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1. Introduction 

Let f = {fl . . . . .  fn} be a collection ofn  d-variate, possibly partially defined, functions, 
all algebraic of some constant maximum degree b (and if they are partially defined, the 
domain of definition of each f / i s  also described by a constant number of polynomial 
equalities and inequalities of maximum degree b). Abusing the notation slightly, we do 
not distinguish between a function and its graph. The lower envelope Ey of ~" is defined 
a s  

E~-(x) = m}.'n fi (x), 

where the minimum is taken over all functions of .T that are defined at x. Similarly, we 
define the upper envelope E~ of ~" as 

E~(x)  = max fi(x).  
i 

The minimization diagram My of ~" is the decomposition of Jl~ d into maximal connected 
relatively open cells, of any dimension, so that within each cell the same subset of 
functions appear on the envelope E~-. If  the functions of .T  are partially defined, we also 
require that, over each cell c, each of the polynomials defining the domain of definition 
of any function that attains E~- over c has a fixed sign. Informally, this means that if a 
function f attains E x  over a cell c, then either c is fully contained in the boundary of 
the domain of f or is disjoint from that boundary. The combinatorial complexity of M y  
and of E~- is the number of cells of all dimensions in Mx.  The maximization diagram 
and its combinatorial complexity are defined in an analogous manner. 

Recently there has been significant progress in the analysis of the combinatorial 
complexity of lower envelopes of multivariate functions [ 15], [ 19]. In particular, it was 
shown in [ 19] that the maximum complexity of M y  is O (n a+E), for any E > 0, where the 
constant of proportionality depends on e, d, and b. This result almost settles a major open 
problem and has already led to many applications [1], [15], [19]. In some applications, 
however, the interaction between the lower envelope of one collection of functions and 
the upper envelope of another collection has to be considered. A major application of 
this type, which has motivated the work in this paper, is the analysis of the combinatorial 
complexity of the space of k-transversals of a collection C of n compact convex sets in 
d dimensions; a k-transversal is a k-fiat that intersects all the sets of d (see [I 1]-[13]). 
Using an appropriate coordinate system for representing the space of k-fiats in II  a (as 
is well known, the dimension of that space is N = (k + 1)(d - k)), it can be shown 
that the space of k-transversals of C can be represented as the region enclosed between 
the upper envelope of one collection of functions and the lower envelope of another 
collection, where each function in the first (resp. second) collection represents all k-fiats 
that are tangent to one of the given sets from below (resp. from above). Hence, the study 
of spaces of transversals calls for combinatorial (as well as algorithmic) analysis of the 
region enclosed between two envelopes in higher dimensions [ 11 ], [ 13]. Edelsbrunner 
et al. [11] showed that the complexity of the region between the two envelopes of  
d-variate, partially defined, linear functions is O(nact(n)), where c~(n) is the inverse 
Ackermann function, which in turn yields a near-optimal bound on the complexity of  
the space of hyperplane transversals for convex polytopes. No such bound is known for 
nonlinear functions, even for d = 2. 
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In this paper we provide such an analysis for the case of bivariate functions. We show 
that the combinatorial complexity of the region enclosed between the lower envelope 
of a collection of n low-degree, bivariate algebraic functions and the upper envelope of 
another collection of n such functions is O(n2+E), for any e > 0, where the constant 
of proportionality depends, as in the case of a single envelope, on e, on the maximum 
degree of the given functions, and, in case of partial functions, on the maximum degree 
of their domain boundaries. In other words, the worst-case complexity of the region in 
question is asymptotically no worse than that of a single envelope. 

The proof uses techniques that resemble those used in the proofs given in [15] and 
[ 19], but requires several additional tricks. The basic result that we derive in this paper, 
which we consider to be interesting in its own right, is the analysis of the combinato- 
rial complexity of the overlay of the minimization diagrams of the lower envelopes of 
two collections of bivariate functions. Notice that this problem is easy for the case of 
univariate functions, because the complexity of the overlay of the x-projections of two 
envelopes of univariate functions is proportional to the sum of the complexities of the 
individual envelopes. This is, however, not true for envelopes of bivariate functions; see 
Fig. 1. Nevertheless, we show that the complexity of the overlay of the minimization 
diagrams of two collections of a total of n functions in 3-space is only O (n2+e), for any 
e > 0. This result not only implies the asserted bound on the complexity of the region 
enclosed between two envelopes, but also has several other useful applications, among 
which is a deterministic, divide-and-conquer algorithm for computing lower envelopes, 
which we believe to be conceptually simpler than the competing techniques of [4], [9], 
and [19]. 

