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AbstraeL In the plane the post-office problem, which asks for the closest site to a query 
site, and retraction motion planning, which asks for a one-dimensional retract of the free 
space of a robot, are both classically solved by computing a Voronoi diagram. When the 
sites are k disjoint convex sets, we give a compact representation of the Voronoi diagram, 
using O(k) line segments, that is sufficient for logarithmic time post-office location queries 
and motion planning. If these sets are polygons with n total vertices given in standard 
representations, we compute this diagram optimally in O(k log n) deterministic time for 
the Euclidean metric and in O(k log n log m) deterministic time for the convex distance 
function defined by a convex m-gon. 

I. Introduction 

One of  the earliest successes of  computat ional  geometry is the O(n log n)- t ime com- 
putation of  the Voronoi diagram of  n point sites in the plane, which is the partit ion of  
the plane into maximally connected regions that have the same set of  closest  sites [29], 
[34]. Aurenhammer  [3] has surveyed the many applications and general izat ions o f  the 
Voronoi diagram. In this paper  we concentrate on two classical app l i ca t ions - - the  post-  
office problem and the "retraction" method for planning translational m o t i o n - - w h e n  the 
sites are k disjoint convex polygons with a total of  n vertices. 

* This work was supported by NSERC in the form of a Graduate Scholarship and two Research 
Grants. 
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1.1. The Post-Office Problem and Retraction Motion Planning 

The post-office problem [34] takes a set ofk sites in the plane and asks for a data structure, 
based on these sites, suitable for efficiently determining the closest site to an arbitrary 
query point. When the sites are disjoint convex polygons with n total vertices, the Voronoi 
diagram has k faces bounded by O(n) segments of lines and parabolas [22], [25], [37]. 
Combined with a data structure for point location [15], [19], [31], it gives an O (n)-space 
data structure that answers queries in O (log n) time after O (n log n) preprocessing. 

The retraction method for motion planning [2], [28], [32] uses the Voronoi diagram 
ofk sites to determine if there is a motion of the center of a disk from an initial position p 
to a final position q that does not cause the disk to intersect any site. Because each edge 
of the Voronoi diagram is equidistant from its two closest sites, maximum-clearance 
paths, which maximize the minimum distance to an obstacle, can follow Voronoi edges. 
After O (n log n) preprocessing an O (n)-space data structure can be obtained that can be 
used to determine, in O(log n) time, if motion from p to q is possible and to construct a 
maximum-clearance path in time proportionai to the path complexity [30]. Furthermore, 
by generalizing the distance measure from the Euclidean metric to a convex distance 
function, a retraction diagram can be computed for translating a convex object. (We 
elaborate in Section 2.3.) 

Although the Voronoi diagram is optimal for both the post-office problem and for 
retraction motion planning for point sites, it can be excessively elaborate when the sites 
are polygons. Suppose that we have k polygonal sites with a total of n vertices (we say 
the sites have total complexity n). The edges of the Voronoi diagram consist of O(n) 
segments of lines and parabolas. Answering a post-office query then involves searching 
through parabolic and straight-line segments to find the Voronoi cell that contains the 
query point. Retraction-motion-planning paths on the Voronoi diagram ask a robot to 
traverse pieces of line segments and parabolas. We would like a simpler version Of the 
Voronoi diagram that lets us solve the post-office problem and retraction motion planning 
for polygonal sites while avoiding the O (n) complexity of the Voronoi diagram. 

This paper describes a compact approximation of the Voronoi diagram when the k sites 
are disjoint convex polygons with n total vertices. The compact diagram is composed 
of O(k) line segments and is sufficient to solve the post-office problem in O(logn)  
time and retraction-motion-planning problems in O (log k) time. If the vertices of each 
site polygon are represented as ordered lists in arrays or balanced search trees, we can 
compute the diagram deterministically in | (k log n) time by a sweep algorithm, as shown 
in Section 3. 

The compact diagram can also represent the generalized Voronoi diagram defined by 
a convex distance function [11]. For k disjoint convex polygons with total complexity 
n and the distance function induced by a convex m-gon, the Voronoi diagram can have 
| + km) complexity. Our diagram with O(k) line segments can be computed in 
O (k log n log m) time and can answer post-office queries in O (log n + log m) time and 
motion-planning queries in O (log k) time. 

This diagram has several advantages besides its efficient deterministic construction. 
First, given the compact diagram, the true Voronoi diagram can be derived in time pro- 
portional to its complexity (| for the Euclidean and | + km) for convex distance 
functions). Second, for applications where knowing two candidates for the closest site 
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(and not their distances) is sufficient, the original sites (and distance function) can be dis- 
carded and only the O (k) segments of the compact diagram are stored. Retraction motion 
planning is one such application. Third, because the compact diagram is entirely com- 
posed of line segments, the compact diagram is easier to compute, display, and traverse 
than the Voronoi diagram. This is an advantage even if the k sites are line segments. 

The remainder of this section compares our diagram to related work on the definition 
and construction of (compact, generalized, and abstract) Voronoi diagrams. For more 
detail, see Aurenhammer's survey [3]. Section 2 describes the diagram and its application 
to the post-office problem and to retraction motion planning. Section 3 gives a deter- 
ministic construction based on Fortune's sweep algorithm [16] as well as a randomized 
incremental construction with the same expected time. 

1.2. Related Work on Compact Diagrams 

There has been considerable recent interest in simplified or compact representations 
of the Voronoi and other retraction diagrams. Canny and Donald [9] define a simplified 
Voronoi diagram in d dimensions for retraction motion planning that has a lower algebraic 
complexity than the Euclidean diagram. In the plane they obtain a diagram with line 
segments, but the number of segments depends on the complexity of the obstacles---on 
n rather than k--and the dependence may be superlinear. Kao and Mount [18] consider 
the generalized Voronoi diagram using a distance function defined by a convex polygon 
with m sides. Even though the Voronoi diagram may have | + km) complexity, Kao 
and Mount show that a compact representation with space O (m + n) can be computed in 
O (n log n log 2 m) time such that post-office queries take O (log n + log m) time. If used 
for motion planning, their approach would still generate paths of 0 (n + km) complexity. 

Sifrony [35] considers the motion of a fixed m-gon in the plane and computes an 
O (n)-sized skeletonized retraction diagram for motion planning using approximately 
O (n log n log 2 m) time. de Berg et al. [12], in independent work, have generalized these 
results to higher dimensions and improved them to depend on k instead of n. In the plane 
they compute an O (k)-size skeletonized diagram in O (k log 2 (n + m)) time for moving 
a fixed m-gon in the plane. Because these approaches depend on a fixed m-gon, they do 
not solve the post-office problem for convex distance functions. 

1.3. The Relation to the Computation of Abstract Voronoi Diagrams 

Those who are familiar with Klein's monograph [23] will see our compact diagram as an 
instance of an abstract Voronoi diagram. Abstract Voronoi diagrams are defined only in 
terms of bisectors of pairs of sites and are computed using primitives such as determining 
the ordering of two points along a bisector and the ordering of three bisectors that pass 
through a common point. Recent work [21] gives an O(log n)-time subroutine for the 
Voronoi vertex problem, which asks to find points equidistant from three sites, under the 
Euclidean metric. In Section 3.5 we obtain O (log n log m) subroutines under a convex 
distance function defined by an m-gon for the Voronoi vertex problem and for finding 
the nearest point on a polygon to a query point. 
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There are three algorithmic paradigms that give optimal O(k logk) algorithms for 
the Voronoi diagram of k point sites: divide and conquer [34], randomized incremental 
construction [17], [27], and sweepline [16]; the first two have been adapted to compute 
abstract Voronoi diagrams [23], [24], [26], but they do not directly give an optimal 
construction for our compact diagram. It is instructive to investigate why not. 

A divide-and-conquer algorithm merges pairs of Voronoi diagrams in linear time. In 
the process it solves as many as | (k log k) instances of the Voronoi vertex problem; in 
Klein's abstract setting, each such instance requires a call to a primitive. For our compact 
representation of the Euclidean Voronoi diagram, this would result in a O (k log k log n)- 
time algorithm. The randomized incremental construction [24], [26] solves an expected 
O (k) instances of the Voronoi vertex problem, but evaluates an expected t9 (k log k) 
"conflicts" In our case a conflict involves a "spoke region" (a hexagonal region defined 
by two sites) and a new site. The conflict occurs when at least one point of the spoke region 
is closer to the new site than to either of the two sites that define the spoke region. Thus, 
the direct implementation takes | (k log k log n) expected time. Section 3.4 improves the 
expected time by evaluating conflicts for the leftmost point of the new site and updating 
the diagram from this conflict using a constant number of calls to primitives for each 
Voronoi vertex created. Fortune's [16] sweep algorithm has not been adapted to the 
abstract setting. This is not a surprise because abstract bisectors need not be monotone 
or have other properties that permit a sweep. For convex distance functions, however, 
Fortune's sweep can be seen as the computation of a dynamic Voronoi diagram whose 
sites are the sweep line and the swept portions of objects. (As noted by Seidel [33], the 
"parabolic front" is simply the boundary of the Voronoi cell of the sweepline.) 

2. Definition of the Compact Diagram 

We define the compact diagram for any convex distance function. In the next section we 
construct it by a general algorithm---only the subroutine for computing a point equidistant 
from three polygons depends on the distance function. This generality necessitates some 
care in the basic definitions to handle degenerate cases. 

2.1. Geometric Preliminaries 

We begin by defining convex distance functions, spokes, bisectors, Voronoi cells, Voronoi 
vertices, and Voronoi edges. 

