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Abstract. We show that there is a matching between the edges of any two triangula- 
tions of a planar point set such that an edge of one triangulation is matched either to the 
identical edge in the other triangulation or to an edge that crosses it. This theorem also 
holds for the triangles of the triangulations and in general independence systems. As an 
application, we give some lower bounds for the minimum-weight triangulation which can 
be computed in polynomial time by matching and network-flow techniques. We exhibit an 
easy-to-recognize class of point sets for which the minimum-weight triangulation coincides 
with the greedy triangulation. 
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1. Introduction 

The aim of this paper is to prove and discuss some surprising and rather general inter- 
section properties of planar triangulations. 

Given two triangulations of a point set, we can find a matching between their edge 
sets such that matched edges either cross or coincide. This theorem and a few related 
statements are proved in Section 2. 

The remaining part of the paper deals with applications of this result to the computation 
of minimum-weight triangulations. In Section 3 we identify special cases of point sets 
for which the minimum-weight triangulation can be computed efficiently. An example is 
shown in Fig. 4. Section 4 offers several lower bounds on the weight of a triangulation, 
and Section 5 describes some algorithms to compute these bounds. In Section 6 we 
discuss possible applications of our results and some open questions. 

The main matching result (Theorem 1) was discovered independently by two subsets 
of the current authors, see [AART] and [CX1]. Naoki Katoh contributed the ideas for 
Section 4.3. This joint paper is a final version of [AART] and some of the results of 
[CX1]. 

2. The Matching Theorems 

2.1. Matchings of  Triangulations 

Let P be a set of n points in the plane. We assume that not all points lie on one line. 
Consider the set E of all line segments connecting two points of P and containing no 
other points of P. (If P is in general position, then IEI = (2)') The elements of E are 
called edges. Two distinct edges are said to cross if they intersect in their interior. In 
particular, two edges sharing only one endpoint do not cross. A triangulation T of P is a 
maximal set of noncrossing edges. It dissects the convex hull of P into triangular faces. 
We recall a well-known fact on triangulations. 

Lemma 1. Every triangulation of  P consists of  m = 3n - 3 - b edges, where b is the 
number of  points in P which lie on the boundary of the convex hull of  P. Every set o f  
noncrossing edges consists of at most m edges. 

The following is our main theorem. See Fig. 1 for an illustration of the result. 

Theorem 1. Let P be a finite set of  points in the plane and consider two triangulations 
R and B of  P. There exists a perfect matching (a one-to-one assignment, a bijective 
mapping) between R and B, with the property that matched edges either cross or are 
identical. 

Proof For notational simplicity, we color the edges in B blue and the edges in R red. 
We consider the intersection graph, G, of R U B. To avoid confusion, we consistently 
speak of edges when we mean elements of R, B, E, etc., i.e., line segments considered as 
geometric objects. They correspond to nodes of the graph G, which are connected by arcs. 
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Fig. 1. Two triangulations and a perfect matching between them. When two identical edges are matched this 
is indicated by a small box, and the intersection point of two crossing edges which are matched is marked by 
a c r o s s .  

G represents each edge in R by a red node and each edge in B by a blue node. Two 
nodes are connected by an arc if the corresponding edges either cross or are identical. 
Clearly, there are no arcs between nodes of the same color as edges in a triangulation do 
not cross. Hence G is bipartite. Note that, by Lemma 1, the number of red nodes equals 
the number of blue nodes. 

We prove that G contains a perfect matching by showing that G fulfills the Hall con- 
dition of the marriage theorem (see, for example, [B 1 ]). This condition requires that, for 
each subset R1 of red edges, the number of their blue neighbors in G is at least I R1 I. 

Let R1 _c R, and let B1 be the set of blue neighbors of R~. With this notation, the 
Hall condition reads IBll > IRII. Let B2 be the complement of Bl in B. We claim that 
B2 U R1 is a noncrossing set of edges. The edges of Rl do not cross each other, since 
Rl c R, and, likewise, the edges of B2 do not cross each other. An edge b of B2 cannot 
cross an edge of R1 because b would belong to B1, otherwise. For the same reason, R1 
and B2 are disjoint, which gives 

IRll + IB_,I = IR1 U B21 5 m = IBI, 

by Lemma 1. Thus we get I Bll = I nl -- I B21 >_ I R1 I, and the Hall condition is proved. [] 

A maximum cardinality matching in any bipartite graph can be found in polynomial 
time, and this holds in particular for the matching in Theorem 1. This is also true of the 
other theorems in this section. They are formulated as existence theorems, but there are 
polynomial algorithms for constructing the matching in question. We discuss specific 
algorithms and their time and space bounds in Section 5.1. 

Corollary 1. Let P be a finite set of points in the plane. Let R be a set of noncrossing 
edges between points of P and let T be a triangulation of P. Then there is a matching 
between the edges in R and some edges in T (an injective mapping from R to T) such 
that every edge of R is either matched with the identical edge in T or with an edge which 
crosses it. 

Proof. Since R can be extended to a triangulation the corollary follows from 
Theorem 1. [] 



342 o. Aichholzer et al. 

Our proof mainly exploits the property about the number of  edges of  triangulations 
expressed in Lemma 1. There is another version of Lemma  1 concerning triangles instead 
of edges. 

L e m m a  2. Every triangulation of P dissects the plane into 2 n - 2 - b  interior triangular 
faces plus the exterior face, where b is the number of points in P on the boundary of the 
convex hull. Every set of noncrossing edges dissects the plane into at most 2n - 1 - b 
connected components. 

This enables us to prove, with exactly the same technique as above, the next theorem on 
triangles. 

