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Abstract. The notion of a partitionable simplicial complex is extended to that of a 
signable partially ordered set. It is shown in a unified way that face lattices of shellable 
polytopal complexes, polyhedral cone fans, and oriented matroid polytopes, are all signable. 
Each of these classes, which are believed to be mutually incomparable, strictly contains 
the class of convex polytopes. A general sufficient condition, termed total signability, for a 
simplicial complex to satisfy McMullen's Upper Bound Theorem on the numbers of faces, 
is provided. The simplicial members of each of the three classes above are concluded to 
be partitionable and to satisfy the upper bound theorem. The computational complexity 
of face enumeration and of deciding partitionability is discussed. It is shown that under a 
suitable presentation, the face numbers of a signable simplicial complex can be efficiently 
computed. In particular, the face numbers of simplicial fans can be computed in polynomial 
time, extending the analogous statement for convex polytopes. 

I. Introduction 

The extensively studied notion of  shellability is of  basic importance for the combinatorial ,  
enumerative, and algorithmic study of  simplicial  complexes  and posers [1], [2], [4], [6], 
[ 16]. However, there are important  classes of  complexes which are not shellable, but do 
possess the somewhat weaker  property of  partitionability. This proper ty  often suffices 
to lead to efficient computat ion of  the face numbers of  such complexes,  and to derive 
properties of  these numbers and inequalities satisfied by them. In particular,  the h- 
numbers of a part i t ionable complex,  important numerical  invariants which determine its 
face numbers, admit  a combinatorial  interpretation and are nonnegative. 

* The research of S. Onn was supported by the Alexander von Humboldt Stiftung, by the Fund for the 
Promotion of Research at the Technion, and by Technion VPR Fund 191-198. 
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In this article we take on a systematic study of partitionable simplicial complexes and 
their face lattices. We extend our study to face lattices of nonsimplicial complexes and 
more generally to partially ordered sets, and introduce the notion of a signable poset, 
which naturally extends the notion of partitionability. We show in a unified way that 
important classes of posets are signable, which in particular implies that the simplicial 
members of these classes are partitionable: 

�9 Theorem 3.6. Shellable posets (hence shellable polytopal complexes) are signable. 
�9 Theorem 4.5. Polyhedral fans are signable. 
�9 Theorem 5.11. Oriented matroid polytopes are signable. 

We provide a general, purely combinatorial, sufficient condition for a simplicial complex 
to satisfy McMullen's Upper Bound Theorem on the number of faces. This condition 
holds for the simplicial members of all three classes above. We thank a referee for the 
present more elegant formulation of this result: 

�9 Theorem 4.4. Any totally signable simplicial complex satisfies the Upper Bound 
Theorem. 

Finally, we show that under a suitable presentation, the face numbers of a signable 
simplicial complex can be efficiently computed (Lemma 6.2). This applies in particular 
to simplicial fans presented by their maximal cones, extending the analogous statement 
for convex polytopes: 

�9 Theorem 6.4. The face numbers of simplicial polyhedral fans are polynomial time 
computable. 

Each of the main classes of complexes and posets under study (see Fig. 1), namely 
shellable polytopal complexes,polyhedral cone fans (also known as spherical polytopes), 
and oriented matroid polytopes, strictly contains the class of convex polytopes: every 
polytope K is line-shellable; it induces the oriented matroid polytope of affine depen- 
dencies on its vertices; and it induces the normal-fan of its polar K*, namely the fan of 
cones polar to faces of K*. These three classes are believed to be mutually incomparable 
(see discussion in the last section). In particular, the problem of showing that fans are not 
shellable in general is outstanding; some progress on that was recently achieved by Mani 
[ 12], who reduced the problem to a certain conjecture in differential geometry. Likewise, 
it is an open question whether oriented matroid polytopes are shellable [3], and the an- 
swer is again likely to be negative (surprisingly, the face lattice of an oriented matroid 
polytope turned upside down is shellable--this is a result of Edmonds and Mandel--see 
[3]). In contrast we show that all three classes are signable. This shows in particular that 
simplicial oriented matroid polytopes are partitionable and satisfy McMuilen's Upper 
Bound Theorem, and generalizes the results of [9] on simplicial fans. We also discuss 
the computational complexity of deciding shellability and partitionability, and the com- 
plexity of face enumeration. In a continuation article [15], poset signings are further 
investigated, and are shown to play an important role in the algorithmic and enumerative 
study of recursively signable posets, their flag vectors, and their chain complexes and 
barycentric subdivisions. 

Our article is organized as follows. The next section provides a brief review of sim- 
plicial complexes, their face numbers, shellability, and partitionability. In Section 3 we 
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define the notion of a signable poset, which naturally extends that of a partitionable 
simplicial complex. We show that any shellable poset (one admitting a recursive coatom 
ordering) is signable and conclude (Corollary 3.7), based on results in Bj6rner-Wachs 
[4], that shellable polytopal complexes are signable. 