Minkowski showed that any convex set M whose interior contains the origin defines 
a convex distance function dM(p, q). The distance from point p to q with respect to M 
is the amount that M must be scaled to include q - p; the distance function dM has a 
natural extension to sets A and B: 

dM(p, q) = inf{~. > 0: q -- p E ~.M}, 

dM(A, B) = inf{dM(a, b): a e A, b �9 B}. 

Distance function dM is not necessarily a metric: riM(p, q) need not equal dM(q, p) if  
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Fig. 1. Mp A and spoke(p, A). 
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M is not centrally symmetric. It does, however, satisfy the triangle inequality for points 
[10]: dM(p, q) + dM(q, r) >_ dM(p, r). 

In this paper the sets M, A, and B are always closed subsets of the Euclidean plane E 2 
and M is bounded so the infimum operations could be replaced by minimum operations. 
The set M contains a neighborhood around the origin so that the distance between any 
two points is finite. The points of the boundary of M are precisely those at unit distance 
from the origin. Choosing M to be the unit circle gives the Euclidean metric; choosing 
M to be the diamond defined by four unit vectors in the axial directions gives the L 1 o r  

Manhattan metric. Thus, we can give a geometric interpretation of the distance from a 
point p to a set A. Let Mp A denote the convex set M scaled by dM (p, A) and translated 

to p (see Fig. 1). That is, M :  = du(p, A)M q- p. 

Lemma 2.1. If M and A are closed convex sets and p ~ A, then the boundaries of 
A and A intersect while their interiors are separated by a tangent line. Mp 

Proof. Suppose that the interiors of A and M A were not disjoint. Then we could find 

a point a '  �9 int(A) tq int(Ma). The distance dM(p, a') < dM(p, A), contradicting the 

definition of dM(p, A). On the other hand, an a �9 A fq Mp A does exist because M and A 

are closed the boundaries O(A) and O(Mp A) intersect. Since the interiors of A and M a 
are disjoint, they can be separated by a line I. Line l must pass through a, making it 
tangent to A and M A. [] 

Given a closed convex set A C E 2 and two points p �9 E 2 and a �9 A, we say that 
segment ~ is a finite spoke and a is the attachment point if dM(p, A) = dM(p, a). If  
p �9 A, then the degenerate segment ~ is a spoke. Geometrically, ~ is a spoke with 
p ~ A if M a and A intersect at a as in Fig. 1. The pair p and A define a unique spoke 

except in the degenerate situation where A and M A share a common line segment on 
their boundaries. 

Definition 1. Let spoke(p, A) be the unique Euclidean shortest finite spoke defined 
by p and A. 

We can also define infinite spokes as the infinite rays composed of all points p for 
which s p o k e ( p ,  A) has the same attachment point and direction. 

Definition 2. A set X �9 E 2 is star-shaped with respect to A if A c X and every 
s p o k e ( p ,  A), with p �9 X, is contained in X. 
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(a) (b) 

Fig. 2. Euclidean bisector (a) (drawn solid) and Manhattan region of bisectors (b) (shaded). 

When dM is the Euclidean distance, the bisector of two closed convex sets A and 
B is defined as {p: dM(p, A) = dM(p, B)} (Fig. 2(a)). The shaded region in Fig. 2(b) 
illustrates that the bisector is not always a curve under this definition for arbitrary convex 
distance functions in the plane. Specifically, when a boundary segment of  M a at some 
point p is an outer common tangent of A and B, then all points in the wedge defined by 
rays from p directly away from the attachment points of  s p o k e  (p, A) and s p o k e ( p ,  B) 
are equidistant from A and B with respect to dM. 

We therefore base the definition of a bisector on an oriented version of the convex set 
M that induces the convex distance function. Orient the boundary of M counterclockwise 
so that each line segment on the boundary of M becomes a directed edge. The head of 
an edge is associated with the edge itself while the tail of an edge does not belong to the 
edge. Consequently, every point on the boundary of M belongs to exactly one directed 
edge. 

D e f i n i t i o n  3. Under this orientation of M, the A B-bisector is the set of points p where 
dM(p, A) = dM(p, B) and where s p o k e ( p ,  A) and s p o k e ( p ,  B) cross the boundary 
of M A along different directed edges. 

This definition is depicted in Fig. 3. Note that this definition is consistent with perturbing 
M slightly counterclockwise. 

Using the oriented interpretation for the boundary of M, Lemma 2.2 relates homothets 
of M whose centers lie on a common spoke. This relationship is then used to show, in 

. , , s . ,  

Fig. 3. Manhattan bisector, drawn solid. 
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Lemma 2.3 and Corollary 2.4, that our definition of an AB-bisector is a curve that 
separates the plane into two star-shaped regions. 

Lemma 2.2. If  A is a closed convex set, p ~ A is a point in the plane, and q # p is a 
point along spoke (p ,  A), then Mq A C M : .  Furthermore, if  sp o k e (p ,  A) does not exit 

A Mp at a vertex, then the boundaries of Mq A and M :  intersect along a single directed 

edge of :,1:. 

Proof Both spoke (p ,  A) and spoke (q ,  A) share a common attachment point on A. 
Since M A and M m are both homothets of M, it follows that M~ C M~. [] 

Lemma 2.3. The AB-bisector is a continuous curve. 

Proof Each point p on the bisector can be parametrized by the attachment point of 
-~poke(p, A), breaking ties with the angle and length of s p o k e ( p ,  A). As we advance 
along the AB-bisector, the attachment point either moves along the boundary of A 
in one direction (spokes to A cannot cross other spokes to A since dm satisfies the 
triangle inequality) or the attachment point remains the same. In the latter case the 
angle of spoke (p ,  A) either changes monotonically and continuously or remains fixed 
(when the bisector moves in the direction of sp o k e (p ,  A)) in which case the length of 
spoke (p ,  A) changes monotonically. [] 

Corollary 2.4. The A B-bisector bounds two sets---one star-shaped with respect to A 
and one star-shaped with respect to B. 

Proof The A B-bisector divides the plane into two sets since it is continuous (Lemma 
2.3). The star-shaped property of each set follows from Lemma 2.2. [] 

Let .,4 = {At, A2 . . . . .  Ak } be a collection ofsites--which are convex sets in the plane 
with disjoint interiors. Let V(A) be their Voronoi diagram. The Voronoi cell of A i is 
Ni#j.l<_j<k {the Ai side of the AiAy-bisector}. In the Euclidean metric where M is a 
circle, this definition is equivalent to {p: dM(p, Ai)  < dM(p. Aj) for all j # i}; that is, 
all points for which A i is the unique closest site. 

Corollary 2.5. The Voronoi cell o f  Ai in V (.4) is star-shaped with respect to Ai. 

Proof. The Voronoi cell of Ai is the intersection of the star-shaped sets containing Ai, 
all of which are star-shaped with respect to Ai, that are defined by the AiAj-bisectors 
for all j ~: i. [] 

The boundary of the cell of A i is composed of portions of bisectors with other sites. 
Where two adjacent bisectors intersect we have a finite Voronoi vertex, which is equidis- 
tant from Ai and the other two sites defining the bisectors. Two adjacent bisectors may 
go off to infinity rather than intersecting--we consider them to intersect at a Voronoi 
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vertex at infinity. Later in the paper we refer to a spoke from the infinite Voronoi vertex to 
A i ; the spoke is an infinite ray from Ai to the point at infinity whose direction keeps the 
ray between the two bisectors. The portion of one AiAj-bisector that appears between 
two Voronoi vertices is a Voronoi edge. 

Corollary 2.6. By introducing spokes from the (finite and infinite) Voronoi vertices 
around the boundary of the Voronoi cell of Ai in V (.~), the cell is decomposed into 
regions bounded by portions of a single Ai A j-bisector. 

Proof. Because bisectors are bi-infinite curves, any region of Ai's Voronoi cell that 
is bounded by AiAj  - and AiAk-bisectors either has a finite Voronoi vertex where 
these bisectors cross or an infinite Voronoi vertex in the direction that they go off to 
infinity. The spokes from these vertices to Ai are contained in the star-shaped Voronoi 
cell of Ai. [] 

2.2. A Compact Diagram for the Post-Office Problem 

With the notation developed above it is easy to define a diagram of O(k) line segments in 
which two candidates for the closest neighbor of  a query point can be determined. Draw 
spokes from the (finite and infinite) Voronoi vertices around the cell of Ai, as described 
in Corollary 2.6. 

Definition 4. The core of polygon A i is the convex hull (and its interior) of the spoke 
attachment points around Ai. 

Replace each polygon Ai by its core. The union of the spokes and cores forms the 
compact diagram (see Fig. 4). 

Definition 5. The complement of  the cores and spokes for all sites is a set of connected 
spoke regions bounded by at most six segments: two core segments and four spokes. 

Theorem 2.7. By introducing 0 (k) segments, we partition the plane into cores and 
spoke regions. For the latter, the closest site is known to be among two candidates. 

Proof. Points in the core of A i are within Ai. The spokes incident o n  Ai partition the 
remainder of the cell of Ai into regions bounded by a portion of the bisector of Ai and 
one other site. The union of the two regions that border the same portion of the AiAj- 
bisector forms a hexagonal spoke region that is contained in the union of the closures of 
the Voronoi ceils for Ai and Aj. Therefore Ai o r  Aj is the closest neighbor for the points 
in this spoke region. 