T h e o r e m  2. Let P be a finite set of points in the plane and consider two triangulations 
R and B of P. There exists a perfect matching between the set of triangles of R and 
the set of triangles of B, with the property that matched triangles either overlap or are 
identical. 

Figure 2 displays a perfect triangle matching for two triangulations of  a convex point 
set. We can impose a stronger condition which requires the matched triangles to share 
a vertex. In Fig. 2, for example, the triangle P2P4P7 is matched to the triangle P3PsP6. 
This would not be allowed in a matching according to Theorem 3. 

Theo rem 3. Let P be a finite set of points in the plane and consider two triangulations 
R and B of P. There exists a perfect matching between the set of triangles of R and the 
set of triangles of B, with the property that matched triangles 

(1) have common interior points, and 
(2) share at least one vertex. 

Fig. 2. A perfect matching of overlapping a'iangles between two triangulations of a 7-gon. Every shaded 
area is the intersection between two matched triangles. 
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Proof. An equivalent formulation of the two conditions is that two triangles which 
are matched to each other have a vertex p in common, and the angular regions in the 
neighborhood of p which are covered by the two triangles overlap (have common interior 
points). 

We can show the Hail condition more directly by an argument about sums of angles. 
Let R1 be an arbitrary subset of triangles in R, and let B1 be the set of triangles of B 
to which some triangle in R1 can be matched. In other words, if a triangle in B shares 
a vertex and some overlapping angular region around that vertex with a triangle in R1, 
then it belongs to B1. We have to show IBll > [R1 I. 

Fix a vertex p e P. For a triangle A we denote by ct(A, p) the angle of A at p. If 
p is not a vertex of A, then or(A, p) = 0. Every triangulation partitions the full angular 
region around p into disjoint sectors. (For vertices on the boundary of the convex hull, 
only the interior region is partitioned.) Consider the subsets Rp ~ R1 and Bp C_ B1 of 
triangles that have a vertex at p. At p, the union of the angles of triangles in Bp contains 
the union of the angles of triangles in Rp, by construction. Thus, the following inequality 
between sums of the angles holds for every vertex p: 

>__ 
AEB1 AERI 

We can take the sum over all vertices p 6 P, and since )--~pep or(A, p) = zr for every 
triangle A, we get rrlBl] > zrlR1 1, and the Hail condition follows. [] 

2.2. A More General Matching Theorem for Independence Systems 

Our matching theorems may be generalized to the framework of independence systems. 
An independence system Z is a nonempty collection of subsets of a ground set E which 
is closed under taking subsets: if A ~ 37 and B C A, then B ~ 37. The elements of Z are 
called the independent sets, the remaining subsets of E are called dependent. A circuit 
of Z is a minimal dependent set. 

In our example of triangulations, a set of noncrossing edges (or of nonoverlapping 
triangles) may be considered independent. The circuits of this independence system 
have two elements; they are the pairs of crossing edges (or of overlapping triangles, 
respectively). 

Theorem 4, Let R E Z be any independent set, and let B E Z be an independent set 
of  maximum cardinality in Z. Then there is an injective mapping g: R ~ B such that 
for every element e ~ R we have g(e) = e, or {g(e), e} is contained in a circuit. 

Proof. The proof shows that the Hail condition is fulfilled, following the lines of the 
proof of Theorem 1. Let R1 _ R, and let B1 _c B be the set of elements f ~ B such 
that f = e or {e, f}  is contained in a circuit, for some element e ~ R1. To show that 
]Bll > [gll we first claim that R 1 LJ (B -- B1) is independent. Otherwise, it would 
contain a circuit C. This circuit cannot be included in R1 c R or in B - B~ _ B because 
these sets are independent. It follows that C contains an element e ~ R1 and an element 
f E B - B1. However, this would mean that f ~ B1, a contradiction. So we have 
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IR1 tO (B - B1)I < IBI because B is an independent set of maximum cardinality. R1 and 
B - B1 are disjoint by construction, and hence 

IR1 tO (n - nl)l  = IRll + In - nil = IRal + Inl - [nil < IBI, 

which gives IR11 < [B1 I. [] 

Theorems 1 and 2 (but not Theorem 3) are corollaries of Theorem 4. Cheng and 
Xu [CX1] have obtained additional results for independence systems where (as in the 
case of triangulations) 

(1) every circuit has cardinality two, and 
(2) all maximal (with respect to set inclusion) independent sets (bases) have the same 

cardinality. 

For the case when Z is a matroid (see, e.g., [L] for basic matroid-theoretic concepts), a 
stronger statement than Theorem 4 was discovered by Brualdi [B2]; see also [B3] for a 
simple proof. 

Theorem 5. Let R and B be two bases of  a matroid. Then there is a bijective mapping 
g: R --* B such that, for  every element e ~ R, (R - {e}) tO {g(e)} is a base. 

It is straightforward to check that a matching fulfilling this condition fulfills the condition 
of Theorem 4, but not vice versa. Note that the condition of Theorem 5 is not symmetric 
in R and B. 

3. Light Triangulations 

The intersection properties of planar triangulations expressed in the preceding section 
should have various applications in combinatorial and computational geometry. In this 
section and the next, two applications of Theorem 1 to minimum-weight triangulations 
are demonstrated. As before, let P be a set of n points in the plane, and let E be the set 
of all edges defined by P. The length (weight) of an edge e = pq ~ E is the Euclidean 
distance between p and q and is denoted by le[ or IPq l- The weight w(R) of a set R of 
edges is the sum of the lengths of its edges. 

