prime}}{2}\right)^{n-\mu}, \quad \quad M_{j k^{\prime}}^{\prime} \cdots \cdots,
$$

and it would therefore seem that one would have to perform to θ_{i}^{\prime} integration in the kernel in order to make a definite and final assertion regarding the complete continuity of the kernel. This however, is an extremely difficult task to accomplish.

I am indebted to Dr. Alessandrini for pointing out this difficulty to me.

[^0]
[^0]: 'lhis note was intended for pubblication at the end of the main paper. We are very sorry that by at mistake this was not done. We publish it here at the request of the author.