In Section 4 we set up the framework of a signed family, which provides a systematic 
way of proving poset signability. We illustrate it on (nonoriented) matroid complexes 
(Example 4.3), and use it to prove that polyhedral fans are signable (Theorem 4.5), which 
stands in contrast with the common belief that they are not sbellable in general. Also in 
Section 4, we show that if a signable simplicial complex is moreover totally signable, 
then it satisfies McMullen's Upper Bound Theorem on the face numbers [13]. Thus, 
Theorem 4.4 provides a rather general sufficient condition for a simplicial complex to 
satisfy this theorem. 

In Section 5 we use the framework of signed families once more to prove that (Las 
Vergnas face lattices of) oriented matroid polytopes are signable (Theorem 5.1 1), again 
in contrast with the common belief that they are not shellable in general. We then apply 
Theorem 4.4 to conclude that simplicial orientedmatroid polytopes satisfy the Upper 
Bound Theorem (Theorem 5.12). 

In Section 6 the computational complexity of face enumeration is discussed, as well 
as the complexity of deciding shellability and partitionability. In contrast with the #79- 
completeness of the face numbers of  a polytope [11], for which we give a short new 
proof (Proposition 6.1), we have Lemma 6.2; it asserts that there is a polynomial-time 
algorithm that, for a suitably presented signable simplicial complex, computes the face 
numbers. This is used to show (Theorem 6.4) that the face numbers of simplicial fans 
can be computed in polynomial time, extending the analogue for simplicial polytopes. 

We finish in Section 7 with some remarks and open questions, in particular regarding 
the hierarchy of various classes of complexes and posets considered in this article and 
depicted in Fig. 1. 

2. Some Preliminaries 

Here we briefly review some terminology on simplicial complexes and their f -vectors  
and h-vectors, and the notions of shellability and partitionability of a simplicial complex. 
By a simplicial complex A throughout we mean a finite pure-dimensional one. The 
dimension of a face F ~ A is taken as the number of vertices in it (one unit more than 
the geometrical dimension). The faces of maximal dimension are the facets of A, and 
the faces of codimension 1 are the ridges of A, 

A partial shelling of A is a sequence Fl . . . . .  Fk of some of the facets of A such that 
for all 1 < i < j < k there is r < j such that Fi N Fj c Fr n Fj and Fr n Fj is a ridge 
of A. A shelling of A is a partial shelling consisting of all its facets, and A is shellable 
if it admits a shelling. 

A facing of A is an assignment ~o(F) ___ F of a face to each facet F in A, A facing 
of A is exact if it induces a partitioning of A in the following way: for any face G ~ A 
there is a unique facet F in A for which ~o(F) __c G c F holds. A simplicial complex A 
is partitionable if it admits an exact facing. I f  F1 . . . . .  Fn is a shelling of A, then, letting 
~o(Fi) be the intersection of all ridges of Fi not contained in any Fj (j  < i), it is easily 
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verified that ~o is an exact facing of A. Thus, shellability implies partitionability; but the 
converse is false, as is demonstrated by the following example. 

Example 2.1 (The Real Projective Plane). Following is the list of facets of a non- 
shellable triangulation A of the real projective plane with six vertices; an exact facing 
of A is indicated by ovedining, in each facet F, the vertices constituting ~o(F): 

123 126 135 145 14--'6 234 245 256 3-46 35--'6. 

If A is d-dimensional, then its f -vector  is the face enumerator f = (f0 . . . . .  fa), 
where fi is the number of i-faces of A. Its h-vector is the vector h = (h0 . . . . .  ha) related 
to the f-vector  via the invertible pair of linear transformations given by 

f i = ~ - ~ ( d - _ ~ ) h j  
j=0 

and (.):, hi = ~ ( - 1 )  i - j  - j . 
/=0 i 

In many situations the h-vector is more suitable for the enumerative study of a simplicial 
complex than the f -vector  itself. For example, McMullen's upper-bound theorem [ 13] 
asserts, in terms of the h-vector, that for a simplicial polytope 

hi< ( h i - F i - 1  ) -  i 

holds for all positive i. A simplicial complex for which these inequalities hold is said to 
possess the upper-boundproperty. 

In the case of a partitionable complex, the h-vector has the following well-known 
direct combinatorial interpretation. 

Proposition 2.2. If ~o is an exact facing of a d-dimensional simplicial complex A, then 
its h-vector is given by 

hj = ]{F E A: F facet, dim~0(F) ---- j}[, j = 0 . . . . .  d. 

Proof. Let ~o be an exact facing of A. If F is a facet of A with dim ~o(F) = j ,  then the 
d-j d-j number of/-faces G satisfying ~o(F) c G c F is zero if i < j and is (i-j) = (d-i) 

otherwise. Thus, 

f,. = ~-~ ( d - - ~ ) l { F  e A: F facet, dim~o(F) = j}[. 
j=0 

The claim follows by comparing this with the invertible expression of the f -vector  in 
terms of the h-vector given above. [] 

Thus, in Example 2.1, the h-vector is read off from the indicated facing to be h = 
(1, 3, 6, 0), from which the f-vector  is easily computed to be f = (1, 6, 15, 10). 
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3. Signable and Shellable Posers 

In this section we define the notion of a signable partially ordered set (poset), which 
generalizes the notion of a partitionable simplicial complex. We also show that any 
shellable poset--one admitting a recursive coatom ordering [4]--is signable. In the 
following sections we establish the signability of various other important classes of 
posers. 