A minimum-weight triangulation T* is defined to have w(T*) < w(T)  for all tri- 
angulations T of P. Minimum-weight triangulations have some good properties (see 
[DJ]) .and are, for example, useful for numerical approximation of bivariate data [Y]. 
The complexity of computing a minimum-weight triangulation is unknown. This is in 
fact one of the longstanding open problems listed at the end of Garey and Johnson's 
book about NP-completeness [GJ]. 

In this section we exhibit a class of planar point sets where the minimum-weight 
triangulation can be computed in polynomial time. 

We call an edge e ~ E light if any edge in E that crosses e is longer than e. Light edges 
obviously do not cross, so the set L of light edges can form at most a triangulation of P. 
Figure 3 shows the set L for a typical random point set. If L actually is a triangulation 
then we call L the light triangulation of P. See Fig. 4 for an example. 
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Fig. 3. The light edges for a set of 100 points. The faces which are not triangles are shaded. 

Fig. 4. Minimum weight (light) triangulation for 150 points. 
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Fig, 5~ A light edge I not included in the minimum-weight triangulation T*. 

Light edges are related to the greedy triangulation, which is obtained by iteratively 
inserting the shortest edge of E that does not cross previously inserted edges. All light 
edges are contained in the greedy triangulation: a light edge e can never be blocked by 
previously inserted edges as E does not contain any shorter edge crossing e. Thus, if a 
light triangulation exists, it is identical to the greedy triangulation. 

In light of Theorem 1, it is easy to prove length optimality. 

Theorem 6. If  a planar point set P admits a light triangulation L, then L is the 
minimum-weight triangulation for P. 

Proof. We show w(T) > w(L), for any triangulation T of P. Consider a perfect 
matching as in Theorem 1 between the edges of T and the edges of L. For each matched 
pair of edges e e T and e' e L, either e = e' or e crosses e', in which case we know that 
lel > le'l since L is light. Summing over all edges gives w(T) > w(L). [] 

Since the light edges can easily be identified in polynomial time, the point sets ad- 
mitting a light triangulation provide a polynomially solvable subclass of instances of the 
minimum-weight triangulation problem. In Section 5.2 we show how to find the set of 
light edges in O (n 2 log n) time. 

It is noteworthy that, in general, not all light edges occur in a minimum-weight 
triangulation T*. Figure 5 gives an example. 

4. Lower Bounds for the Minimum-Weight Triangulation 

In this section we offer new methods for computing lower bounds for the weight of 
planar triangulations. Such bounds can be used in a branch-and-bound algorithm for 
computing the minimum-weight triangulation. If the bounds are very tight they help to 
prune many branches of the branch-and-bound tree and thereby speed up the algorithm. 

Apart from the trivial lower bound (the sum of the [T*I shortest edges in E), all 
known bounds require the knowledge of a set of edges which is a subset of T*. Several 
local geometric criteria which guarantee that an edge belongs to T* have recently been 
proposed, see [K], [CX2], and [YXY], but since the resulting subsets of edges are usually 
small, the corresponding bounds are weak. We will see that Theorem 1 allows us to prove 
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lower bounds for w (T*) in a completely different way, by solving an assignment problem 
and a minimum-cost flow problem, respectively. 

4.1. Single Assignment Bounds 

Theorem 7 (The Single Assignment Bound). Let R be a noncrossing set of edges and 
let T* be a minimum-weight triangulation. Let X ( R, E) denote the set of all injective 
mappings (matchings) g: R ~ E with the properties required in Theorem 1: g(e) = e 
or g (e) crosses e. Then 

w(T*) >_ min E l g ( e ) [ "  (1) 
g~X(R.E) eER 

Proof. Let g* ~ X(R,  E) be a matching g*: R --+ T* which exists by Theorem 1 and 
Corollary 1. We have 

= ~ le[ > ~ l g * ( e ) l  > rain E Ig(e)l. 1/)(T*) [] 
eET* eER gEX (R,E) eER 

The set X(R,  E) is just the set of matchings with [R[ arcs in a bipartite graph. 
Optimizing over this set is an assignment problem (a special type of minimum-cost 
network-flow problem, see, e.g., [L]), which can be solved in polynomial time. A faster 
algorithm with a running time of O (n 3) is developed in Section 5.3. 

Note that edges in the set g (R) = {g(e) : e e R} may cross each other. However, when 
R is a triangulation and gopt(R) happens to be noncrossing for the optimal assignment 
gopt in (1), then gopt(R) must be minimum-weight: 

Corollary 2. Let R be a triangulation and let gopt E X (R, E) satisfy 

EeeR [gopt(e)[ = geX(R.E)min ~ [g(e)l. 

If the set gopt(R) is noncrossing, then it is a minimum-weight triangulation. 

The optimal assignment gopt has another nice property. 

Theorem 8. The optimal assignment matches no edge e to a longer edge, that is, 
[gopt(e)[ < [elfor all e E R. 

Proof. Suppose that a matching g e X(R,  E) has Ig(e)l > lel for some edge e. Then 
we can improve g by assigning e to itself, i.e., by setting g(e) = e and leaving g 
unchanged for the remaining edges. Since no other edge in R crosses e we still obtain a 
matching, and hence the original matching g cannot be optimal. [] 

If we relax the requirements on g in Theorem 7 and permit all injective mappings 
from R to E, we get the trivial lower bound: the sum of the [ R I shortest edges in E. This 
shows that our bound can never be worse than the trivial one. 
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4.2. Relaxed Bounds 

We may weaken the single assignment bound in a different way, by neglecting the fact 
that the matching g must assign different edges of R to different edges of T*. The 
resulting bound is very easy to compute once some auxiliary information on the edges 
in R has been precomputed. For an edge e ~ E, we define its excess s(e) as 

s (e )=max{0 ,  l e l -Z(e )} ,  

where )~(e) is the length of the shortest edge crossing e. If e is crossed by no edge (for 
example, if e is an edge of the convex hull), then we set )~(e) = or hence s(e) = O. 
Edges which have no crossing edges are called unavoidable edges; they belong to every 
triangulation, see IX]. Light edges have excess 0. 