To establish the size, it is sufficient to prove that the number of spokes is O(k) 
because the number of core polygon edges is equal to the number of spokes. Let al -. �9 ak 
be representative points in the interior of A1 --- Ak, respectively. We can form a plane 
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~ S  

J .............. 

Fig. 4. A compact diagram for point location. 

graph on {al, a2 . . . . .  ak} by connecting ai with aj, whenever A i and Aj have a common 
bisector, using an edge that crosses the AiAj-bisector and stays between the spokes. 
Because all faces of this graph (except perhaps the outermost) have at least three vertices, 
Euler's relation implies that the graph has O (k) edges and faces. [] 

If  we process this diagram using any optimal point-location structure [ 15], [19], [31] 
we can determine the two candidates for the closest neighbor to a query point q in 
O (log k) time. We can compute the distances to these two candidates by finding spokes 
from q to each of the candidates. Section 3.5 shows that computing spokes takes O (log n) 
time when the distance function is the Euclidean metric and O (log n + log m) time when 
it is specified by a convex m-gon. 

2.3. A Compact Diagram for  Retraction Motion Planning 

The next lemma is the key to modifying the compact diagram for retraction motion 
planning: 

L e m m a  2.8. For convex sets A and B, the function dM (p, A ), where point p is re- 
stricted to the AB-bisector, has no local maxima. 
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% B 

Fig. 5. The A B-bisector is limited by the maximum distance of r and s to A and B. 

Proof. Let  r and s be distinct points along the A B-bisector and suppose that dM (s, A) < 
dM(r, A). Let r A and rB be the attachment points of spoke ( r ,  A) and spoke ( r ,  B), 
respectively; define SA and sB similarly (see Fig. 5). 

For any point p in the hexagon formed by rA, SA, S, SB, rB, and r we have the inequality 
min{dM (p, ra-'j'g~, dM(p, r7~-3 } < dM (r, A ). Since segments r AS A and r Bs8 are inside 
A and B, respectively (by the convexity of A and B), it follows that 

rrfin{dM(p, A) ,  riM(p, B)} < min{dM(p,  ~ ,  dM(p,  rTgB)}. 

Hence, for points p on the A B-bisector between r and s we have dM (p, A) <dM (r, A). 
r-1 

For every contiguous section s of an A B-bisector there is a largest homothet of M 
that can translate along s without colliding with A or B. The minimum distance of s to 
either site determines the scale factor for this largest homothet. Since the A B-bisector 
has a single section of minimum distance, the minimum distance on s is attained either 
at an endpoint of s or at a point p �9 s for which the tangent between A and Mp A can be 

chosen to be parallel to a tangent between B and Mp ~ (= MpA). Let p be such a minimum 
point for section s. If  p is a minimum point on the whole A B-bisector, let r be a tangent 
between A and Mp A that has a parallel tangent between B and M~. Otherwise, let r be 

any common tangent between A and Mp A. In the following definition the entire Voronoi 
edge that traverses one spoke region is taken as the section s. 

Definition 6. A bottleneck segment for a spoke region R is a segment through a point 
p of minimum distance along the Voronoi edge through R that is parallel to r (Fig. 6). 

Under the Euclidean metric, the bottleneck segment can be chosen as the perpendicular 
bisector of the shortest segment joining A and B, provided this shortest segment lies 
within the spoke region R. 

In Section 3.5 we describe the bo t t 1 e n e c k ( R )  routine, which computes a bottleneck 
segment in O (log n) time in the Euclidean case and O (log n log m) in the convex distance 
function case. 
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Fig. 6. A bottleneck segment in a spoke region. 

Lemma 2.9. A homothet of  M can traverse a spoke region R from Voronoi vertex to 
Voronoi vertex along a Voronoi edge if  and only if  it can traverse R via a bottleneck 
segment for R and spokes incident to R. 

Proof. Let R be a spoke region formed by sites A and B. The Voronoi edge that traverses 
R is a portion of the A B-bisector, which is equidistant to A and B. If a homothet of M 
can traverse R along spokes, and across a bottleneck edge of R, then it can traverse R 
using the Voronoi edge that avoids A and B equally. Our main task is to show that a 
path along a Voronoi edge has an equivalent path along spokes and a bottleneck segment 
without compromising the clearance between the path and A or the path and B. 

Suppose that M can traverse R along the Voronoi edge. Then the homothet of M does 
not touch either of A or B at a minimum point p along the edge. We have two cases, 
depending on whether or not p is a minimum for the whole AB-bisector. 

If p is a minimum point for the entire A B-bisector, then r,~ is a common tangent 
B M~). between A and Mp a with a parallel common tangent rB between B and Mp (= 

Choose the bottleneck segment that passes through p and is parallel to r,~. The homothet 
of M can traverse the bottleneck segment because it is separated from A and B by Za 
and rt~, respectively. When the homothet reaches a spoke, it moves to the Voronoi vertex 
by moving away from A or B, whichever is closer in dM distance and the distance to A 
exceeds the distance to B only after we cross the Voronoi vertex (Corollary 2.5). Thus 
the homothet can traverse the spoke region. 

If p is not a minimum point for the AB-bisector, then we can choose p as a Voronoi 
vertex of R and choose the bottleneck segment for R that leaves p parallel to a tangent 
rA between A and M a. A tangent rB between B and Mp B diverges from Z" a within R 
since A, B, and M are convex. Therefore, moving a homothet of M along the bottleneck 
segment increases the distance to rB and to B; the homothet remains separated from 
A by ra. The homothet of M continues along the bottleneck segment until it reaches a 
spoke of R and moves to the Voronoi vertex along the spoke as before. [] 

If we store for each spoke region a minimum point, its spokes, and a bottleneck 
segment, then we can determine how to move onto the retraction diagram without using 
the original polygon information. 

Lemma 2.10. A homothet of M can move onto the retraction diagram from a free 
placement by locating its initial spoke region and moving parallel to its bottleneck 
segment until it encounters the spoke-region boundary. 
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Proof For a spoke region R adjacent to polygons .A and B, suppose that we have 
stored a minimum point p and the spokes s p o k e ( p ,  A) and s p o k e ( p ,  B). Given an 
initial free placement of a homothet of M with origin at q, we move the homothet 
parallel to the bottleneck segment and away from the minimum spokes s p o k e ( p ,  A) 
and s p o k e ( p ,  B). We show that this movement avoids collision with A and B, so the 
origin can reach a spoke that forms part of  the boundary of R. The origin can follow this 
spoke away from its closest site up to a Voronoi vertex, which puts the homothet onto 
the retraction diagram. 

Recall that there is a line z that is tangent to A at the attachment point of s p o k e ( p ,  A) 
and is parallel to the bottleneck segment. If  the homothet M and A are separated by r ,  
then M cannot hit A. If  M intersects r,  then a line separating M and A must cross r and 
allow M to move away from s p o k e ( p ,  A). If  M and A are on the same side of r and 
the angle from s p o k e ( p ,  A) to the next spoke on the boundary of R is at most Jr, then 
the same argument applies. (The angle condition is automatic for finite spokes bounding 
R and can be obtained for infinite spokes by choosing an infinite spoke with attachment 
point opposite that of s p o k e ( p ,  A).) [] 

Finally, by weighting each bottleneck segment by its minimum distance to a site, 
we compute a maximum weight spanning tree of the compact diagram. We can process 
this tree [30] to answer retraction-motion-planning queries and to compute paths that 
maximize the minimum clearance to sites, where clearance is measured by the distance 
function dM. 

Theorem 2.11. Using an O(k)-size data structure, it can be determined in O(logk) 
time i f  there is a translational motion that gets M from p to q avoiding the k convex 
obstacles. A motion can be computed in time proportional to its complexity, which 
is O(k). 

Proof We can think of the retraction diagram as a weighted planar graph whose O (k) 
vertices are the Voronoi vertices and whose O(k) edges represent paths that traverse 
a bottleneck segment. The weight of an edge is the largest scale for a homothet of M 
that can use the corresponding bottleneck segment. Rohnert [30] has shown that we'can 
compute a maximal spanning tree in this graph and process it to determine in logarithmic 
time the largest-scale homothet that can traverse the tree from a given initial point to a 
given final point. We use Lemma 2.10 to determine the initial and final nodes of  the tree 
in O(log k) time. [] 

3. Computing the Compact Voronoi Diagram 

The key information for computing the compact Voronoi diagram is the set of Voronoi 
vertices for the sites. Given the Voronoi vertices and the sites that generate each vertex, 
we can find the spokes to the sites, identify the spoke regions (by sorting the Voronoi 
vertices around each site), and thus construct the compact diagram. Site adjacencies 
across spoke regions also define which bottleneck segments we must compute to solve 
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retraction motion planning. Consequently, we concentrate on how to find efficiently the 
Voronoi vertices of polygonal sites under a convex distance function. 

We use a variant of Fortune's sweep algorithm to locate all Voronoi vertices. Sec- 
tion 3.1 reviews Fortune's algorithm and provides the key proofs (Lemmas 3.3 and 3.4) 
that the plane sweep locates all Voronoi vertices under convex distance functions. The 
variant on the sweep algorithm appears in Section 3.2 with details on handling degen- 
eracies in Section 3.3. A randomized incremental construction algorithm for locating 
Voronoi vertices appears in Section 3.4. Finally, Sections 3.5 and 3.6 describe low-level 
subroutines that are used in the previous sections and discuss lower bounds for computing 
the compact Voronoi diagram. 