The paper is organized as follows. In Section 2 we prove the main result concerning 
the overlay of the projections of two envelopes in 3-space. In Section 3 we apply the 
result to obtain: 

�9 An efficient and simple divide-and-conquer algorithm for constructing lower en- 
velopes in three dimensions. 

�9 A near-quadratic upper bound on the complexity of the region enclosed between a 
lower envelope and an upper envelope. 

E~ 

Fig. 1. 

E~ 

Overlay of two envelopes with quadratic complexity. 
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�9 A near-quadratic upper bound on the complexity of the space of all plane transver- 
sals of an arbitrary collection of simply shaped convex sets in three dimensions. 

2. Complexity of the Overlay of Two Envelopes 

Let ~" and ~ be two given families of a total of n bivariate functions, satisfying the 
following condition: 

( , )  Each f E ~" U {~ is a continuous, totally or partially defined, bivariate algebraic 
function of constant maximum degree b; if f is only partially defined, the domain 
of definition of f is bounded by a constant number of  algebraic arcs of  constant 
maximum degree b. 

Let M denote the planar map obtained by superimposing M~ and Mg. We refer to 
M as the overlay of M~- and Mg. We first prove an upper bound on the complexity of  M 
for the case when the functions in ~" U ~ are totally defined, and then extend the proof 
to partially defined functions. 

Theorem 2.1. Let jr  and ~ be two collections of n totally defined bivariate functions, 
satisfying condition (*). Then the combinatorial complexity of the overlay of the mini- 
mization diagrams of.7 r and ~, as defined above, is O(n2+r),for any e > 0 (where the 
constant of proportionality depends on e and on the maximum degree b). 

Proof. We use a two-stage counting argument to obtain a recurrence for the complexity 
of the overlay. For the sake of simplicity, we assume that the functions in ~" O ~ are in 
general position. This excludes degenerate configurations where four function graphs 
meet at a point, a pair of graphs are tangent to each other, a singular point on one graph 
lies on an intersection curve between two other graphs, etc. Similar conditions were 
assumed in [15] and [19]. We refer the reader to these papers for more details, and 
for an argument that no real loss of generality is made by assuming general position. 
An appropriate variant of this argument shows that our proof can also be extended to 
collections : ' ,  ~ not in general position. 

Our general position assumption implies that over each face of M y  the envelope is 
attained by a single function (or by no function at all), that over each edge the envelope is 
attained by two functions simultaneously, and that over each vertex of M y  the envelope 
is attained by three functions simultaneously. By Euler's formula for planar maps, the 
complexity of the overlay M is proportional to the number of vertices of M. Each vertex 
of M is a vertex of M r ,  a vertex of M~, or an intersection point of an edge of M y  and 
an edge of M~. Since the total number of vertices in M y  and M~ is O (n2+~), as proved 
in [ 15] and [ 19], it suffices to bound the number of intersection points between the edges 
of M y  and the edges of M~. 

We call an intersection between an edge of M y  and an edge of Ma a crossing in 
M. For the purpose of analysis, we generalize the notion of a crossing, as follows. Let 
A(.~ v) denote the arrangement of T ,  namely the three-dimensional space decomposition 
induced by the graphs of the functions of.7 r (see [10] for a more detailed definition). The 
level of a point w in .,4(.~ v) is defined as the number of surfaces of ~" that lie vertically 
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below W (note that 0-level points are precisely those that lie on or below the lower 
envelope Ey). Let e be an edge of.A(.~"). Clearly, the level of  all points on e is the same, 
so we define the level of  e to be the level of  any point on e. We define the arrangement 
.A(~), and the level of  a point or o f  an edge in this arrangement, in an analogous manner  
for the collection ~. Let e be an edge of .A(.T'), and let e' be an edge of ..4(~), such that 
the xy-projections of  e and e' cross each other at a point a .  Let ~, ~'  be the levels of  the 
respective edges e, e'. Then we say that (e, e',  a )  is an edge-crossing in (.A(.~"), .A(~)) at 
level (~, ~'). If  the point ~ is not important,  or is clear from the context, we just use (e, e ')  
to denote the edge crossing (e, e',  a )  (by our assumptions, for any pair of  edges (e, e'), 
as above, there is only a constant number  of  points a that appear in edge-crossings of  
the form (e, e',  a ) ) .  Note that the original crossings in M correspond to edge-crossings 
at level (0, 0). (We slightly confuse the notation here, because crossings in M involve 
arcs in the xy-plane,  whereas edge-crossings in (at(.Tr), .3,(~)) involve arcs of  these 
arrangements in 3-space; this abuse also takes place in what follows.) Let Cp. o ( ~ ,  ~)  
denote the number  of  edge-crossings in (.A(Jr), .,4(~)) whose level is (p ' ,  q ' )  for some 
p' < p, q' < q, and let 