Theorem 9. Let R be a noncrossing set of edges and let T* be a minimum-weight 
triangulation. Then 

w(T*) > w(R) - E s ( e ) .  
e6R 

Proof. Let g*: R ~ T* be a matching as in the proof of Theorem 7. Then, for all 
e 6 R, either g*(e) crosses e or g*(e) = e. In the first case we have 

l e l - s ( e )  < Ig*(e)l (2) 

by the definition of the excess s(e). In the second case the same inequality holds because 
s(e) > O. By summing (2) over all e 6 R we get 

w ( R ) -  E s ( e ) < _  E [g*(e)[ _< E l e ]  = w(T*). 
e~R e~R eET* 

[] 

The consequences of this theorem for the set L C E of light edges are particularly 
interesting. Since L is a noncrossing set and s(e) = 0 for all edges e 6 L, we have: 

Corollary 3. 

w(T*) > w(L). 

We stress the fact that, despite L ~ T* in general, summing up the light edges provides 
a valid lower bound. This bound covers the bounds in [K], [CX2], and [YXY] as the 
subsets of T* considered there are built of light edges only. If R' C R, then the bound 
given by R in Theorem 9 is at least as strong as the bound given by R'. Thus it pays 
to complete the noncrossing set R (or L) to a triangulation before applying Theorem 9. 
Note finally that if L happens to be a triangulation, then w(L) = w(T*) and we obtain 
Theorem 6 of Section 3. 
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4.3. Double Assignment Bounds 

We can improve the single assignment bound by starting with two different triangulations 
T1 and T2 instead of one set R. 

Theorem 10 (The Double Assignment Bound). 
and let T* be a minimum-weight triangulation. With the notation of Theorem 7, 

w(T*) > min Y~ Igl (e)l, 
gleX(T1,E) e6T1 
g2~X (Tz,E) 

gl (T1)=g2 (T2) 

and this bound can be computed in polynomial time. 

Let T1 and T2 be two triangulations 

(3) 

Proof Theorem 1 ensures the existence of bijective mappings g~: T1 ~ T* and 
g~: /'2 ~ T* with the required properties, and the bound follows. 

To get the polynomial-time result, we show that the required injective mappings gl 
and g2 can be modeled as a flow in a network, and the optimal solution can be found 
by determining a minimum-cost flow. For basics of network-flow terminology, see, for 
example, [T]. 

The network consists of four layers. The first layer contains a node for each edge 
of/'1; the second and third layers are identical: each of them contains a node for every 
edge in E; and the fourth layer contains a node for each edge of T2. There is an arc from a 
node of the first layer to the second layer whenever the corresponding edges intersect or 
are identical. The third and fourth layer is connected in the same manner. There is an arc 
from a node in the second layer to a node in the third layer whenever the corresponding 
edges in E are identical. The arcs between the second and third layers carry costs which 
are equal to the lengths of the corresponding edges. The other arcs have cost 0. 

All arcs have capacity 1, and we give a supply of 1 to each node in the first layer and 
a demand of 1 to each node in the fourth layer. Now, an integral flow in this network will 
decompose into unit flows running from sources to sinks along disjoint paths. The arcs 
between layers 1 and 2 which carry positive flow induce the injective mapping gl, and 
g2 is obtained from the arcs between layers 3 and 4. The arcs between layers 2 and 3 
ensure that gl (Tl) = g2(T2), and the cost of the flow is the total length of the edges in 
the set gl(T1) = g2(T2). [] 

When T1 = T2, we just get the single assignment bound (for the case when R is a 
triangulation). This means that, in general, the double assignment bound is stronger than 
the single assignment bound. 

Similarly as in the previous subsection we obtain the following corollary. 

Corollary 4. Let gl, g2 be the optimal solution in (3). If  the set gl (T1) = g2(T2) is 
noncrossing, then it is a minimum-weight triangulation. 

The following relaxation of the bound (3) is obtained from the double assignment 
bound by omitting the requirement that the functions gi are injecfive, just as Theorem 9 
is obtained from the single assignment bound. 
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Theorem 11. Let T~ and T2 be two triangulations and let T* be a minimum-weight 
triangulation. For e ~ T1 and f ~ T2 we define the cost c(e, f )  of assigning e to f as 
the length of the shortest edge which crosses or coincides with e and f . (Thus, if e and 
f cross, then both e and f are also candidates for the shortest edge.) l f e  and f do not 
cross and no common crossing edge exists, then c( e, f )  = oo. Let H(T1, T2) denote the 
set of all bijections between 7"1 and T2. Then 

w(T*) >_ min ~ c(e, h(e)). 
h~I-I(TI,T2) e~Tl 

(4) 

Proof. From an optimal solution (gl, g2) of(3) in Theorem 10 we may obtain a feasible 
solution h e I-I (T1, T2) by setting h = g21 o gl. This composition is well defined since 
gl(T1) = g2(T2). For all e e T1, the edge gl(e) crosses or coincides with e and h(e), 
and hence c(e, h(e)) < Igl (e)I. By summation of this inequality we get 

y~c (e ,  h(e)) < y~. Igl(e)l ~ w(T*). 
e~Tl e~Tl 

[] 

The optimization problem (4) in the last theorem is just a standard assignment prob- 
lem, i.e., a minimum-cost perfect matching problem in a bipartite graph. In terms of the 
network in the proof of Theorem 10, the weaker bound (4) can be obtained by giving the 
arcs from layer 2 to layer 3 unlimited capacity. 