3.1. Fortune's Plane-Sweep Algorithm 

Fortune's algorithm views the static task of locating all Voronoi vertices for a set of sites 
as a dynamic operation. It sweeps a vertical line, called the sweepline, from left to right 
across the Voronoi diagram of the sites and finds all Voronoi vertices. As the sweepline 
travels across the plane, the algorithm examines the Voronoi diagram defined by the sites 
(or parts of sites) to the left of (or on) the sweepline, together with the sweepline itself. 
It detects all Voronoi vertices by observing the changes in the boundary of the Voronoi 
cell for the sweepline as the sweepline moves. When the sweepline nears x = + ~ ,  all 
sites--as well as all Voronoi vertices of the the Voronoi diagram for the sites--lie to the 
left of the sweepline, so the sweep detects all Voronoi vertices. A typical picture of the 
algorithm in mid-sweep on polygonal sites is shown in Fig. 7. 

Throughout this section we assume that the sites are convex polygons in general 
position. In particular, we require that no polygon has a vertical edge, that no vertical 
line is tangent to two polygons, and that no four polygons are tangent to one homothet 
of the convex distance function. These restrictions are handled by a later section. 

4ine 

JA 

A 

Fig. 7. The sweep front (in bold) and Voronoi diagram |oR of the sweeplinc. 
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Definition 7. The boundary of the sweepline's Voronoi cell is called the sweep front; 
it consists of Voronoi edges between the sweepline and some sites. 

Definition 8. A maximal connected portion J of the sweep front between the sweepline 
and a single site A is denoted by JA and called a front arc. 

Figure 7 illustrates that one polygon (polygon A) may have many front arcs associated 
with it at any one time in the sweep (arcs J,~ and KA). The sweep algorithm maintains 
the list of front arcs along the sweep front by handling "events" where front arcs are 
added or deleted to the sweep front. 

Definition 9. A site event occurs where the sweepline reaches a leftmost point of a 
site. 

Definition 10. A circle event occurs where the sweepline reaches the rightmost point 
of M' where M' is a homothet of the convex set M that is tangent to three sites of 
consecutive front arcs on the sweep front. 

The sweep algorithm maintains two data structures: a balanced binary tree T that 
stores the sweep front and a priority queue Q that schedules changes in the sweep front 
in the form of site and circle events. 

The balanced binary tree T stores the sequence of front arcs along the sweep front. The 
tree provides a logarithmic-time binary search through the sweep front and logarithmic- 
time location of adjacent front arcs. Each tree node corresponds to one front arc Ja and 
stores: 

�9 A pointer to the site A that generates JA. 
�9 Pointers to any events in the priority queue Q that JA has generated. 
�9 A spoke that crosses Ja to site A. 

Notice that the curves that make up the front arcs are not stored. Theorem 3.7 of Sec- 
tion 3.2 shows how to search the sweep front without them. 

The priority queue Q schedules events in the order that the sweepline will encounter 
them in its sweep across the plane, thus discretizing the continuous sweep. The events 
correspond to points in the plane and are sorted in the schedule by ascending x-coordinate. 
Events are added to the queue only if their event point is finite and appears to the right 
of the sweepline's position at the time of insertion. Information stored in Q with each 
event includes: 

�9 Pointers to the front arcs or sites that generate it. 
�9 For circle events, a Voronoi vertex of three sites. 
�9 For circle events, the attachment points of the spokes from the Voronoi vertex to 

each of the generating sites. 
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As the sweep algorithm progresses, the algorithm maintains two invariants on the tree 
7" and the priority queue Q: 

�9 The tree 7" always contains the ordered list o f  front arcs on the sweep front for the 
current position of  the sweepline. 

�9 The queue Q contains precisely one site event for each site that the sweepline has 
not encountered and one circle event for each set of  three consecutive front arcs in 
the current sweep front when the event point is finite. 

Before detailing the front arc and schedule changes in Fortune's sweep algorithm as 
events are handled, we must show that the basic principles of  the algorithm hold under 
convex distance functions. 

Lenuna  3.1. For the set o f  sites 79, every Voronoi vertex o f  V(79) eventually appears 
along the sweep front. 

Proof. Let v be a Voronoi vertex of  V (7 9) for the sites P, Q, and R, and let I be the 
sweepline. Since M e is convex, it has a rightmost point at x = x0. When l is at x ----- x0, it 
is tangent to Mo P, so v must lie on the Voronoi edge of  I in V (79 U {l}). Since I is tangent 
to Mo p at its rightmost point, v lies left of  I and is therefore on the sweep front. [] 

L e m m a  3.2. Given a set o f  polygons 79 and two vertical sweeplines Ii and 12 at x = xl 
and x = x2, respectively, with xl < x2, every point on the sweep front  f o r  11 lies closer 
to some site P than to 12. 

Proof. We assume that some polygon exists to the left of  sweepline Ii. Otherwise, the 
sweep front for ti is empty. 

Let r be a point on the sweep front for Ii in V(79 U {ll}) and let a be the spoke from 
r to 1~. Since our distance function is convex, and since x~ < x2, the spoke a '  from r to 
12 in V(79 U {12}) is an extension o f a .  

Let P be the polygon that has r on the boundary of  its Voronoi cell in V (7 9 U {11 }). 
Then the distance from r to 12 is strictly greater than from r to P since a '  extends a .  
Consequently, the sweep front for 12 must intersect a '  to the right o f  r, and hence to the 
right of  the sweep front of l l  in V ( P  U {ll}). [] 

L e m m a  3.3. A front arc is created on the sweep front i f  and only i f  a site event occurs. 

Proof. We start by showing that a site event creates a front arc. 
When the leftrnost point p of  a polygon P is on the sweepline 1, that point has a zero 

distance to both I and P and lies on the Pl-bisector and on the boundary of  l 's  Voronoi 
cell. Since point p is not on the right side of  l, it belongs to the sweep front and a front 
arc generated by P.  Before P crosses l, polygon P cannot have a front arc, so p must 
belong to a new front arc. 

Next, we show that every new front arc is caused by a site event. 
Let Jp be a new front arc generated by polygon P. If  no front arcs existed prior to 

Jp,  then there are no polygons left of (or on) the sweepline l before the arrival of  Jp. 
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Since Jp is a portion of the Pl-bisector, arc Jp can only be caused when polygon P first 
pierces l. 

Otherwise, Jp breaks an existing front arc K 0 in the sweep front at the points p 
(upper) and q (lower). Arc KQ is generated by site Q. The area between Jp and the part 
of KQ that was broken when Je  appeared belongs to the Voronoi cell for P in V(7 9) 
where 7 9 is the set of all sites. Since the Voronoi cell is star-shaped (Corollary 2.5), some 
portion of P must appear within the area A bounded by s p o k e ( p ,  Q), s p o k e ( p ,  l), 
s p o k e ( q ,  Q), s poke (q ,  l), Q, and I. Let r be any point within the Voronoi cell of P 
that also lies inside the area A. Before Jp appeared, point r belonged to the Voronoi cell 
of the sweepline in V(79 U {l}) since the point r is in a spoke region bounded by Q and 
the sweepline and the front a r c  KQ c a n n o t  leave the Voronoi cell of Q in V(79). Since 
I is an infinite line, if the attachment point of spoke ( r ,  P)  lies left of or on 1, then r is 
either on the Pl-bisector or on the P-side of the Pl-bisector. In either of these cases, 
some portion of the Pl-bisector appears along the sweep front. So, before Jp appeared, 
all the attachment points to P for the points in A were to the right of the sweepline. 

Let a be the attachment point to P of spoke ( r ,  P). Consider what happens as the 
sweepline crosses a if some portion of P already lies to the left of  the sweepline. Once 
l crosses a, the point r becomes part of  the sweep front or part of  the interior of A; both 
cases imply that arc Jp then exists. Since P is convex, immediately prior to l crossing 
a, 1 cuts through P in a neighborhood of a and P N l is part of the sweep front. So, 
when I crosses a, some portion of the Pl-bisector at a is on the sweep front and Jp is an 
extension of that portion. This contradicts the fact that KQ appears both above and below 
Je  on the sweep front, so no portion of P lies to the left of  the sweepline. Consequently, 
arc Jp  only appears when the sweepline first encounters P. [] 

L e m m a  3.4. A front arc is removed from the sweep front if and only if a Voronoi vertex 
of three polygonal sites crosses the sweep front. 

Proof. We begin by showing that a front arc is removed from the sweep front when a 
Voronoi vertex crosses the sweep front. 

Let v be a Voronoi vertex between the polygons P, Q, and R that lies on the 
sweep front. We assume that s p o k e ( o ,  P)  lies immediately counterclockwise from 
s p o k e ( v ,  l) and s p o k e ( v ,  R) lies immediately clockwise from s p o k e ( v ,  l) (see Fig. 8). 

The Voronoi cell for Q does not extend beyond s p o k e ( v ,  P)  and s p o k e ( v ,  R) 
since s p o k e ( v ,  P) and s poke (v ,  R) lie completely in the Voronoi cells for P and R, 
respectively. Any front arc generated by Q that extends between the P Q-bisector and 
the QR-bisector cannot pass the point v; the front arc must stay in Q's Voronoi cell. 
Lemma 3.2 shows that the sweep front leaves v when I moves right of its current position, 
so the front arc generated by Q between the PQ- and QR-bisectors disappears when v 
lies on the sweep front. 

Next, we show that a largest homothet of the convex distance function is tangent to 
three consecutive sites and the sweepline when a front arc is removed from the sweep 
front. The origin of the homothet is a Voronoi vertex of the three polygons. 