Cp.q(n) = max Cp,q(.~', ~), 

where the maximum is taken over all collections ~ ' a n d  ~, as above, such that 1.7 r] + I~1 = 
n. The goal is thus to obtain a sharp upper bound for Co.o(n). 

Let e be an edge in the graph of  E y ,  and let Ve be the vertical 2-manifold obtained 
as the union of all z-vertical lines passing through points of  e. The intersection of  the 
graph of each function g e ~ with Ve is an algebraic arc of  constant maximum degree, 
so each pair of  these arcs intersects in at most some constant number, s, of  points (where 
s depends only on the maximum degree of the functions of  J r  U ~, and not on e). Let 
.A (e) (~) denote the cross section of  .A(~) with V~, and let Co.q (e, ~)  denote the number 
of  edge-crossings of  the form (e, e ')  whose level is (0, q ') ,  for any q '  < q. See Fig. 2 
for an illustration. A simple but crucial observation is: 

V~ 

i e 

Fig. 2. The arrangement ..4(e)(~); the shaded region consist of points at level 5 3. 
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L e m m a  2.2. Let e' be an edge of  .A(~). Then (e, e', tr ) is an edge-crossing in (.A(.T'), 
.A(~) ) at level (0, ~ ) if and only if the point of e' N lie that lies on the z-vertical line 
through tr is a vertex at level ~ in .A (e) (~), and vice versa. 

This lemma implies that each crossing of e in M corresponds to a vertex in the cross 
section E~ e) of the lower envelope Ea within Ve. Let ~(e) C ~ be the subset of functions 

of ~ that appear on E(~ ), and let t = I~e~l. By the standard Davenport-Schinzel theory 
[2], [16], Co.o(e, G) < ~.s(t), where s is an appropriate constant (depending on the 
maximum degree of the surfaces in .7 r t3 ~), and where ~.s (t) is the maximum length of 
a (t, s)-Davenport-Schinzel sequence. 

Let k be a threshold parameter, whose value is specified later. 
If  t < k then, by Lemma 2.2, there are at most ks(k) edge-crossings at level (0, 0) 

involving e. Since the number of edges in M y  is O (n2+*), the overall number of crossings 
involving such edges is at most O (;~s (k)n2+~). 

Next, assume that t > k. Let g, g '  be a pair of distinct functions in ~l~. By continuity, 
g and g '  must intersect within V, at least once. Thus each function g e ~ )  must cross 
at least t - 1 other functions o f ~  within Ve, that is, each function g ~ ~te) is incident to 
at least t - 1 vertices of .A ~e) (~). Since the graph of g contains points at level 0 in this 
cross section, it follows that g is incident to at least k vertices of  .A (~) (~) at level < k. 
The number of vertices of.,4 (~) (~) at level < k is therefore f2 (tk), which, by Lemma 2.2, 
implies 

C0.k(e, ~)  = f2(tk) = ~2 k t �9 C0.0(e, ~) > - -  �9 C0,0(e, ~), (1) 
- f l ( n )  

where fl(n) = |  is an extremely slowly growing function o f n  [2], [16]. 
Summing (1) over all edges of M~ that cross more than k edges of Ma, adding the 

bound for the other edges of My,  and observing that each edge-crossing in C0.k (~', ~) 
is counted in this manner exactly once, we obtain 

r 
Co.o(.T', ~) = E Co.o(e, ~) < --'ff'-Co.k(.~, ~) + O(kn2+E), 

eEM:r 

which implies 

/~(n) 
C0.0(n) _< --ff--Co.k(n) + O(kn2+~). (2) 

We next bound Co.k(n) in terms of C~.k(n). Let e' be an edge of.A(~) at some level 
~' _< k, let Ve' be the vertical 2-manifold erected from e', defined as above, and consider 
the cross section A I~') (.T') of .A(.~') within V~,. Let t denote the number of functions 
of ~" that appear on the lower envelope of .A~- '~. If  t _< k, then e' contributes at most 
ks (k) edge-crossings to C0.k (3 r, G). Since there are only O (kl-~n z+e) edges of A(~)  
at level at most k (see, for instance, [18] and [20]), the number of  crossings as above is 
O0,s(k)k~-~n ~+~) = O(k~n2+~), for any e > 0. 