We start by defining the signability of a simplicial complex. A signing of a simplicial 
complex A is an assignment X (R, F)  E { - ,  +} of a sign to each pair of  a ridge R and 
a facet F containing it. A ridge R is positive in a facet F containing it if X (R, F)  = + ,  
and is negative in F otherwise. Also, a vertex v is positive in a facet F containing it if  
X (F - v, F) = +,  and is negative in F otherwise. A facet is positive if all its ridges are 
positive in it. Recall that the link of a face G in A is the simplicial complex 

lkA(G) = {H - G: G c_. H E A}. 

The complex itself is the link lkA 03) of its empty face. The link lkz~ (G) of any face 
G E A naturally inherits a signing from the signing Z of A, given by X ( R -  G, F - -  G) = 
X (R, F) for all ridge-facet pairs in lka (G). Thus, F - G is a positive facet of  lkA (G) 
under X if, for all ridges R satisfying G _c R C F, X (R - G, F - G) = X (R, F)  = + 
holds. A signing X of A is exact if the link of any face G ~ A contains a unique facet 
which is positive under X. A simplicial complex is signable if  it admits an exact signing. 
There is an obvious correspondence between signings and facings of  A, where the facing 
9 corresponding to a signing X is given by 

~0(F) = N { R  C F: R ridge, X (R, F)  = +}. 

Equivalently, ~0(F) consists of the negative vertices of F. 

Proposition 3.1. A simplicial complex is partitionable if and only if it is signable. 

Proof. Let X be any signing of A, and let 9 be the corresponding facing of A as above. 
We claim that, for any face G E A, a facet F - G oflkzx(G) is positive in lkA(G) under 
X if and only if ~0 (F) _c G _c F holds for the facet F of A. Indeed, the latter is equivalent 
to the condition 

~o(F) = N { R C F :  Rridge, x ( R , F ) = + }  

c N { R c F :  Rridge, G _ R } = G _  F, 

which holds if and only if all ridges R C F containing G are positive in F,  i.e., if F - G 
is positive in lkA (G) under X. Thus, F -- G is the unique positive facet in lkzx (G) under 
the signing X if and only if F is the unique facet of A satisfying ~0(F) _c G _c F. Hence 
X is exact if and only if ~o is. [] 

Note that, in the notation of a partitioning as in Example 2.1, the signing X of A is 
directly read off: a vertex v (and the ridge R - v) is negative in a facet F if it is overlined 
in F. Also, Proposition 2.2 can be reformulated as follows. 
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Proposition 3.2. / f  Z is an exact signing o f  A, then its h-vector is given by 

hk = I{F e A: F is a face t  containing k negative ridges}l. 

This immediately gives the following consequence regarding the so-called Dehn-Sommer-  
ville relations. 

Proposition 3.3. I f  a signable d-dimensional simplicial complex A has an exact sign- 
ing Z whose negative - Z is also exact, then A satisfies the Dehn-Sommervi l le  relations 
hk = hd-k for  k = 0 . . . . .  d. 

We now generalize the above notions to partially ordered sets. The terminology on 
partially ordered sets is mostly drawn from [18]. Throughout this article, by a poset  
we mean a finite graded partially ordered set P with a unique minimal element 0 and a 
unique maximal element 1. The rank function of  P will be denoted by r, so that r (0) = 0 
and r ( P )  = r(1), which will usually be assumed to be d + 1. The order relation in P 
will be denoted by x < y (or x < y if  x ~ y), whereas the covering relation will be 
dentoed by x -< y. The atoms of  P are the covers of  0, i.e., elements o f  rank 1, and the 
coatoms of  P are the cocovers o f  1, i.e., elements of  corank 1. The cocoatoms are the 
cocovers o f  coatoms, i.e., elements of  corank 2. The closed interval corresponding to 
elements x < y in P is [x, y] = {z e P :  x < z _< y}, which is itself a poset of  rank 
r[x, y] = r (y )  - r (x) .  

A signing of a poset P is an assignmentx (x, y) ~ { - ,  +} o f  a sign to  each pair o f  
elements x,  y e P satisfying x < y -< 1, i.e., a cocoatom x and a coatom y covering it. 
A coatom y is positive under X if  g (x, y)  = -t- for all its cocovers x ~ y (if P consists 
of  0 and 1 only, then 0 is its unique positive coatom). Any upper interval I = [z, 1] of  P 
inherits a signing from X by restriction. Since no confusion can occur, we use a signing 
X of  a poset P to denote also the inherited signing of  any upper interval of  P .  Thus, a 
coatom y e [z, 1] is positive in [z, 1] under X if X (x, y) = + for all z < x -< y. 

Definition 3.4. A signing X is exact if for every z < 1 in P there is a unique pos- 
itive coatom y under X in the interval [z, 1]. A poset is signable if it admits an exact 
signing. 