4.4. A Matroid-Theoretic Interpretation 

It is instructive to review the results of this section in terms of matroid theory. The single 
assignment bound can be formulated as the solution of a weighted matching problem in 
a bipartite graph with node classes R and E: we are looking for a matching which covers 
every node of R and has minimum total weight. However, in contrast to the standard 
setting of weighted matching problems, the costs are not associated with the arcs of the 
graph but with the node set E. This does not prevent standard matching algorithms from 
being applied, because we can set the cost of an arc (e, f )  to Ifl  and get the same result, 
but it opens an alternative approach. 

The subsets of nodes in a graph which are matchable (for which there exists a matching 
which covers all of them) is a matroid, in our case of a bipartite graph a transversal 
matroid, see Corollary 7.4.3, p. 272, and Section 5.4, p. 192 of [L]. (This is in contrast 
to the independence system of the arc sets which form a matching.) Thus we have 
the problem of finding in the matroid a basis with minimum weight. It follows from 
basic matroid theory that it is possible to solve this problem by a greedy algorithm on 
the set E. We start with the empty matching and process the edges of E in order of 
increasing weight. For each edge, we try to augment the current matching to include 
the corresponding node. Such an augmentation may involve the replacement of some 
matching arcs by other arcs along an alternating path. A node which is matched in this 
process will never become unmatched. We may stop if we have I RI matching pairs. Our 
efficient algorithm in Section 5.3 follows this approach. 



Triangulations Intersect Nicely 351 

In the double assignment bound, the solution set g l (7"1) = g2 (T2) is in the intersection 
of two transversal matroids. There is a general algorithm for finding an optimal set in 
the intersection of any two matroids in polynomial time, see Chapter 8 of [L], whereas 
the matroid intersection problem for three matroids may already be NP-hard. This ex- 
plains why the improvement from the single assignment bound to the double assignment 
bound cannot be pushed further to a "triple assignment bound" which is computable in 
polynomial time. 

5. Algorithmic Issues 

In Sections 3 and 4 algorithmic issues were only discussed to the extent that the problems 
raised were reduced to well-studied combinatorial problems and polynomial time bounds 
were obvious. In some cases we are able to improve over the time and space bound that 
is obtained by straightforward application of standard algorithms. Some familiarity with 
graph algorithms is desired to understand this section. 

5.1. Finding the Matching Efficiently 

We consider the cost of computing the perfect matchings which are shown to exist in 
Theorems 1-3. We first deal with Theorem 1. The crossings of a red triangulation R 
and a blue triangulation B of a set P of n points define a bipartite graph G, to which 
we can apply standard bipartite matching algorithms. This graph has O (n) nodes and 
K = O(n 2) arcs, where K is the total number of crossings between R and B plus the 
number of edges in R O B. 

A direct application of the bipartite matching algorithm of Hopcroft and Karp [HK] 
(see also IT]) would result in O(K~rff) time and O(K) space. We show how to reduce 
the space requirement to O(n). 

Theorem 12. For two triangulations R and B of a planar point set P which have 
K = O (n 2) crossings, we can find a perfect matching between the edge sets R and B 
which satisfies the condition of Theorem 1 in O (Kvrff) = O (n 5/2) time and 0 (n ) space. 

Proof We have to show how the algorithm of Hopcrofl and Karp can be carried out 
without explicitly storing the bipartite intersection graph G. For a detailed description 
of this algorithm we refer to the literature, but in order to enable the reader to see how 
the reduction of the space requirement works, we present certain parts of the algorithm 
in more detail. 

The algorithm of Hopcroft and Karp performs breadth-first search and depth-first 
search on certain directed subgraphs of G. The elementary operation in scanning a graph 
is accessing the next unexplored arc on the adjacency list of a given node. In [HK], as 
in the standard setting of graph algorithms, it is assumed that the adjacency list of each 
node is stored explicitly as a sequential or linked list. Then it is easy to have a marker 
pointing to the current position in the list and to advance to the next arc when desired. 

Although the algorithm works on subgraphs of G, it is not necessary to store explicit 
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copies of these subgraphs, because when an arc of G is scanned, it can be checked in 
constant time whether it belongs to the subgraph in question, and if not, the arc is simply 
skipped. 

In our geometric setting we need not store adjacency lists at all but we extract them 
on-line. We store the two triangulations as plane graphs, such that standard operations 
like finding the two triangles incident to a given edge or finding the three edges bounding 
a given triangle can be executed in constant time. We also preprocess R and B to locate, 
for each point p ~ P, the incident red edges among incident blue triangles. So we store 
for each red edge the first blue triangle which we enter as we walk from p along this 
edge. This can be done in O(n) overall time by merging, for each p, the lists of red and 
blue edges in angular order around p. We also perform this preprocessing with the roles 
of red and blue reversed. 

Now, to obtain the successive neighbors of, say, a red node e, we simply walk along 
the red edge it represents, proceeding from triangle to adjacent triangle in the blue 
triangulation and collecting all blue intersected edges. We can also "leave a marker" on 
e's adjacency list by remembering the current crossed blue edge. Later we can simply 
continue from there. 

In this way, all graph exploration steps can be done in constant time without more 
than O(n) storage. [] 

In case of face matchings (Theorem 3), we see that the bipartite graph of"matchable" 
pairs of faces has only linearly many arcs. This leads to the following time bound. 

Theorem 13. For two triangulations R and B of a planar point set P, we can find a 
perfect matching between the triangular faces of R and B which satisfies the conditions 
of Theorem 3 (and hence also the condition of Theorem 2) in 0 (n 3/2) time and 0 (n) 
space. 