We thus assume that t > k. We can now repeal  within Ve,, the preceding analysis, 
replacing ~ by .7 r, so as to conclude that the number of edge crossings of the form (e, e') 
at level (~, ~'), for all ~ < k, is f2(tk). Following the same arguments as above, and 
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noting that each such crossing (e, e') is counted in this manner at most once, we easily 
obtain the recurrence 

t~(n) 
Co.k(n) < ----ff--Ck.k(n) + O(k2n2+~). (3) 

Next, we estimate Ck.k (n), by using the probabilistic technique of Clarkson and Shor 
[8] (see also [18]). Set r = [n/k]. Choose random subsets R c .7 r and S ___ ~ with 
[ R I + I SI = r ,  where each pair of subsets I R I + I S I = r is chosen with equal probability. 
Let (e, e', o)  be an edge-crossing in (.A(~"), .A(~)) at level (~, ~'), and let g~, be the 
vertical line passing through o'. This edge-crossing appears in (.A(R), .A(S)) at level 
(0, 0) if and only if the following conditions hold: 

(i) The two functions whose intersection curve contains e are chosen in R. 
(ii) The two functions whose intersection curve contains e' are chosen in S. 

(iii) None of the ~ functions whose graphs intersect g, below e is chosen in R. 
(iv) None of the ~' functions whose graphs intersect e ,  below e' is chosen in S. 

The probability that (e, e', tr) is an edge-crossing in (.A(.~'), ~4(~)) at level (0, 0) is thus 

( n - ( , + ~ ' ) - 4 ) r _ 4  

(:) 
Following the same analysis as in [81, we can show that, for ~, ~' <__ k and for the specific 
choice of r, this probability is at least 1/(ck4), for some absolute constant c. Summing 
this over all edge-crossings counted in Ck.k (~,  ~), we thus obtain, as in [8], that the 
expected number of edge-crossings in (.,4(R), .A(S)) at level (0, 0) is 

1 
E[C0.0(R, S)] > ---;TCk.k(J r, ~). 

C K  ~ 

Hence, we obtain 

Ck.~(n) = O(k4) " Co.O ( [  k ] ).  (4) 

Combining (2), (3), and (4), we thus obtain 

Co.o(n) = O((k + ktS(n))n 2+~) + k--- T-  " O(k 4) - Co.o 

: O(k~(n)n 2+E) -t- O(k2fl2(n)) �9 Co.o (n[~]). (5) 

The solution of this recurrence is O(n2+~), for any S > ~. This is shown by induction, 
choosing k = ~1+2/~(n) and using the fact that/~(n) is an extremely slowly growing 
function of n. This concludes the proof of Theorem 2.1. [] 

Next, we extend the above proof to partially defined functions. We call an edge- 
crossing (e, e') a boundary edge-crossing if e or e' is contained in the boundary of some 
function graph in .7 r or in G, respectively. 
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Lemma 2.3. The overall number of boundary edge-crossings (e, 7/), where e is an 
edge of  E~ and 7/is a boundary edge in ~4(~), is O(n~.~,(n)), where s' is an appropriate 
constant depending on the maximum degree of the functions in .T U ~. 

Proof. Let 7/ be a boundary arc of  a function graph in ~ (there are a total of  O (n) 
such arcs), and let Vy denote the vertical 2-manifold erected from 7/, defined exactly 

as V~ in the proof  of  Theorem 2.1. Let E ~  ) denote the cross section E y  O V v. As in 
Lemma  2.2, each boundary edge-crossing involving 7/in the present l emma corresponds 

to a breakpoint of  E ~  ~, and, by the standard Davenport-Schinzel  theory, the number  of  
such breakpoints is O (Ls, (n)), for an appropriate constant s ' .  This is easily seen to imply 
the lemma. [] 

We now establish the recurrence (2) for partially defined functions, in the same way 
as above, but with the following additional modifications. Again, we assume that the 
functions in ,T U ~ are in general position. Let k be a threshold parameter. We split each 
edge e of  E:r  at a point a if  an integer l ~ k and a boundary edge e'  ~ .,4(~) exist such 
that (e, e ' ,  or*) is a boundary edge-crossing at level (0, 1), where o* is the xy-project ion 
of  tr. This step ensures that there is no boundary edge-crossing at level (0, l) for any 
l < k. By Lemma  2.3, we introduce a total of  at most  O(n~.s,(n)) new vertices, over  all 
edges e of  E~-, so the number  of  edges in M 7  is still O(n2+E). 