Note that any poset of  rank r ( P )  < 2 is signable. 
By a simplicialposet we mean the face lattice P = P ( A )  o f a  simplicial complex A, 

i.e., the poset of  faces of  A ordered by inclusion, augmented with a maximal element 1. 
The simplicial complex A can be recovered from P ( A )  by letting its vertex set be the 
set of  atoms of P ,  and, for each y < 1 in P ,  taking the corresponding face of  A to be 
the set of  all atoms x satisfying x < y. In particular, the coatoms of  P correspond to 
facets of  A, and the cocoatoms of  P correspond to ridges o f  A. Thus, a signing of  A as 
defined earlier can be identified with a signing of  its face lattice P in the obvious way. 
In particular, P ( A )  is signable if and only if A is partitionable. 

Remark .  The following partial analogue of  Proposition 3.1 holds for posets: if X is an 
exact signing of  a poset P ,  and each coatom y of  P is assigned the following union of  
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upper intervals of  P: 

~o(y) = {z < y: y is a positive coatom in [z, 1]} 

= {z < y: X(x, y) = + for all x such that z < x -~ y}, 

then the ~0(y) form a partition of  P \ {1}. Details are left to the reader. 

We now show that any shellable poset is signable; by a shellable poset we mean one 
which admits a recursive coatom ordering, e.g., the face lattice of  a shellable simplicial 
complex as defined earlier. Recall the following definition from [4]: 

Definition 3.5. A recursive coatom ordering of a poset P is a total ordering of its 
coatoms such that the following hold: 

(1) I f  z < y, y '  ~ 1 in P and y precedes y '  in the ordering, then an element  v e P 
and a coatom y" which also precedes y '  exist such that z < v -< y",  y ' .  

(2) For every coatom y in P,  there is a recursive coatom ordering of  the interval 
[(3, y] in which the coatoms of  [0, y] that come first are those that are covered by 
some y '  preceding y. 

Any total ordering of  the coatoms of a poset P naturally induces a signing of  P in 
the following way: for x -< y ~ 1 put X (x, y) = -t- if y is the first coatom covering x,  
and put X (x, y) = - otherwise. 

T h e o r e m  3.6. The signing induced by a recursive coatom ordering of a poset P is 
exact. Thus, shellable posets are signable. 

Proof. Let X be a signing of  P induced from a recursive coatom ordering. Let  z be any 
element of  P ,  which we may  assume to be of  corank at least 2. Let y be the first (under 
the coatom ordering) coatom in the interval [z, 1]. I f  y is not positive in [z, 1], then it has 
a cocover x in [z, 1 ] satisfying X (x, y) = - .  However, then the first coatom y '  covering 
x is different from y since X (x, y ' )  = + ,  and y '  is in [z, 1] and precedes y, contradicting 
the assumption that y is the first coatom in [z, 1]. Thus, y is a positive coatom in [z, 1]. 
Now consider any other coatom y '  in [z, 1]. By Definition 3.5 above, there is a coatom 
y" preceding yr and an element v in [z, 1] such that v ~ y",  y ' ;  but this means that y '  is 
not the first coatom covering v, so that X (v, y ' )  = - ,  hence y '  is not a positive coatom 
in [z, 1]. Thus, the first coatom in [z, 1] is the unique positive coatom in it, and X is an 
exact signing of  P.  [] 

The converse of Theorem 3.6 is false: for example, the triangulation of the real 
projective plane in Example  2.1 is partitionable but not shellable, so its face lattice is 
signable but does not admit a recursive coatom ordering. 

Recall that a polytopal complex is a finite collection of  polytopes in Euclidean space, 
which is closed under taking faces and intersections. It was shown by Bj t rner  and Wachs 
[4] that a polytopat complex is shellable if and only if its face lattice is a shellable poset, 
i.e., admits a recursive coatom ordering (see [4] for more details). We therefore have the 
following corollary. 

Coro l la ry  3.7. Face lattices of shellable polytopal complexes are signable. 
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4. The Upper-Bound Property and Signability of Polyhedral Fans 

In the first part of this section we introduce some tools that enable systematic proofs of  
signability, and of the upper-bound property in the simplicial case. First, we set up the 
framework of a signed family, which allows a systematic proof of  signability. Second, 
we show that i fa  signable simplicial complex has a rich enough supply of exact signings, 
then it possesses the upper-bound property (Theorem 4.4). We demonstrate these notions 
on matroid complexes. 

In the second part of this section we use these tools to show that face lattices of 
polyhedral fans are signable. This extends the results of  [9] for the simplicial case. The 
upper-bound property for fans then follows from Theorem 4.4. In the next section we 
apply the same tools to oriented matroid polytopes. 

A signedposet is a pair (P,  ~() consisting of a poset P equipped with a signing ~( of 
P. Since no confusion can occur, we are usually somewhat sloppy about the distinction 
between a signed poset and its "underlying unsigned poset," and refer to P both as the 
poset and the signed poset. The signed upper interval of an element z in a signed poset 
P is the signed poset [z, 1] equipped with the signing of [z, 1] inherited from the signing 
X of P. The isomorphism of signed posets is defined in the obvious way, namely it is a 
signing preserving poset isomorphism. 