Proof. Let G' be a bipartite graph with a node for each triangular face of R and B. Two 
nodes are connected by an arc if the corresponding triangles fulfill the two conditions of 
Theorem 3. We are looking for a perfect matching in G'. 

A red triangle AR can be matched with a blue triangle AB if they have a common 
vertex p and share an angular region around p. Fix a vertex p ~ P, and denote by dR (p) 
and dB (p) the degree of p in the triangulation R and B, respectively, i.e., the number of 
edges in R (or B) incident to p. We claim that the number of pairs (AR, AR) which can 
be matched because they share an angular region around p is at most dR (p) +d B  (p). 
Consider a ray sweeping around p. Each time it crosses an edge incident to p, we "gen- 
erate" a new pair (AR, AB) consisting of the two triangles into which the ray points. 
Since we cross dk (p) +dB (p) edges, we generate at most dR (p) + dB (p) pairs. If we re- 
peat this for all vertices p we generate all necessary pairs, i.e., all arcs of the graph 
G' in which we want to find the matching. Since y~.p~p dR(p) = ~-~.p~p ds(p)  = 
21RI = 21BI = O(n), we generate only a linear number of arcs. The time bound of 
O(n 3/2) is now obtained by plugging this into the complexity of Hopcroft and Karp's 
algorithm. [] 
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5.2. Computing Excesses and Light Edges 

Theorem 6 asks for a method to decide whether a given planar n-point set P admits a 
light triangulation, or, in other words, whether the light edges triangulate P. Also, to 
compute the lower bound in Corollary 3, all light edges realized by P are required. More 
generally, the bound in Theorem 9 needs knowledge of the excess of all edges in a given 
noncrossing set. 

We solve these problems in time O (n 2 log n) and space O (n) by giving an algorithm 
for the following problem: given an arbitrary triangulation T of P, compute )~(e) for 
each e 6 T, where k(e) is the length of the shortest edge crossing e. As a by-product, 
all unavoidable edges are those with k(e) undefined. 

We describe an O(n log n)-time routine which, for a given point p 6 P, computes 

kp(e) = qmi'n{Ipql : pq crosses e} 

for all e 6 T. Calling the routine for all p 6 P and maintaining the minimum for each 
e then gives Z(e). 

Given the point p, we set up a semidynamic data structure for a point set Q and for 
the following type of queries: for a wedge V with apex p and angle less than re, return 
the closest point to p in Q N V. We initialize Q with P and allow only deletions from 
Q. The data structure we use is a binary search tree whose leaves store Q in cyclic order 
around p. Each interior node stores the minimum distance from p to all points in the 
subtree. 

We then query the structure with wedges induce d by edges e in the triangulation T. 
The queries and deletions are carried out in a specific order. This guarantees that, when 
we query for the wedge induced by edge e, Q contains no point that lies between e and p 
and includes all points that lie opposite to p with respect to e. To this end, a topological 
order for the edges of T with respect to the in-front/behind relation as seen from p is 
necessary. Problems may arise if this relation contains cycles, as shown in Fig. 6. We 
circumvent this difficulty by cutting T with a ray emanating from p, and retriangulating 
where necessary, in O (n) time. For an edge e cut into subedges e ~ and e" we clearly have 
)~p(e) : min{~.p(e'), ~.p(e")}. 

A topological order is now obtained in O (n) time by starting with the set of triangles 
incident to p, and adding adjacent triangles one by one while keeping the invariant that 
the boundary of their union U is star-shaped as seen from p. At each point in time, the 
search tree stores exactly the points of P exterior to U. As queries and deletions take 
O (log n) time each, the claimed O (n log n) time bound is obtained. A topological order 
of the edges is given in Fig. 6. 

Theorem 14. Let P be a set of n points in the plane. 

(i) Given a triangulation T of P, the excesses for all edges in T can be computed 
in O(n 2 logn) time and O(n) space. 

(ii) The excesses for all edges induced by P can be computed in O(n 3 logn) time 
and O(n 2) space. 

(iii) The set of light edges induced by P can be computed in O(n 2 logn) time and 
0 (n) space. 
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Fig. 6. A triangulation which is cyclic when seen from p. The triangulation is cut by a horizontal ray from p 
to the left, and the resulting quadrangles are triangulated. The faces of the resulting triangulation are numbered 
in a topological order in which they can be processed. A (sub)edge is processed when its incident triaagle with 
the larger number is processed. Incidentally, when the point p is removed, the resulting triangulation is the 
minimum-weight triangulation, demonstrating that a minimum-weight triangulation is not necessarily "cycle 
free." 

Proof. Statement (i) follows from the preceding discussion. Statement (ii) follows from 
(i) since we can cover all edges by n triangulations: we simply connect a fixed point p 
to all other points and complete this to a triangulation. Repeating this for all points p, 
we will have covered every edge between two points of P at/east once. For proving 
Oil), note that the greedy triangulation contains all light edges. So we first generate the 
greedy triangulation, and then check each of the O(n) greedy edges for being light. 
Several algorithms exist which compute the greedy triangulation of P in the claimed 
time and space bounds, the easiest being perhaps the one of Goldman [G]. The fastest 
algorithm for the greedy triangulation is due to Levcopoulos and Krznaric ILK1 ] and runs 
in O (n log n) time and O (n) space; see also [DDMW] and [DRA] for fast expected-time 
algorithms. [] 

5,3. Computing the Single Assignment Bound 

The problem whose solution is required for computing the single assignment bound of 
Theorem 7 is an assignment problem between two edge sets R and E, where R is a 
given triangulation and E is the set of all edges between points of P. (R could be any 
noncrossing set but we restrict our attention to a triangulation.) The standard algorithm 
for the assignment problem leads to a complexity of O(n 4) time and O(n 3) space. 
However, we can follow the greedy approach outlined in Section 4.4 to obtain a faster 
algorithm that uses less space. 