/~-,(e) Fix an edge e of  the (refined) lower envelope E~ .  Define Ve, ,4 ~') (~), and "~0 as 
above. By construction, the level of  any point on ~g n V~, for any g ~ ~,  is greater than 
k. Let ~ )  be the set of  connected components  of  g n Ve, for g ~ G, that appear on E~ e~, 
and let t = I~e~l. The case t < k is handled exactly as in the preceding proof, so assume 
that t > k. We claim that any arc 7/ E ~ is incident to at least k vertices of  ,,4 Ce) (~) 
whose levels are < k. There are two cases to consider: 

_ r~'~" without loss of  (i) 7/has a point p whose level is > k. Let v be a point on 7 /n  ~ , 
generality, assume that v lies to the right of  p. Let q be the rightmost point on 
7/ to the left of  v whose level is k, and let 7/q~ denote the portion of 7/ between 
q and v. The level of  all points on 7/qo is at most  k. Let g '  ~ ~ be any of  the 
k function graphs lying below q. Obviously, g '  cannot lie below v. Moreover,  
by construction, no point of 0g' can lie below 7/qv, so g '  has to intersect 7/q,, 
(see Fig. 3(i)). Since there are k function graphs of  ~ lying below q, the arc 
7/qo contains at least k vertices of  ,,4~e)(~), and the level o f  each of them is at 
most k. 

(ii) The level of  all points on 7/is < k. In this case, by construction, the endpoints of  
7 /must  lie on the vertical boundary edges of  Ve. Let 7/' be another arc in ~ .  I f  
the endpoints of  7/' also lie on the vertical boundary edges of  V~, then, as argued 
in the proof  of  Theorem 2.1, 7/ and 7/' intersect within V~. Otherwise, 7/' has 
an endpoint p that lies inside V~. By construction, the level of  p is > k. Since 
the level of  all points in 7/is < k, the endpoint p lies above 7/, implying again, 
that 7/ and 7/' intersect (see Fig. 3(ii)). Since t > k, we obtain at least k such 
intersections with 7/, and the level of  each of  these intersection points is < k. 

This completes the proof  of  the claim. Hence ,,4~e~(~) has ~2(tk) vertices at level < k. 
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(i) (ii) 

Fig. 3. Illustration of the claim (for k = 3): (i)),  has a point p at level > k; (ii) the level of  all points on 
y i s <  k. 

Following the same argument as in the proof of Theorem 2.1, we can obtain the recurrence 
(2) in this case as well. 

A similar argument can be applied to obtain the recurrence (3) for the case of partial 
functions. The only difference is that we now split an edge e'  ~ .A(~) at a point tr if  
there are integers j ,  j '  < k and a boundary edge e of some function in 3 r such that 
(e, e', tr*) is an edge-crossing at level (j, j ' ) ,  where tr* is the xy-projection oftr .  Using 
the proof of Lemma 2.3, in conjunction with the Clarkson-Shor technique, we can show 
that the number of newly added vertices in .A(~) is O (k2n~.s, ( [n /k] ) ) ,  for an appropriate 
constant s'. Hence the number of edges of.A(~) at level < k remains O (k l-~n2+E), as in 
the preceding analysis. The recurrence (3) now follows by the same analysis as above. 
This is turn yields the same final recurrence (5) for Co.o(n), whose solution, as above, is 
O(n2+~). We thus obtain the main result of the paper: 

Theorem 2.4. Let Jr and ~ be two collections of n, possibly partially defined, bivariate 
functions satisfying condition (*). Then the combinatorial complexity of the overlay of 
the minimization diagrams of 3 r and ~, as defined above, is O(n2+E),for any e > 0 
(where the constant of proportionality depends on e and on the maximum degree b ). 