Definition 4.1. A signed family is a family 79 of signed posets which is closed under 
taking signed upper intervals. A signed family 79 is exact if for every P 6 79 there is a 
unique coatom in P which is positive under the signing X of P. 

Note that a signed family may include several copies of  the same poset, equipped 
with different signings, 

Proposition 4.2. Let 79 be an exact signed family. Then the signing X of every P ~ 79 
is exact. In particular, all posets in 79 are signable. 

Proof. Let 7 9 be an exact signed family and let P be a member of 79 with signing X. 
Let z be any element of P. Then the signed upper interval [z, 1] is in 79, so [z, 1] has a 
unique positive coatom under X. Thus, by definition, X is an exact signing of P. I-q 

We illustrate the use of signed families on complexes of independent sets in a matroid. 
See [1] and [2] for more information on such complexes. 

Example  4.3 (Matroid Complexes). Given a matroid M, its matroid complex is the 
simplicial complex A = A(M) of independent sets in M, and its face lattice is the face 
lattice P (M) = P (A) of A. The facets of A are the bases of  M; each ridge R 6 A spans 
a hyperplane of M (a flat of  M of corank 1), whose complement in M is the unique 
cocycle D in M which is disjoint from R. Moreover, a subset R + v is a facet of A if and 
only if v 6 D. If  M is equipped with a total order of its elements, then it is an ordered 
matroid (see [2]). We endow the face lattice P = P(M)  of an ordered matroid M with 
a signing X = X (M), thus turning it into a signed poset, as follows: for a ridge R 6 P 
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set X (R, R + v) to be positive if v is the minimal (under the total order of  M) element 
in the unique cocycle D of M disjoint from R, and negative otherwise. 

Let 7 ~ be the family of signed posets of ordered matroids. Consider any P = P (M) 
7 9, where M is an ordered matroid. Let G ~ P be any face (independent set of M). Let 
M/G be the contracted matroid, totally ordered by restriction from M. Then its signed 
poset P(M/G) is a member of 79, and is easily seen to be isomorphic to the signed 
upper interval of G in P. Thus, 7 9 is a signed family. It is not too hard either to show 
that, for any member P = P(M) ~ 79, the facet of P (basis of M) which is smallest in 
the lexicographic order induced by the total order on the elements of M, is the unique 
positive facet in P under X (M). Thus, 7 ~ is an exact signed family. It follows from 
Proposition 4.2 that all matroid complexes are signable. 

We next proceed to the upper-bound property in the simplicial case. Call a simplicial 
complex A, and its face lattice P(A) ,  totally signable or totally partitionable, if for 
every vertex v ~ A an exact signing go of A exists such that v is positive in all facets 
containing it. Equivalently, for every v an exact facing ~0v exists such that v ~ ~Ov (F) for all 
facets F e A. The following theorem provides a rather general sufficient condition for a 
partitionable simplicial complex to possess the upper-bound property. We thank a referee 
for the present formulation of this theorem which simplifies our original formulation. 

Theorem 4.4. If A is a totally signable simplicial complex, then it possesses the upper- 
bound property. 

Proof. The proof is an extension of McMullen's proof for simplicial convex polytopes 
[ 13]. Let A be a d-dimensional totally signable simplicial complex with n = f~ vertices. 
Recall (Proposition 3.1) that any exact signing X of A induces an exact facing of A given 
by 

~o(F) = ('~{R C F: Rridge, x(R, F) = +}, 

and (Proposition 2.2) the h-vector of A is given by 

h i = l { F e A : F f a c e t ,  dim~o(F) = i}1, i = 0  . . . . .  d. 

In particular, the right-hand side is independent of X and ~o. 
Note that h0 = 1 and hi ----- n - d, so that the upper-bound property which needs to 

be proved is 

hk < (  n - d + k - 1  ) 
- -  k , k = 0  . . . . .  d .  

For each vertex v of A, write hi (v) for hi (lkA (v)). We prove the following two relations 
for i = 0 . . . . .  d - 1: 

hi (v) < hi for all vertices v of A, (1) 

E hi(v) = (i + 1)hi+l "4- (d - i)hi. (2) 
v E vert 
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The upper-bound property is then proved by applying (1) and (2) successively as follows: 

( - - ) ( n - d + k - 1 ) ( n - d + k - 2 ) h k _ 2  n d + k  1 hk-1 < < hk < ... 
- k - k ( k  - 1 )  - 

< (n-d+k-1)(n-d+k-2)k(k_l) ""~(n-d)h~ ( n - d + k - 1  ) =  k ' 

k = l  . . . . .  d. 

To prove (1) we choose for v an exact signing ;( o f  A under which v is positive in all 
facets containing it. Such a signing exists by our assumption and its choice does not 
change hi (v) and hi. Let F be a facet containing v. Now the facing ~o of  A is given 
by 

~o(F) = A { R  C F :  R ridge, x(R, F)  = +}, 

and the facing ~oo of  lk,x(v) (coming from the signing of  lka(v)  inherited from X) is 
given by 

~o(F - v) = ~'~{R -- v C F -- v: R ridge containing v, X (R, F)  = +}; 

as x(F- -  v , F )  = + ,  we find that ~ov(F-- v) = ~o(F). It follows that if  F -  v 
contributes to hi(v), i.e. dim~oo(F - v) = i, then F also contributes to h i. This 
proves (1). 