Let KQ be a front arc, generated by polygon Q, that is being removed from the sweep 
front. The front arcs at either end of the sweep front are infinite and cannot be removed 
from the sweep front, so arc KQ must have a front arc Jp above and a front arc Lg below 
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Fig. 8. The front arc for Q is removed at v. 

it on the sweep front. If  KQ is a single point s, then point s belongs to Jp  and LR as 
endpoints. The polygons P and R must be distinct since the Voronoi cell for P would 
otherwise surround the cell for Q, so the point s is a Voronoi vertex for P, Q, and R. 

Otherwise, the front arc KQ is a curve rather than a single point that is removed from 
the sweep front at one instant. When the sweepline moves right, the sweep front KQ 
also moves (Lemma 3.2), though it must stay within the Voronoi cell for Q in V(P). 
Since KQ is removed from the sweep front whenever the sweepline moves to the right, 
the Voronoi cell of Q does not extend between KQ and the sweepline. The arc KQ must 
therefore be a Voronoi edge in V(P)  between Q and some polygonal site P,  i.e., part of 
the P Q-bisector. However, KQ is also part of the bisector between Q and the vertical 
sweepline. The site P must have a vertical line segment on its boundary to match the 
Q/-bisector, contradicting the general position assumptions; the front arc KQ can only 
be removed from the sweep front if it degenerates to a point first. [] 

A summary of the sweep algorithm appears in Fig. 9. The algorithm relies upon one 
subroutine, vertex(ABC): 

Definition 11. The subroutine v e e r  ex(A BC) accepts three sites and computes a finite 
or infinite Voronoi vertex v where the Voronoi cells for sites A, B, and C occur in 
counterclockwise order around v. 

For three convex sites, up to two Voronoi vertices exist; vertex( ) distinguishes 
these vertices by the order of the incident Voronoi cells around the vertex. 

In the case of finite Voronoi vertices, vertex(ABC) corresponds to the point p 
B C where M A = Mp = M~ and A, B, C appear in counterclockwise order around p. If  

there is no such largest homothet of the distance function M, then the point at infinity is 
returned as the Voronoi vertex of A, B, and C. The subroutine returns the vertex v, the 
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Schedule a ieftmost point of each polygon as si%e events 

While the schedule is not empty do 

Remove the next event p 

if p is a new site event 

Binary search the sweep front to find the arc J nearest p 

Unschedule all circle events involving the arc J 

Split J into two front arcs 

Create a new front arc ior p that appears between the [ragments of J 

Schedule circle events for the new front arcs 

else p is a circle event 

Record the center of p as a Voronoi vertex 

Delete the front arc K associated with the circle event 

Unschedule any circle events involving the arc K 

Schedule circle events coming from the disappearance of front arc K 

endif 

endwhile 

Fig. 9. Outline of the sweepline algorithm. 

rightmost point of M A, and a spoke from v to each of A, B, and C (in the case where v 
is an infinite vertex, the spokes to A, B, and C extend to infinity in a direction that keeps 
the spoke inside the Voronoi cells of A, B, and C respectively). Section 3.5 discusses 
two implementations of this subroutine: one in O (log n) time under the Euclidean metric 
and the other in O (log n log m) time under the distance function induced by an m-gon. 

Given the characterizations of Lemmas 3.3 and 3.4, Fortune's algorithm preserves 
the data structure invariants as each event of the priority queue Q is handled. The result 
is a complete list of the Voronoi vertices. 

The sweep algorithm begins by satisfying the data structure invariants at the sweep- 
line's initial position. The site whose leftmost x-coordinate equals the leftmost x- 
coordinate of the entire set of sites generates one front arc in the sweep front 7-. The 
algorithm adds one site event to the schedule for each site not represented in 7-; no circle 
events appear in the initial schedule. The sweep now begins with the sweepline at the 
leftmost point of the set of sites. 

When the sweepline encounters a site event at a point p, a new front arc J appears 
along the sweep front (Lemma 3.3). 

First, the algorithm re-establishes the invariant on the sweep front in 7". It searches 
the sweep front for the front arc K that is nearest to the point p (under the convex 
distance function). This is done by a binary search across the sweep front where the 
position of point p is compared with the endpoints of front arcs. (Section 3.2 provides 
an improvement on this search.) The new front arc J splits K into arcs K'  (above J)  
and K" (below J); arc J is added to 7" between the split arcs K '  and K" to satisfy the 
invariant on T. 

Second, the algorithm updates the schedule Q to reflect the changes in the sweep 
front. The site event for p was removed from the schedule when the algorithm detected 
the event. The sweepline encounters the leftmost point of only one polygon at a time 
(since the polygons are in general position) so Q contains precisely the required set of 
site events. Only circle events may now violate the invariants. The single circle event 
defined when front arc K was the middle of three consecutive arcs must be removed 
from the schedule since that triple no longer exists in T. If the sequence of front arcs was 
I K L  before arc J divided arc K, three new sets of consecutive arcs replace the triple 
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and must be added to the schedule as circle events: v e r t e x ( I K ' J ) ,  v e r t e x ( J K " L ) ,  
and v e r t e x ( K ' J K " ) ,  the last of which is guaranteed to be a vertex at infinity. The 
circle events where K was the first or third arc in the sequence remain unchanged in the 
schedule Q since arcs K'  and K" fulfill the role of K in those instances. The invariants 
are now satisfied and the next event from Q can be processed. 

When the sweepline encounters a circle event, the front arc J corresponding to 
the event must be removed from the sweep front and a Voronoi vertex is detected 
(Lemma 3.4). As with the site event, we must alter the sweep front T and the schedule Q 
to maintain our invariants. The change to the sweep front 7" is simple: arc J is removed 
from the sweep front. 

Once arc J is removed from the sweep front, it can no longer play a role as one of 
three consecutive front arcs along the sweep front for circle events. The circle events in Q 
where J appears as either the first or last of three consecutive front arcs must be removed. 
Also, the neighboring front arcs of J take J ' s  place as a first or last arc in sequences 
of three consecutive front arcs. Suppose the sequence of front arcs around J,  from top 
to bottom, is H I J K L ,  then the algorithm removes the circle events corresponding to 
v e r t e x ( H I  J) and v e r t e x ( J K L )  from Q and replace them with the circle events for 
v e r t e x ( H I K )  and v e r t e x ( I K L ) .  The sweep front did not change anywhere else, so 
all other scheduled circle events remain valid, 

When the sweepline reaches x ---- +oo, all sites are to its left. The Voronoi vertex 
topology obtained for sites left of the sweepline is precisely the topology for the Voronoi 
diagram of all polygons, The treatment of site events and circle events by Fortune's 
algorithm, along with the characterizations of Lemmas 3.3 and 3.4, culminate in the 
proof of Theorem 3.5. 

Theorem 3.5. The sweepline algorithm (outlined in Fig. 9) correctly finds all Voronoi 
vertices and their order about each polygon for a convex distance function. 

3.2. Improving Fortune's Algorithm for Polygonal Sites 

When Fortune's algorithm, as described in Section 3.1, is applied to k polygonal sites 
having a total of n vertices under the Euclidean metric, the resulting time complexity is 
O (k log k log n). With a simple change to the algorithm's binary search across the sweep 
front on site events, this time complexity is reduced to O (k log n). 

For each site event, the algorithm must locate the nearest front arc on the sweep front 
to the event point. The previous section uses the intersection points of adjacent front 
arcs to distinguish one arc from another in a binary search; these intersection points are 
expensive to compute for polygonal sites. In this section we show that an equivalent 
binary search can be accomplished using spokes that are available in the priority queue 
Q and only one computation of front-arc intersections. Lemma 3.6 shows that a spoke 
for every front arc of the sweep front is always available. 

Lemma 3.6. For each front arc K Q in the sweep front there is a spoke cr to the polygon 
Q defining KQ that intersects KQ. Moreover, cr exists in the schedule Q as a degenerate 
spoke, or can be computed when a new site breaks an infinite front arc. 
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Proof. Let Kt2 be a front arc generated by site Q, let Je be the front arc above Kt2 
on the sweep front, and let LR be the front arc below KQ on the sweep front. Arc Jp  
is generated by polygon P,  and arc LR is generated by polygon R. Neither Jp  nor LR 
necessarily exists. There are three configurations for KI2 that we must consider: 

�9 The sweepline has not crossed the rightmost point of Q. 
�9 Kt2 is the highest or lowest front arc on the sweep front. 
�9 A circle event for v e r t e x ( P Q R )  is in the queue Q. 

I f  the sweepline has not crossed the rightmost point of Q, then the sweepline cuts 
through Q and both the sweep front and Kt2 follow this cut inside Q. We have a degenerate 
spoke tr at any of the intersection points between the interior of Q and the sweepline. 

I f  KQ is the highest or lowest front arc on the sweep front, then the Voronoi cell for 
Q is unbounded. If  KQ is not the only front arc, then an infinite spoke ~ perpendicular 
to the outer tangent of  Q and the generating site of KQ's sole neighboring front arc 
remains within the Voronoi cell for Q and crosses KQ. Otherwise, any infinite spoke tr 
that attaches itself to Q and goes to the right of Q crosses KQ. 

If  both front arcs Jp  and LR exist, then there is a circle event for v e r t e x ( P Q R )  
at the vertex v that is in the schedule Q. The vertex v may be at infinity. The spoke 
tr = s p o k e ( v ,  Q) lies between the P Q  and QR bisectors as does the front arc K O. 
This spoke is computed at the same time as v e r t e x ( P Q R )  and is stored in Q so it is 
available to the algorithm. Since the sweepline has not encountered the circle event yet, 
vertex v lies to the fight of the sweep front, and tr crosses KQ. [] 

I f  we have a spoke that crosses a front arc, we are indirectly given a point on the arc. 
Theorem 3.7 uses these front-arc points to partition the sweepline and perform a binary 
search. In the proof the actual point of intersection between the front arc and the spoke 
is never computed. 