3. Applications 

3.1. Computing Lower Envelopes in 3-Space 

Let 3 r be a collection of n bivariate functions satisfying condition (*). Our goal is to 
construct the lower envelope E ~  o f ~ .  This is equivalent to constructing the minimization 
diagram My,  as defined above, so that each face ~0 of M7 is labeled with the unique 
function of ~- (if it exists) attaining E~: over 9. Several algorithms for this construction 
have recently been designed (see [4], [9], and [19]), but they are either rather complicated 
or require the use of randomization. Here we present a simple deterministic algorithm 
based on the divide-and-conquer approach, which is similar to Atallah's algorithm [3] 
for computing the minimization diagram of univariate functions. 

The algorithm partitions .7 r into two subcollections, ~1, -7r2, of roughly n /2  functions 
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each; conslructs recursively the minimization diagrams M~,, M:~; and then merges 
these diagrams to obtain the final minimization diagram M~-. 

The merge step is done as follows. We first compute the superposition M of My, and 
M~2. This can, for instance, be done by applying a standard sweep-line procedure, whose 
running time is O ((IMp, [ + 1M721 + [ M  1) log n); by Theorem 2.4, this is O (n2+~), for any 
e > 0. We can implement the sweep so that it also constructs the vertical decomposition 
of M. The vertical decomposition of M is a refinement of  M, obtained by drawing 
a vertical segment upward and downward (in the y-direction) from each vertex of M 
and from each point on any edge of M that has y-vertical tangency, and by extending 
each segment until it hits another edge of M or to infinity if no such edge exists. The 
number of resulting cells, usually referred to as "pseudotrapezoids," is proportional to 
the complexity of M, namely it is also O(n2+~). 

Let c be a pseudotrapezoid in this vertical decomposition. Note that, over c, the 
envelope ET, is attained by a single function f l  e .TI (or by no function at all), and 
E y  2 is attained by a single function f2 e .T2 (or by no function at all). Hence, over c, 
the envelope E y  is equal to min{fl,  f2} if both functions exist, equal to one of these 
functions if the other does not exist, or, is undefined if both functions do not exist. In any 
case, we can compute E y  over c in constant time.1 We repeat this computation over all 
pseudotrapezoids of  M, in overall O (n 2+E) time, and thus obtain the entire envelope E~.  
We still need to apply a final clean-up stage, in which the computed portions of E y  are 
properly glued together, removing, as appropriate, any redundant data concerning the 
behavior of E ~  over edges of the pseudotrapezoids of M. This stage also produces the 
final minimization diagram M~-, with its faces labeled in the required manner. We omit 
the routine details of this step, and note that it also takes only O (n 2+~) time. It follows 
that the cost of the entire divide-and-conquer process is also O (n2+e). In conclusion, we 
thus have: 

Theorem 3.1. The lower envelope of a collection of n bivariate functions satisfying 
condition (.) can be computed, in an appropriate model of computation, by a determin- 
istic divide-and-conquer algorithm, in time O(n2+E),for any e > O, where the constant 
of proportionality depends on e and on the maximum algebraic degree of the given 
functions (and of their domain boundaries). 

3.2. Complexity of the Region Enclosed Between Two Envelopes in 3-Space 

Let 7" and B be two given families of a total of n, possibly partially defined, bivariate 
functions satisfying condition (.) .  We denote by s  the lower envelope of the "top" 
family T ,  and by b/~ the upper envelope of the"bot tom" family E. We consider the region 

I We are implicitly assuming an appropriate model of computation, in which computing the pointwise 
minimum of two given functions, as well as various primitive operations involving edges of the minimization 
diagrams, can be performed in constant time. For example, we can use precim rational arithmetic to per- 
form each of the~ operations in constant time, using standard techniques from computational real algebraic 
geometry [17l. 
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K = {(x, y, z) I Urn(x, y) < z < LT-(x, y)} of points lying between the two envelopes, 
and our goal is to derive an O (n 2+e) bound on the combinatorial complexity of K. 