To prove (2), let ;( be any exact signing of  A. Then a facet which contributes 
to hi has d - i positive ridges and hence d - i vertices for which it contributes 
to 

hi(v) 
vEvcr'~ A 

via the facet F - v of  lka(v) ;  and a facet which contributes to hi+l has i + 1 negative 
vertices for which it contributes to 

E hi(v). 
r e v e r t  A 

As there are no other types of  facets contributing to the left-hand side o f  (2), this com- 
pletes the proof of  (2) and the proof  of  the theorem. []  

We apply this theorem to the example of  matroid complexes. 

Example  4.4 (continued). We want to show that matroid complexes are totally signable. 
Let M be a matroid and let A = A ( M )  be its matroid complex. Let v be any vertex of  
A (an element of  M). Choose a total order on the elements o f  M under which v is the 
minimal element. Let ;(~ = ;((M) be the exact signing of  the face lattice P = P(M) of  
the ordered matroid M as defined earlier. Then it is easy to see that v is positive under 
Xo in all facets of  P (bases of  M) which contain it. It follows that all matroid complexes 
are totally signable, and so, by Theorem 4.4, possess the upper-bound property. 
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Next, we turn to establish the signability of polyhedral cone fans. A fan in Euclidean 
space IRa is a finite collection ,.q of pointed polyhedral cones which is closed under 
taking faces and intersections, and which covers IRd. The face lattice P (S) of the fan 
is the lattice of cones ordered by inclusion and augmented with a maximal element 1. 
Thus, the coatoms (or facets) are the d-dimensional cones, the cocoatoms (or ridges) are 
their (d - 1)-dimensional faces, the atoms (or vertices) are the one-dimensional cones 
(rays) and so on. A fan can alternatively be regarded as a spherical polytope, namely a 
realization of a complex on the unit sphere S d-l, where all cells are spherical cells and 
their union covers S d-1 (a spherical cell is the intersection S d-I N C of the sphere and a 
pointed polyhedral cone in IRd). 

Each convex polytope K in 1R a gives rise to a special fan, its normal fan, whose cones 
are in 1-1 correspondence with faces of K, where the cone corresponding to a face G 
consists of those vectors w e IRd for which the maximal value of the linear functiofi 
(w, -) over K is attained at G. The face lattice of  a convex polytope K is isomorphic to 
the face lattice of the normal fan of its polar polytope K*. However, not all fans arise that 
way, so face lattices of fans strictly include face lattices of  convex polytopes. In contrast 
with the common belief that fans are not shellable in general [ 12], we have the following 
theorem. 

Theorem 4.5. Face lattices of fans are signable. 

Proof. Let S be a fan in 1R a. Pick a vector g e IRa in general position with respect S, 
so that g does not lie in the linear span lin(R) of any ridge R of S. We endow the face 
lattice P = P(S)  of $ with a signing X = X (S), thus turning it into a signed poset, as 
follows. Consider cones R ~ F -< 1, and let H be the hyperplane lin(R). All points in 
F - R lie on one side of H.  Put X (R, F) = + if the vector g and F - R lie on the same 
side of H,  and X (R, F) = - if H separates g from F - R. 

Let 7> be the family of signed face lattices of  fans as above. We now show that 7 9 
is an exact signed family: upper intervals correspond to orthogonal projections, and the 
unique positive cone in a fan ,5 under the signing induced from g is the one containing g. 

Indeed, let S be a fan equipped with a vector g as above, and let P (S) e 79 be the 
corresponding signed face lattice of S. Let [z, 1 ] be a strict signed upper interval in P (S). 
In the space IRa where S is embedded, consider the linear span Z of the face (cone) of,S 
corresponding to z and let Z • be its orthogonal complement. Project all faces (cones) of  
,S in [z, 1] on Z • This induces a fan S '  in Z J- whose face lattice P(S') is isomorphic to 
the poset [z, 1]. Projecting g on Z • as well, we obtain a vector g'  which (after mapping 
Z • to IRk by an isometry) induces a signing of P(S')  which makes it isomorphic to the 
signed interval [z, 1 ]. This simply follows from the fact that the property of being on the 
same side as g of a hyperplane spanned by the vertices o f  a ridge R in ,S and the origin 
is preserved for the images of ridges and for g '  under the projection and the isometry. 
Thus, the family of signed face lattices of fans is a signed family. 

Finally, it is easy to see that each such signed poset P (S) e 79 has a unique facet 
(maximal cone) F -~ 1 such that X (R, F) is positive for all ridges R C F: it is the 
unique cone of ,S containing the vector g. Hence 79 is an exact family. By Proposition 
4.2 fans are signable. [] 
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We conclude with the following result proved previously in [9]. The proof  below is 
an easy consequence of  our Theorems 4.4 and 4.5. Here it is more convenient to use 
the realization of  a fan S as a spherical polytope, so that its faces are the intersections 
C (3 S d-I of  the various cones C with the unit sphere rather than the cones themselves. 
In particular, the vertices (atoms) are points on S d-1. 