First, we generate the edges in E in increasing order of length until IR[ of them are 
matched. Dickerson et al. [DDS] have shown that the m shortest edges in an n-point set P 
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may be generated in O ((m + n) log n) time and O (m + n) space. By trying successively 
the values m = n, 2n, 4n, 8n . . . .  we can make sure that we never generate more than 
twice as many edges as we actually need. 

In the iterative step we have a partial matching between E and R, an edge e0 e E, 
and we try to augment the current matching to include the node corresponding to e0. 

We focus on the form of an augmenting path which we are looking for when processing 
an edge eo. The path goes from eo to an adjacent node rl (an edge of R), from rl to the 
node el to which rl is matched, from el to an adjacent node r2, from r2 to the node e2 to 
which r2 is matched, and so on until it terminates in an unmatched node r i E R, i > 1. 
The augmentation consists of  exchanging the i - 1 matching arcs with the i nonmatching 
arcs on this path. 

We may search for such an augmenting path starting from e0 using any graph search 
method, for example, breadth-first search. We make several observations: 

(i) We only need to explore the list of adjacent nodes for the edges of E;  when we 
are at a node of R we simply proceed to the node of E to which it is matched. Since the 
neighbors of  e E E are the edges of  the triangulation R which cross e, we can find these 
neighbors by walking through the triangulation as described in Section 5.1, without any 
need to store adjacency lists. For each edge e E E, there is an overhead of O (log n) for 
locating the first triangle in the triangulation R cut by e (as we walk along e from one 
endpoint). 

(ii) Since we are using a greedy algorithm, if we fail to match a node of E,  we can 
ignore it in the future. We need not remember  to which nodes it is adjacent. Thus if 
e ~ E is not matched in the optimal solution, its incident arcs are explored only once 
during the whole algorithm. 

(iii) I f  we have processed a node in R or E during an unsuccessful search for an 
augmenting path, we know that no unmatched node of R can be reached from this node, 
and we may skip the search from this node in all subsequent searches. This situation 
remains unchanged as long as no augmentation occurs. Thus, between two successful 
augmentations, every edge of the current graph is visited at most once. The current 
graph is the subgraph induced by the nodes R and the subset E '  of  nodes of E which are 
currently matched. 

(iv) There are IRI = O(n) successful augmentation steps. Hence, if 

Eopt = { gopt(e) : e e R } 

denotes the set of  matched nodes of  E in the optimal matching gopt, each of the arcs 
between R and Eopt is visited at most O(n) times. 

Putting everything together, we have the following theorem. 

Theorem 15. Let Eop t ----- { gopt(e) : e ~ R } denote the set of edges to which the 
edges of R are assigned in the optimal matching gopt of the single assignment bound. 
Let K = O(n 2) denote the number of crossings between Eopt and R. Furthermore, let 
Es C E be the set of edges which are not longer than the longest edge of Eopt, and let 
L < IEsl �9 IRI = O(n 3) denote the number of crossings between Es and R. Then the 
optimal matching gopt can be computed in 0 ( K n + L + l Es [ log n) = O ((K +IE~ I) n) = 
O(n 3) time and O(n + IEsl) = O(n 2) space. 
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Proof. By observation (iv), each of the K arcs is explored at most O (n) times. In 
addition, each of the L - K remaining arcs is explored only once. The term ] Es ] log n 
accounts for generating the edges according to length and for locating the first triangle 
cut by each edge as mentioned in observation (i). [] 

The definition of Es depends on the largest edge weight of Eopt. Since we do not 
know this beforehand, we may replace it, using Theorem 8, by the largest edge weight 
of R in the definition of Es in order to get an a priori upper estimate. In either case, 
unavoidable edges such as the boundary edges, which belong to every triangulation, can 
be ignored when computing the longest edge of Eopt or R. 

The worst-case time bound of O(n 3) is rather high, but the explicit parameters of 
the complexity indicate that for a good starting triangulation R the complexity might be 
quite good. Within the worst-case time of O(n3), Es can also be enumerated in O(n) 
space instead of 0 (n + I Es I) by a more primitive method. 

Theorem 8 implies that we may skip every arc between e ~ E and a node r 6 R if r 
is shorter than e. This observation might speed up the algorithm, but we can make use 
of it only at the expense of storing the current graph. 

5.4. Computing the Double Assignment Bound 

Theorem 16. The double assignment bound of Theorem l O for two triangulations T1 
and T2 can be computed in 0 (n. (K1 -t- K2) q-n 3 log n) = O (n 4) time and 0 (K1 + K2) = 
O(n 3) space, where K1 (resp. K2) denotes the number of crossings between T1 (resp. 
T2) and E. The relaxed double assignment bound of Theorem 11 can be computed in 
O(n 3 -I- Kin) = O(n 4) time and O(n 2) space. 

Proof. As described in the proof of Theorem 10, computation of the double assignment 
bound can be reduced to a minimum-cost network-flow problem. The network has 2 �9 
]El + O(n) = O(n 2) nodes and K1 + K2 + O(n) + ]El = O(K1 + K2) arcs. We can 
easily construct it in O (n 3) time by checking for each possible pair (e, g) of edges with 
e ~ /'1 U T2 and g E E whether it contributes an arc. The network can be stored in 
O(K1 + K2) space. Since the total supply of the network is ]T11, a minimum-cost flow 
can be computed in [Tll = O(n) flow augmentation steps along shortest augmenting 
paths, see [T]. Each augmentation requires one shortest path computation in the network. 
A shortest path in a graph with v nodes and a arcs can be found in O (a + v log v) time. 
Therefore, O(n) shortest path computations can be carried out in the claimed time 
complexity. 