We establish this bound as follows. Let MT-, MB denote the minimization and maxi- 
mization diagrams of the envelopes ET-, b/B, respectively. By Theorem 2.4, the combina- 
torial complexity of the overlay M of these two planar maps is O(n2+e), for any e > 0. 
Construct the vertical decomposition of M, as defined above. As noted, the number of 
pseudotrapezoids of this decomposition is proportional to the complexity of  M, i.e., it is 
O(n2+~). Observe that, for each resulting pseudotrapezoid r ,  there is a single function 
f ~ T and a single function g ~ / 3  siach that/~7- -- f and L/t~ ----- g over r (if the given 
functions are only partially defined, then either f or g or both may not exist at all, in 
which case the corresponding envelope(s) are undefined over r). This implies that the 
portion of K that projects into r has constant complexity--i t  is defined by the interaction 
between f ,  g, and the functions defining the (at most four) edges of r. Since the number 
of pseudotrapezoids is O (n2+e), we immediately obtain: 

Theorem 3.2. The combinatorial complexity of  the region enclosed between a lower 
envelope and an upper envelope of  two respective collections of  n bivariate functions 
satisfying condition ( . )  is 0 (n 2+e),for any e > O, where the constant of  proportionality 
depends on e and on the maximum algebraic degree of  the given functions (and of  their 
domain boundaries). 

It is also easy to construct the desired region K, in a manner that resembles the divide- 
and-conquer algorithm presented above. That is, we compute LT- and L/t~ separately, in 
time O(n2+~), using the algorithm of the preceding subsection. Next we compute the 
overlay of the minimization diagram MT- and of the maximization diagram MB, using the 
same sweep technique described above, and decompose the resulting map into pseudo- 
trapezoids. Finally we compute the portions of K over each pseudotrapezoid separately, 
and "glue" together the resulting pieces to obtain the whole K. It is easily verified that 
the overall complexity of the algorithm is O (n2+e), so we have: 

Theorem 3.3. The region enclosed between two envelopes in 3-space, as above, can 
be computed in (deterministic) time 0 (n2+e),for any e > O. 

3.3. Complexity of  the Space of  Plane Transversals 

In this subsection we obtain new bounds on the combinatorial complexity of  the space 
of plane transversals of a collection of simply shaped convex sets in 3-space. Let 
C = 1C1 . . . . .  Cn} be a collection of n compact convex sets in 3-space. A plane zr 
is a transversal of C if it intersects every set in C. The space of all plane transversals of 
C is denoted by T(C). 

It is more convenient to represent T (C) in the dual space, where each nonvertical 
plane z ---- ~x + r/y + ~ is mapped to a point (~, ~7, ( ) ,  and each point (u, v, w) is mapped 
to a plane z = - u x  - vy + w. Note that a plane z = ~x + Oy + ( intersects a compact 
convex set C if and only if ~Oc(~, I/) < ( < ~#c(~, r/), where ~Oc(~, 7/), ~c(~,  0) are 
defined so that the plane z = ~x + r/y + q0c(~, r/) (resp. z = ~x + r/y + ~c(~,  1/)) is 
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tangent to C from below (resp. from above). Thus, in the dual space, the set of  all plane 
transversals of  C is the set 

{(~, ,1, r I m~oc(~, '1) _< r < rain r '7)}. 
- -  C~C 

That is, T(C) is, in the dual space, the region enclosed between a lower envelope and an 
upper envelope of  two respective collections of  functions. 

We can therefore apply Theorem 3.2 to this case, but we first have to ensure that the 
functions ~0c and ~Pc satisfy the assumptions o f  that theorem. This will be the case if 
we assume that each C e C has constant description complexity, that is, it is defined 
by a constant number of  algebraic equalities and inequalities of  constant maximum 
degree. In this case it can easily be shown that the functions ~Pc and ~ c  do indeed satisfy 
condition (.).2 We thus have: 

Theorem 3.4. The complexity of  the space of plane transversals of a collection of  n 
compact convex sets in 3-space, each of  constant description complexity, is 0 (n 2+e),for 
any e > O. 

Remarks .  (1) Convexity is not essential here, because we can replace each set in C by 
its convex hull without affecting the transversality of  any plane. 

(2) If  the sets in C do not have constant description complexity, the complexity of  
T(C) can be arbitrarily large. However, if it is assumed, in addition, that the sets are 
separated, in the sense that no three of  these sets are crossed by a common line, then 
it is shown by Cappell et al. [5] that, for such a collection C, the complexity of  T(C) is 
O (n 2). This bound, in this restricted case, is slightly better than the bound derived above. 
The result of  [5] applies in higher dimensions too: under an appropriate assumption of  
separation of  the sets in C, the complexity of  T(C) is O(nd-I).  Other related results on 
transversals can be found in a recent paper by Goodman et al. [ 13], and in a survey paper 
[14] by the same authors. 
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