Corollary 4.6. Simplicial fans are partitionable and possess the upper-bound property. 

Proof. The claim about partitionability follows from the previous theorem. We need to 
show that simplicial fans are totally signable. Let S be a fan and let P = P(,.q) be its face 
lattice. Let v be any vertex of  P ,  which is a point v �9 S d-1. Choose a point g on S d-1 
in general position with respect to S ,  and sufficiently near to v, such that the hyperplane 
through g and orthogonal to lin(v) intersects only those facets of  S (intersections of  
S d-I with the full-dimensional cones) which contain v. Let X, be the resulting exact 
signing of  P (S). Consider any facet F containing v. Then, by the choice o f  g, we have 
z o ( F  -- v, F )  = + .  Hence v is positive in all facets containing it. Thus, simplicial fans 
are totally signable, and so, by Theorem 4.4, possess the upper-bound property. [] 

5. Signability of  Oriented Matroid Polytopes 

We now consider (so-called Las Vergnas) face lattices of  oriented matroid polytopes. 
This is a large class which strictly contains the class o f  convex polytopes. It is believed 
that, in general, such face lattices are not shellable. In contrast, using the setup of  the 
previous section, we prove that face lattices of  oriented matroid polytopes are signable. 
In particular, we conclude that simplicial oriented matroid polytopes are partitionable 
and possess the upper bound property. We start with a quick review of  some definitions 
and elementary properties of  oriented matroids which will be needed in what follows. A 
comprehensive treatment of  the subject can be found in [3]. 

An oriented matroid M is a finite matroid having the following additional structure. 
Each circuit C is endowed with a unique unordered partition C = C + ~ C -  such that 
the following holds: if C1 and C2 are two distinct circuits with partitions C1 = C~- ~ C~- 
and C2 = C~- ~J C 2 ,  and v �9 C1 + N C 2 ,  then there is a circuit C = C + ~ C -  satisfying 
C + _c C + U C + - v and C -  _ C~- t_J C~- - v. The circuit C is said to be obtained from C1 
and Ca by eliminating v. It is known that, moreover, for any u �9 (C + - C2)  t3 (C~- - C +) 
there is a circuit C as above that contains u.For each oriented matroid M there is a 
unique oriented matroid M* on the same element set, called the dual of  M, such that the 
following so-called orthogonality condition holds: a circuit C = C + ~ C -  of  M and a 
circuit D = D + ~ D  - of  M* (a cocircuit of M)  satisfy ( C + f l D + ) U ( C - M D  - )  5~ 0 i f  and 
only if (C + N D - )  U ( C -  M D +) ~ 0. Naturally, M** = M, and the underlying matroids 
of  M and M* are dual to each other as (nonoriented) matroids as well. Note that, in 
particular, the onhogonali ty condition implies that, in the underlying matroids, if  a circuit 
of  M and a circuit of  M* (a cocircuit of  M) intersect, then they have at least two elements 
in common. The deletion of M by a subset E o f  elements in M is the oriented matroid 
M - E whose circuits are the circuits in M which do not intersect E. The cocircuits of  
M -- E are the minimal nonempty sets of  the form D -- E, where D is a cocircuit of  M. 
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If  D = D + ~ D -  is a cocircuit of  M and D - E is a cocircuit o f  M - E (which is always 
the case if E _ D), then its partition in M - E is D - E = (D + - E) ~ ( D -  - E). 
The contraction of  M by E is the oriented matroid M / E  = (M* - E)*. The oriented 
matroid inherits the rank function r of  its underlying matroid. Af la t  in M is a subset G 
of  M such that r (G + e) > r (G) for any element e r G of  M. The intersection of  fiats is 
again a flat. The corank of a subset G of  M is r (M) - r (G). A hyperplane is a fiat of  M 
of  corank 1. Note that a subset of  M is a hyperplane if and only if its complement in M 
is a cocircuit. A circuit C of  an oriented matroid is positive if its partition is C = C + ~ ~. 
An oriented matroid is acyclic if it has no positive circuit. The deletion M - E by any 
subset E of  elements of  an acyclic M is also acyclic. 

A facet of  an acyclic oriented matroid M is the complement in M of a positive cocircuit 
D of  M, and is in particular a hyperplane of  M. A face of  M is any intersection of  facets, 
and is in particular a flat. A ridge of M is a face of  corank 2, and is the intersection of  two 
distinct facets of  M. The collection of  faces of  an acyclic oriented matroid M is called 
the oriented matroid polytope of M, or the face lattice of  the oriented matroid polytope 
(in [3] it is referred to as the Las Vergnasface lattice of  M), and is denoted by P(M) .  
We regard P(M)  both as a collection of  subsets of  M and as the poset of  these sets 
ordered by inclusion and augmented with a maximal element 1. Every oriented matroid 
polytope has a geometric realization as a piecewise linear sphere (see [3] for more on 
such topological representations). We adopt instead the point of  view of  a "generalized 
point configuration," motivated by the following example. 