Theorem 3.7. Given a point p on the sweepline, we can locate the nearest front arc to 
p under a convex distance function by a binary search and one call to v e r t e x ( ) .  

Proof. The Voronoi cell for the sweepline is star-shaped (Corollary 2.5), so the spokes 
from the front arcs to the sweepline partition the sweepline into disjoint intervals. Finding 
the nearest front arc to the point p is equivalent to finding in which interval the point p 
lies. 

We perform a binary search based on representative points for each interval. The 
space returned by the binary search is bounded by two representative points, spans 
exactly two intervals, and contains one intersection point of two front arcs. We compute 
the intersection point with one call to the v e r t e x (  ) subroutine and determine which 
of the two candidate intervals contains the point p. 

What is the representative point in the interval for front arc Jp of site P ? We derive 
the representative point from a spoke that crosses Je.  Let cr be the spoke to P from 
Lemma 3.6 that crosses Jp and let q be the attachment point of t r  to P (see Fig. 10). If  
v is a point on ~r (or its extension) other than q, then let u be the rightmost point of  M e.  
Extend the line from q to u so that it crosses the sweepline; the intersection point r is 
our representative point. 
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Fig. 10. Spoke ~ crosses Jp. 
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How do we know that the point r lies in the interval for Jp  on the sweepl ine? Point r 
is the attachment point for the spoke from the intersection of  cr and Jp  to the sweepline.  
The direction of  a spoke to a vertical line is always the same; let F be the l ine/spoke 
through r in that direction, extending to the left of the sweepline.  The triangle formed 
by r ,  q, and the intersection point  of  cr and y is mathematical ly  similar  to, and shares a 
comer  at q with, the triangle formed by u, q, and v, so the former triangle is inscribed in a 
homothet M '  of  the convex distance function that is tangent to both P and the sweepline.  
Being equidistant to P and the sweepline,  the center of  M '  is on the front arc Jp,  and 
therefore on the intersection of  tr and Jp.  [] 

To analyze the time complexi ty  of  the sweep algorithm, we must establish t ime 
bounds for operations on the schedule Q and the sweep front 7". Each data structure 
performs its operations in logari thmic time of  its size. Lemma 3.8 proves that the sweep 
front maintains O(k)  arcs and Lemma 3.9 proves the schedule always has O(k)  events 
scheduled, so both data structures perform insertions and deletions in O( log  k) time. 

L e m m a  3.8. At  most 2k - ! arcs ever appear along the sweep front.  

Proof  A new arc appears on the sweep front only when we encounter  a site event 
(Lemma 3.3). Whi le  processing a site event, one new arc is added and an existing arc is 
split into two smaller  arcs if some arc already exists along the sweep front. Consequently,  
the first new site event adds a single arc to the sweep front and every subsequent new 
site event adds at most two arcs to the front. There are k new site events, one for each 
polygon, so the sweep front has size at most 2k - 1. [] 

L e m m a  3.9. The schedule f o r  the sweep algorithm contains at most  2k events at any 
moment. 
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Proof. The schedule contains two types of events: site events and circle events. If  there 
are s site events in the schedule, then k - s site events have been processed, producing 
at most 2(k - s) - 1 front arcs. Each consecutive triple of front arcs produces at most 
one circle event in the schedule. Moreover, when one front arc Jp is removed from the 
sweep front, all circle events in the schedule that depend on Je are removed from the 
schedule. Consequently, the schedule contains at most s + 2(k - s) - 1 = 2k - s - 1 
events. Since 0 < s < k, no more than 2k events are in the schedule at any one time. [] 

We may now conclude that the sweep algorithm finds the compact Voronoi diagram 
in O (k (Tv + log k)) time for k polygons having a total of n vertices where Tv denotes an 
upper bound on the time required to complete one call to the v e r t e x (  ) subroutine. The 
algorithm handles exactly k site events, one per polygon, and O (k) circle events, one 
per Voronoi vertex. Each site event requires an O(log k + Tv)-time search through the 
sweep front followed by a constant number of O (log k)-time changes to the sweep front 
and schedule. Each circle event requires one deletion from the sweep front and at most 
five additions or deletions to the schedule. The additions to the schedule require O(Tv) 
time to compute and all the data structure manipulations are completed in O (log k) time. 
These values provide the proof of Theorem 3.10. 

Theorem 3.10. The compact Voronoi diagram for  a set of  k polygons with a total of  n 
vertices can be computed in time 0 (k(Tv + log k)). 

3.3. Degeneracies 

The sweep algorithm of Section 3.2 for the compact Voronoi diagram assumes that all 
the sites are in general position to avoid degenerate conditions. This section presents 
refinements to the sweep algorithm and data structures that eliminate these assumptions. 
Subsections describe how the changes affect each type of event. 

Three changes to the sweep algorithm are sufficient to remove the general position 
assumptions. First, three additional keys, all secondary to the x-coordinate of the event 
point, order the priority queue Q. The keys for Q, in order of precedence, are: 

1. x-coordinate of the event (in ascending order). 
2. Type of event (site events before circle events). 
3. y-coordinate of the event (in descending order). 
4. For circle events, the angle ot as measured counterclockwise (ccw) from the 

sweepline's spoke to the second spoke encountered ccw, 0 < ot < 2~r (in as- 
cending order). 

Second, the algorithm processes all circle events that have the same event point together. 
Such a group of circle events arises from Voronoi vertices that are defined by more than 
three sites. Third, if a site does not have a unique leftmost vertex, then its site event is 
based on the highest of its leftmost vertices. 

Although these degeneracies have simple solutions in the context of the algorithm, 
there remains one significant problem with any implementation: errors arising from 
floating-point arithmetic. Such problems are beyond the scope of this paper. 
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3.3.1. Assumptions Related to Site Events. The only assumption that relates directly 
to individual sites, and consequently to site events, is that no site has a vertical edge. 
Vertical edges are problematic when they are the leftmost edge of a polygonal site; as 
the sweepline crosses a vertical leftmost edge, the entire portion of the sweep front that 
is closest to the vertical edge is part of the Voronoi diagram for the polygons (Fig. 11). 
The algorithm must recognize all Voronoi vertices along this portion of the sweep front, 
even as the sweep front jumps onto the sweepline at this same instant. 

A standard solution to vertical edges is to apply a rotation to the input sites or to 
the sweep direction. From a theoretical viewpoint, the degeneracy disappears; from a 
practical viewpoint, the rotation must be arbitrary and thus may introduce additional 
computation errors. 

Alternatively, we handle this degeneracy with two changes to the sweep algorithm 
and require no rotations. First, the additional keys for the priority queue Q enforce a 
nested-sweep tactic in the algorithm and force the circle events for such a degenerate 
site to occur in immediate succession to one another. While the sweepline moves from 
left-to-right in the plane, whenever multiple events occur at a common x-coordinate, the 
tertiary y-coordinate key processes events along the sweepline from top to bottom like a 
vertical sweep. The intermediate key on event types forces this vertical sweep to happen 
twice: once for site events and a second time for circle events. We can imagine the first 
of the vertical sweeps as discovering new site events and the second sweep as handling 
the circle events and advancing the sweep front. 

The second change to the algorithm eliminates an ambiguity for scheduling a site 
event. The additional rule ensures that the site event triggers as high along the sweepline 
as possible by scheduling the highest leftmost point for each site and is similar to the 
y-coordinate key of the priority queue Q. 

3.3.2. Assumptions Related to Circle Events. When more than three sites are tangent to 
a largest homothet of the convex distance function, the origin of the homothet is a Voronoi 
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vertex with degree greater than three. Without any changes to the sweep algorithm, a 
Voronoi vertex of degree four would be split into two vertices of  degree three, where 
both vertices have two sites in common, are adjacent across a spoke region, and occur at 
the same position in the plane. Postprocessing of the Voronoi vertices could then merge 
the points into one. However, the sweep algorithm itself can recognize Voronoi vertices 
of degree greater than three by recognizing that the circle events for the two Voronoi 
vertices coincide with one another (and grouped by the y-coordinate key). The fourth 
key of the priority queue Q provides a nice property for this grouping: a set of coincident 
circle events appear in Q in the same order as the top-to-bottom sequence of disappearing 
front arcs along the sweep front. 

3.4. A Randomized Incremental Construction Algorithm 

In this section we detail a change applicable to both the randomized incremental con- 
struction (R/C) of Boissonnat et al. [5] and to the abstract Voronoi R/C of Klein et al. 
[24] to compute our compact Voronoi diagram in an expected time that matches the 
deterministic time of Section 3.2's sweep algorithm. Throughout this section we assume 
that all polygons are in general position. 

The RIC technique common to both Klein et al. and Boissonnat et al. hinges on the 
concept of a conflict between a site and a region. In the earlier RICs these regions are 
Voronoi ceils; for the compact Voronoi diagram, the regions are spoke regions. In each 
case the relation between a region and the sites that generate it is always available. 

I f  7 9 is a set of  sites, recall that V (79) is the Voronoi diagram of the sites in 79. A site 
P ~ 79 is said to be in conflict with a point p in the plane if p belongs to a region of 
V(79 t3 {P}) that is generated by P. By extension, we say that P conflicts with a region 
A derived from V (79) if P conflicts with some point of A. 