In the case of the relaxed bound of Theorem 11, most of the time is needed to compute 
the costs c(e, f ) .  In O(n 3) time we can generate all K1 + O(n) pairs (e, g) of crossing 
or identical edges with e e /'1 and g e E. For each generated pair (e, g), we scan all 
edges f e T2, and if g crosses f or equals f ,  then g is one of the edges whose length 
contributes to the minimum in the definition of c(e, f ) .  This takes O(n 3 + Kin) time. 
Finally, solving the assignment problem (4) takes O (n 3) time. [] 
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6. Conclusion and Open Problems 

Theorems 1 and 2 are easily seen to hold for triangulations of arbitrary polygonal regions, 
possibly with holes. They can also be extended to triangulations of closed surfaces, when 
they are viewed as topological and graph-theoretic structures, as opposed to the geometric 
view taken in this paper. 

It seems natural to try to prove Theorem 1 in a direct way, without resorting to the 
marriage theorem. For example, any triangulation of a planar point set can be changed 
into an arbitrary other one by repeated application of edgeflips. An edge flip exchanges 
the diagonals of a convex quadrilateral in the current triangulation and thus naturally cor- 
responds to a match of the involved edges. However, f2 (n 2) edge flips may be necessary 
to transform one triangulation of n points into another, see [HNU]. This is an indication 
that there might be no proof of Theorem 1 based on the flipping paradigm. 

We plan to use our bounds in a branch-and-bound algorithm to compute the minimum- 
weight triangulation for arbitrary point sets. The bounds of Section 4 can be strengthened 
for subproblems where some specified edges are forced into the solution or excluded 
from the solution. We hope that a practically efficient algorithm for computing the 
minimum-weight triangulation may make experiments possible which lead to a better 
understanding of the properties of minimum-weight triangulations, with the ultimate 
goal of resolving the complexity status of the problem. 

Another approach to computing the minimum-weight triangulation has recently been 
proposed by Dickerson and Montague [DM]. They identify a subset of edges that must 
be part of every locally minimal triangulation. A locally minimal triangulation is a trian- 
gulation which cannot be improved by a single edge flip. Their very simple procedure-- 
essentially they just use the definition of a locally minimal triangulation is remarkably 
successful in identifying a large subset of edges which belongs to the minimum-weight 
triangulation. Levcopoulos and Krznaric ILK2] have recently obtained an approxima- 
tion algorithm for the minimum-weight triangulation problem that achieves a constant 
approximation ratio. 

Various open questions are raised by our results. 
The point sets for whici~ the light edges form a triangulation are interesting. What 

good properties do they and their associated triangulations have? Using a straightforward 
experimental program that finds and displays the light edges, we found it quite easy to 
draw light triangulations by choosing "well" distributed point sets. In fact, the light 
edges of a random point set chosen from a uniform distribution will in general leave 
just a few small polygonal regions which are not triangulated, see Fig. 3. By putting a 
few more points into these regions, it is then not difficult to arrive at a point set with 
a light triangulation. This is how we obtained the point set in Fig. 4. This leads to the 
following question. Given a planar n-point set P, can it always be extended by adding, 
say, O(n) points so that it admits a light triangulation? Can we find such "enlightening" 
points in polynomial time? These questions might be interesting from the point of view 
of engineering applications, where only some points on the boundary rather than the 
complete set of points of the triangulation are fixed in advance. 

In the single assignment bound it seems plausible that the "starting triangulation" R 
should have small weight (and therefore not be too different from the minimum-weight 
triangulation T*) in order to get the best bounds. For the double assignment bound, 
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however, we need two triangulations T1 and T2. Setting 7"1 = T2 does not yield an 
improvement over the single assignment bound. T1 and T2 should rather be chosen to 
be very different from each other, and thus they cannot both be close to T*. How to 
choose/'1 and T2 to get the best bounds is a question which is open to computational 
experiments. 

Can we bound the quality of the bounds of Theorems 7 and 9 when R is, for instance, 
the greedy triangulation or the Delaunay triangulation? What is the maximum ratio 
between the two sides of the inequality? 

The general Theorem 4 for independence systems can be applied for any special 
kind of independence system. However, we have not been able to find any interesting 
consequences of this matching result except for triangulations. Are there any applications 
to other areas? 

The algorithms of Section 5.1 for finding matchings between edges or faces of two 
triangulations are the standard graph-theoretic matching algorithms. Geometry enters 
only in the implementation of adjacency lists in Theorem 12 and in the bound on the 
number of arcs in Theorem 13. It is conceivable that algorithms that exploit the geometric 
nature of the problem in a better way would be faster. 

A triangulation can be viewed either as a set of edges or as a set of triangles. When 
we take the weight of a triangle to be its perimeter, the minimum-weight triangulation 
problem is identical for both formulations. In the triangle formulation, all edges are 
counted twice except for the boundary edges, which are counted once but are of fixed 
length. Nevertheless, we get two different greedy algorithms from the two formulations. 
We are not aware of any previous investigations of the "triangle-greedy" algorithm. Since 
there are O(n 3) triangles but only O(n 2) edges, it seems plausible that it may beat the 
usual "edge-greedy" algorithm in practice. We have examples which show that none 
of the two greedy algorithms beats the other for all problems. Some recent numerical 
investigations of many alternative greedy algorithms are reported in [AARX]. For most 
point sets, the triangle-greedy algorithm does not beat the edge-greedy algorithm. This 
holds in particular for uniformly distributed point sets. How fast can the triangle-greedy 
triangulation be computed? 
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