«Stationarization» of the Velocity Distribution Function of Electrons in a Gas in an Electric Field.

G. L. Braglia and L. Ferrari

Istituto di Fisica dell'Università - Parma

(Nuovo Cimento, 67 B, 167 (1970))

Equation (15): replace

$$\left\{ \left[\ldots \right] \frac{\partial R}{\partial y} \, y^{2-n} \, \frac{\partial^2 R}{\partial y^2} \right\}$$

by

$$\left\{ \left[\ldots\right] rac{\partial R}{\partial y} + y^{2-n} rac{\partial^2 R}{\partial y^2}
ight\}.$$

Page 177, 4th and 5th lines below eq. (26): replace -k by k and viceversa.

Equation (8): replace $\exp[-i\theta]$ by $\exp[-j\theta]$.

Page 181, 6th line below eq. (53): read «... distribution maintains its Maxwellian form during the relaxation process».

Equation (74): the denominator should read $[Y_j(y)]_1^2$.

Page 187, 3th line: replace $-Y_1(y)$ by $-Y_1'(y)$; in Fig. 2 replace $Y_1'(y)$ by $-Y_1'(y)$.

Page 188, 13th line: replace Λ_i by $\tilde{\Lambda}_i$.

Page 191, 6th line: replace (5 56) by (5.59).

Page 195, 10th line: replace eq. (35) by eq. (90).

Page 197, Sect. 7'4, 3th line: replace $[2m/eh(n)]^{\frac{1}{2}}$ by $[2m/eh^{2}(n)]^{\frac{1}{2}}$.

Page 198, 4th line: replace $(1/16)\gamma^2$ by γ^2 ; 6th and 10th lines: replace °C by 0 °C; in eq. (95) replace the exponent n+2/(2n+2) by (n+2)/(2n+2).

Caption of Fig. 15: replace \int_{0}^{0} by \int_{0}^{θ} .

Page 202, last line: replace « ... bounded » by « ... bound ».