The sequence of regions produced as the RIC algorithm inserts sites into a diagram 
(Voronoi or compact Voronoi) are stored in a conflict history DAG (directed acyclic 
graph) [6]-[8], [13]. If  a node for region X has children nodes in the DAG for regions 
Y1 . . . . .  Yj, then X was divided among regions YI . . . . .  Yj at some point in the algorithm's 
progress, i.e., X C ~Jl<i<j Yi and X N Yi ~ 0 for all i, 1 < i < j .  Leaf nodes in the DAG 
represent the regions in the current state of  the algorithm. The DAG has the property that 
a site P conflicts with a region R of the DAG only if P conflicts with at least one parent 
of R. Consequently, the RIC algorithm can trace a set of conflicts through the DAG from 
the root to the current regions of the diagram. 

The standard RIC [5] represents Voronoi cells with the nodes in the conflict history 
DAG. The algorithm begins with the Voronoi diagram for a fixed number of sites: 
for instance, it can begin with a single site where the DAG consists of a single node 
representing the entire plane. This first node of the DAG is the root. To add a site P 
to the Voronoi diagram of a set of sites 79, the algorithm identifies the Voronoi cells in 
V (79) with which P conflicts by tracing conflicts from the root of the conflict history 
DAG down to the leaves. The insertion ends by splitting each of these Voronoi cells into 
the Voronoi cells of V(79 tA {P}), thus creating children in the DAG (Fig. 12). 

The expected running time for this RIC is O (k log k) for k point sites [5], [24]. Briefly, 
the algorithm is expected to compute O(k)  Voronoi vertices as it adds the k sites. It also 
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Fig. 12. A polygon inserted into a set of Voronoi cells. 

expects to encounter O (log i) conflicts as it traverses the conflict history DAG when i sites 
have been added. Consequently, the algorithm expects to compute O (k log k) conflicts. 

When the sites for the Voronoi diagram are polygons rather than points, the cost of 
finding Voronoi vertices and conflicts is no longer constant. Recall that Tv is the time 
required to complete one call to the v e r t e x (  ) subroutine and to find Voronoi vertices. 
The cost of testing a site against a region for conflict is also O(Tv). Consequently, the 
expected total complexity for finding all Voronoi vertices is O(kTv log k) as noted in [5]. 

Two modifications to the RIC reduce its expected time complexity for polygonal 
sites when computing the compact Voronoi. First, we use the spoke regions as nodes in 
the conflict history DAG rather than the Voronoi cells themselves. Second, we observe 
that a polygon conflicts with a set of spoke regions whose underlying Voronoi edges 
form a tree (Fig. 13). Consequently, a polygon P conflicts with a set of spoke regions 
whose union is a connected set. As long as we can efficiently locate one spoke region 

Fig. 13. The tree of Voronoi edges (dashed lines) for regions in conflict with P. 
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with which P conflicts, traversal techniques across this connected region find all other 
conflicting spoke regions [36]; tracing any single point of P through the conflict history 
DAG locates this first spoke region. 

The traversal of  regions that conflict with a site P only relies on distance calculations 
to determine whether or not P conflicts with a spoke region. Suppose that P is known 
to conflict with the spoke regions in the set T. Let v be a Voronoi vertex of spoke region 
A e T where v is also adjacent to spoke regions B and C with respect to V (7 ~) (not 
both in T). I f  dM(v, P) < dM(v, X)  where X is a site generating A, then the point v 
cannot remain a Voronoi vertex in V(79 U {P}). Regions B and C are added to T and 
the process is iterated until T is maximal. 

How can we be sure that this traversal finds all the spoke regions that P conflicts 
with? Let S be the set of spoke regions with which P conflicts. Since the Voronoi edge 
skeleton of T must form a connected graph [24], if P conflicts with two spoke regions A 
and B in S, then it must also conflict with a sequence of spoke regions that link the 
skeleton of A with the skeleton of B. Consequently, P must cross a spoke of A and B 
and conflicts with the corresponding Voronoi vertices of A and B. Exploring the Voronoi 
vertices is therefore sufficient to find all the spoke regions with which P conflicts. 

The final task of the R/C is to update the conflict history DAG by partitioning each 
spoke region with which P conflicts. Let P conflict with spoke region A, let u and v 
be the Voronoi vertices that bound A, and let R and S be the sites that bound A. I f  P 
conflicts with both u and o (Fig. 14(a)), then A must be replaced in the DAG by two spoke 
regions: one between P and R, the other between P and S. If  P conflicts with neither u 
nor v (Fig. 14(b)), then the algorithm computes the two Voronoi vertices between P,  R, 
and S and partitions A into four new spoke regions. Finally, if P conflicts with v but not 
with vertex u (Fig. 14(c)), then the algorithm computes the Voronoi vertex of P, R, and 
S that lies inside A and splits A among three spoke regions. 

T h e o r e m  3 .11 .  Theexpec tedrunning t imeof theRlCforks i t es i sO(k( logk+Tv+Ts) )  
where Tv is the time required to compute a Voronoi vertex and Ts is the time required to 
compute a spoke from a point to a site. 

Proof. The expected-time analysis of the RIC attributes the cost of the algorithm to 
sites as they are inserted into the diagram and to Voronoi vertices as they are created and 
destroyed. Each of these events occurs only once per site or Voronoi vertex. 

(a) (b) (e) 

Fig. 14. The three possible ways for polygon P to conflict with spoke region A. Dashed lines indicate the 
new spoke regions after P has been inserted. 
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We start with the site costs. The first stage of the RIC algorithm finds one spoke region 
that conflicts with the new polygon P. The algorithm traces a single point through the 
conflict history DAG, so conflict calculations are constant-time operations. Klein et al. 
[24] show that a single point is expected to encounter O(log i) conflicts for the ith site, 
so we obtain our first conflicting spoke region A in expected O (log k) time and add A 
to a set T of spoke regions with which P conflicts. The inserted site also accepts the 
cost of testing for a conflict between P and the Voronoi vertices of A (possibly adding 
neighbors of A to T); this requires O(Ts) t ime--the time for two subroutine calls to 
s p o k e ( ) .  A total cost of O(logk + Ts) is attributed to each polygon. 

The costs of expanding the set T of spoke regions with which P conflicts and updating 
the DAG are attributed to Voronoi vertices. Let v be a Voronoi vertex of some spoke 
region A �9 T where v has not been tested for a conflict with P yet. The cost of extending 
(or not extending) T through the spoke regions incident to v arises from calculating the 
distance from v to P in O(Ts) time. This cost is attributed to the other Voronoi vertex 
of A. Since a spoke region is added to T only when we have tested one of its Voronoi 
vertices and that vertex does not appear in V (79 LI {P}), this expansion cost is attributed 
to a Voronoi vertex at most once. 

When the algorithm partitions the conflicting spoke regions to update the history 
DAG, the O (Tv) cost of computing new Voronoi vertices is associated with each vertex 
created, and the cost of adding a spoke region to the conflict history DAG is allocated to 
the new Voronoi vertex of the new spoke region. 

Since each Voronoi vertex with which P conflicts is deleted when we compute new 
spoke regions, each Voronoi vertex has degree three, and each Voronoi vertex is "new" 
only once, each Voronoi vertex created in the history of the RIC accounts for a total cost 
of O(Ts + Tv). 

As with Klein et al. [24], the algorithm expects to compute O(k) Voronoi vertices. 
These vertices are each charged a cost of O(Ts + Tv) while the k polygons are each 
charged an expected cost of O(log k + Ts). This gives a total expected time for the RIC 
algorithm of O(k(logk + Tv + Ts)). [] 

3.5. Implementing the Subroutines 

What remains is to implement the subroutines used in previous sections. We assume that 
the vertices of the convex polygons involved are given in an array or balanced binary 
tree in the order that they appear around the polygons. We also assume that each vertex 
knows (or can compute in constant time) a line tangent to the polygon at that vertex. 
Since such representations allow access to a "midpoint" of a chain in constant time, it is 
common and useful to view them as giving hierarchical decompositions of the polygons 
into triangles [14], [21]. 

We consider the subroutines in order of difficulty for the Euclidean metric and for the 
distance function defined by a convex m-gon M. 

s p o k e ( p ,  A) Given a point p and a convex polygon A, compute the spoke, which 
is the shortest segment joining p to A. This is used to answer a post-office query in 
Section 2.2--it  takes O(log n) time under the Euclidean metric and O (log n + log rn) 
time under the distance function dM. 
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b o t t  l e n e c k ( R )  Given a spoke region R, incident to two convex polygons A and 
B, compute the bottleneck segment used by the retraction-motion-planning diagram in 
Section 2.3. This takes O (log n) time under the Euclidean metric and O (log n log m) 
time under dM. 

v e r t e x ( A B C )  Given three sites, compute their Voronoi vertex where the cells 
of A, B, and C occur in counterclockwise (ccw) order. Return the Voronoi vertex, the 
spokes to the three sites and the location of the circle event--the rightmost point of the 
homothet of M that is tangent to A, B, and C in ccw order. The Voronoi vertex may be 
at infinity, in which case infinite spokes and an infinite circle event are returned. This 
subroutine is heavily used in the construction algorithms of Section 3.1. It takes O (log n) 
time under the Euclidean metric and O(log n log m) time under riM. 

Some of our routines make use of Kirkpatrick and Snoeyink's tentative prune-and- 
search technique [21] to determine the polygon edges or vertices that define a spoke, 
bottleneck segment, or Voronoi vertex. 

Theorem 3.12 (from [21 ]). Let f ,  g, and h be continuous, monotone decreasing func- 
tions defined on the reals where each domain is partitioned into k intervals. We can 
determine the interval containing the fixed-point of the composition h o g o f using 
|  k) tests of the form "is f (a) < b?" 

This theorem is proved by inspecting a candidate triple of reals, one real from the 
domain of each of f ,  g, and h, and discarding half of one of the domains based on local 
information. For cases in which local information is insufficient, portions of the domain 
can be "tentatively" discarded with the assurance that the algorithm does some correct 
work on every third step. An easy proof by potential function is in [20] and [21 ]. 

We can use standard prune-and-search to compute spokes. 

L e m m a  3.13. s p o k e ( p ,  A) can be computed in O(log n) time under the Euclidean 
metric and 0 (log n + log m) time under the distance function dM. 

Proof. Under the Euclidean metric, the spoke is a normal to A that passes through p. 
This can easily be found by binary search among the slopes of tangents to A. 

Under the convex distance function dM, the attachment point is a point where Mp A 

contacts A. (Recall that M A denotes a homothet of  M that has been scaled by d~t (p, A) 

and translated to p.) The set A and M a share a common tangent at their point of tangency, 

so we find the attachment point of  spoke(p, A) by locating points q E M A and a �9 A 
that share parallel tangents, and where the ray from p through the point q intersects A 
at the point a. By first computing outer common tangents of M A and A, we restrict our 
search to two polygonal chains that share a single pair of parallel tangents and satisfy 
the ray intersection property. 

We select point a as the middle of the chain A and point q as the middle of the 
A We assume that the tangent to A at a and the tangent to M at q intersect chain Mp. 

on the right side of the line from q to a,  the opposite configuration is handled with a 
symmetric argument. There are two cases, depending on whether a is right or left of  the 

ray p--'~ as illustrated in Fig. 15. I f a  is to the right (Fig. 15(a)), then any ray pq' with q' 
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Fig. 15. Half of either chain A or chain M can be discarded. 
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ccw from q on Alp will intersect A at a point a '  clockwise (cw) of  A. Because tangents 

at q '  and a '  will intersect to the right of  q'a', we can discard the portion of  Alp that is 
ccw ofq .  I f a  is on the left offf'~ (Fig. 15(b)), then consider a '  ~ A cw of  a and q' ~ Mp 

on pa'. Again, tangents to a '  and q '  intersect right of  q'a', so we can discard the part of  
A cw of a. (If a is on ~--ff, then we can perform both discards.) []  

The bottleneck segment of  a spoke region R bounded by portions of  convex polygons 
A and B can be determined once a point on the A B-bisector with minimum distance to 
A and B is known. (Refer back to Figs. 2 and 6.) 

L e m m a  3.14. The smallest homothet o f  M that touches convex polygons A and B can 
be computed in 0 (log n) time when M is a circle and in 0 (log n log m) time when M is 
an convex m-gon. 

Proof. Edelsbrunner [14] has shown how to compute the Euclidean shortest segment 
joining A and B, which solves the problem when M is a circle. 

When M is a convex polygon, the smallest homothet of  M touches A and B at points 
with parallel tangents. We restrict the search on A and B to the portions between their 
outer common tangents. Inspect vertices with median indices, a 6 A and b 6 B, and 
their tangents ra and rb. Place a homothet of  M tangent to ra at a and tangent to Zb by 
locating these tangencies in O(log m) time. If  M touches rb between the points b and 
~a n rb, discard the half of  B away from r~ N zb; otherwise discard the half of  A. []  

If  O(m) preprocessing on M is allowed to identify vertices with parallel tangents, 
then the desired homothet can be computed in O( logn  + logm)  time by extending the 
tentative prune-and-search approach [ 1 ]. 

Computation of  the Voronoi vertices is the most involved because finite and infinite 
vertices and degenerate cases must be dealt with. 

L e m m a  3.15. v e r t  ex(  A B C) can be computed in O(log n) time under the Euclidean 
metric and O(log n log m) time under the distance function dM. 



102 M. McAllister, D. Kirkpatrick, and J. Snoeyink 

Proof. We begin with the Euclidean case. Compute outer common tangents from A 
cw to B and from B cw to C. If a portion of B appears cw between these tangents, then 
the desired Voronoi vertex is infinite and any normal to this exposed portion of B can be 
returned as a spoke. Otherwise, the vertex is finite. We clip A, B, and C at their points 
of tangency and consider only the polygonal chains that can be attachment points for 
spokes to v e r  t ex(A B C). We parametrize these chains ccw and define functions of the 
form f :  A ~ B that maps a e A to the intersection of the normal to A at a with B. If 
a is a vertex of A, then we consider all vectors from a that lie between the normals to 
the edges adjacent to a as a set of normal vectors at a to intersect with B and f maps a 
to a range on B. Theorem 3.12 allows us to compute a fixed point and Voronoi vertex in 
O (log n) time. See [21 ] for more detail. 

For the convex distance function dM, we start with the same common tangents, for 
example the tangent from A cw to B. We compute where M can contact this tangent 
when M is separated from A and B. Typically, this contact will be a vertex v of M; then 
we compute the tangents on A and B that are parallel to the edges cw and ccw of v, 
respectively. These tangencies determine the attachment points of the infinite spokes for 
the infinite endpoint of the A B-bisector. The direction of the endpoint and the spokes 
Can be determined by placing a homothet of M so these two segments touch A and B 
and drawingthe ray from v through the translated origin of the homothet. 

Again, if a portion of B appears cw between the attachment points on B, then the 
Voronoi vertex is infinite. Otherwise, we use the algorithm for the Euclidean case, with 
the modification that instead of defining f ( a )  in terms of the normal at a, we determine 
a placement of M that is tangent to A at a and using the line through a and the reference 
point of M in place of the normal. This line can be computed in O(logm) time, so 
Theorem 3.12 gives us an O(log n log m)-time computation of the Voronoi vertex. [] 

3.6. Lower Bounds 

Let dE be the Euclidean distance function and let du be the convex distance function 
defined by an arbitrary m-gon. The algorithm for finding the compact diagram has 
O(k logn) and O(k logn logm) time bounds under the dE and dM distance functions, 
respectively. In this section we prove lower bounds on the cost of computing the compact 
diagram associated with k sites of total complexity n. For dE, the lower bound matches our 
algorithm's worst-case time complexity; for dM, the lower bound is f2 (k(log n + log m)) 
operations. 

Theorem 3.16. To compute the compact diagram ofk sites having a total of n vertices 
under dE requires f2(klogn) operations; under dM it requires f2(k(logn + logm)) 
operations. 

Proof. The proof examines the cases where each of k, n, and m is the dominating factor 
for the compact diagram. 

For a set of k point sites under dE, the Voronoi diagram can be constructed from the 
spoke diagram in | time. Thus the problem of finding the compact diagram inherits 
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the Voronoi diagrarn's f~ (k log k) lower bound [34], [29]. The proof argument can be 
easily modified to give an ~ (k log k) lower bound for k point sites under dM. 

In a similar fashion, the following f2 (k (log n + log m)) bound for finding the compact 
diagram under dM can be modified to give an f2 (k log n) bound for the same task under dE. 

We use reductions from a variant of the element uniqueness problem to obtain the 
bounds. An instance of the vertex-query problem is a polygon P with t distinct vertices 
all of which lie on the unit circle and a set Q of q query points on the unit circle. The 
problem asks if any point of Q is a vertex of P. It is straightforward to demonstrate 
an f2 (q log t) lower bound for the vertex-query problem on the fixed-order algebraic 
decision tree model [4]. 

The vertex-query problem can be reduced to q disjoint instances of the Voronoi vertex 
problem: each instance takes one query point and two distinct vertices of P and asks if 
the Voronoi center with respect to the convex distance function defined by P lies at the 
origin chosen for P. The q instances can be sufficiently separated in the plane so that 
the spoke diagram includes the particular Voronoi vertices. This implies an f2 (k log m) 
lower bound on computing the compact diagram. 

The vertex-query problem can also be reduced to q disjoint instances of the Voronoi 
vertex problem in another manner. Each instance takes as one site the polygon P and as 
the two other sites two vertices from a fixed convex triangle T tangent to the unit circle 
at the query point and asks if their Voronoi center under the convex distance function 
defined by T lies at the origin of T. By suitably spacing the q instances in the plane, 
we produce a collection of 3q sites of total complexity q (t + 2) whose spoke diagram 
encodes a solution to the original vertex-query problem. Thus, the f2 (q log t) lower 
bound when t > q implies an f2(k logn) lower bound on the cost of computing the 
compact diagram. 

Taking the maximum of these lower bounds and noting that n is f2 (k) yields the 
theorem's result. [] 

It would be interesting to close the gap between the upper and lower bounds for the 
convex distance function dM. 

4. Conclusions and Open Problems 

We have given a piecewise-linear representation of the generalized Voronoi diagram of 
convex sites in the plane that depends on the number of sites k and not on their complexity 
or on the complexity of the distance function. We also compute this representation by 
a general algorithm, where the dependence on site and distance function complexity is 
restricted to subroutines that are called O (k) times. 

Of greatest interest is the extension of this representation to higher dimensions, anal- 
ogous to the work of de Berg et al. [ 12]. Our efficient subroutines for computing Voronoi 
vertices and bottleneck segments will not extend because there may be many local min- 
ima and maxima along a curve equidistant from three objects. However, we believe 
that a piecewise-linear retraction diagram can be identified that does not depend on a 
polyhedron of a fixed scale. 
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