Example  5.1 (Point Configurations). Let S be a finite set of  points in real affine space 
IR a. Then the collection of  inclusion minimal affinely dependent subsets of  S is the 
collection of  circuits of a matroid on S. Endowing each circuit with the unique Radon 
partition associated with its affine dependency, an acyclic oriented matroid M is obtained: 
the afline oriented matroid of the point configuration S. It is known [10] that a subset 
F of  S is a face of  M if and only if it is the intersection o f  S with some hyperplane 
supporting cony(S) in R d. In particular, P (M) equals the face lattice of  conv(S). 

We need the following two properties of  acyclic oriented matroids. The proofs are 
provided in the Appendix. 

Proposition 5.2. Let M be an acyclic oriented matroid and let G ~ P (M) be a face 
of  M. Then the contracted matroid M / G is again an acyclic oriented matroid, and its 
face lattice is P ( M / G )  = {H - G: G C H E P(M)}  which is the upperinterval of G 
in P(M) .  

Proposition 5.3. Let M be an acyclic oriented matroid, let F be a facet o f  M,  and let 
G C F be aflat o f M  ofcorank 2. Let H be any hyperplane of  M satisfying H fq F = G, 
and let B = B + ~ B -  be its complementing cocircuit. Then all elements of  F -- G lie 
in the same part of  B if  and only if  G is a ridge of  M. 

An element e in a matroid M is generic if r (S q- e) = r (S) -t- 1 whenever S is a subset 
of  M of positive corank. If  G is any flat of  M of  corank at least 2 and e is a generic point, 



456 P. Kleinschmidt and S. Orm 

then G + e is also a flat: for all v 9( (G + e) we have 

r((G + e) + v) = r((G + v) + e) = r(G + v) + 1 = (r(G) + 1) + 1 = r(G + e) + 1. 

Also, if  C is a circuit containing a generic element e, then C is necessarily of  full rank. 
An element e is an interior point in M if it is not contained in any face of  M (equivalently, 
it is contained in all positive cocircuits o f  M). A rooted matroid is an acyclic oriented 
matroid M with two distinguished elements x,  y which are both generic and interior in 
M. We endow the face lattice P(M)  of  a rooted matroid M with a signing g = X (M), 
thus turning it into a signed poset, as follows. Let x and y be the distinguished elements 
of  M and consider a facet F of  M and a ridge R contained in it. Since x, y are generic and 
interior we have that x,  y 9( R and H = R + y is a hyperplane of  M. Let B = B + ~ B -  
be the cocircuit complementing H with x ~ B +. Define g (R, F )  = + if F -- R c B + 
and X (R, F)  = - if F - R _c B - .  Proposition 5.3 above guarantees that X is well 
defined. 

Let 79 be the family of  signed face lattices of  rooted matroids. We now prove a 
sequence of  three lemmas which will establish that 79 is an exact signed family. 

Lemma 5.4. The family 79 of  signed face lattices of  rooted matroids is a signed family. 

Proof Let P (M) ~ 79 be any signed face lattice of  a rooted matroid M with distin- 
guished elements x,  y, and let X (M) be its signing as above. Let G be any face o f  P (M), 
and let L = M~ G be the contracted oriented matroid. The elements x,  y are easily seen 
to be generic in L as well; moreover, the cocircuits of  L are exactly those cocircuits 
D of  M satisfying D fl G = 0, so all positive cocircuits of  L contain x and y, which 
are therefore interior in L as well. Thus, L is again a rooted matroid with distinguished 
elements x,  y, with signed face lattice P(L)  ~ 79. Let x ( L )  be the signing of  P(L) .  

By Proposition 5.2, P(L)  = { H -  G: G c_ H ~ P(M)}  is the upper interval [G, 1] o f  
P (M). Let F -  G be any facet o f  L and let R -- G be a ridge of  F -  G, where F is a facet of  
M containing G, and R is a ridge of  F containing G. The complementing cocircuit B of  
(R -- G ) + y in L is also the complement of  R + y in M. Also, (F  - G) - (R - G ) = F -  R. 
Thus, x and F - R lie on the same part o f  the partition of  B in M if and only if x and 
(F  - G) - (R -- G) lie on the same part o f  the partition of  B in L, which implies that 
x ( L ) ( R  - G, F -- G) = x ( M ) ( R ,  F). Thus, P(L)  is the signed upper interval [G, 1] 
of  P(M).  Therefore the family 79 is closed under taking signed upper intervals, hence 
is a signed family. []  

We head on to prove that the family 7 9 above is exact. We need the following fun- 
damental coloring theorem (Farkas' lemma type) of  oriented matroids due to Lawrence 
and Bland [3, Theorem 10.2.14]. 

Proposition 5.5. Let M be an oriented matroid and let x, y be two distinct elements 
of M such that x is not a loop and y is not a coloop. Then exactly one of the following 
alternatives holds: 

1. There is a positive circuit C = C + containing x but not y, or a positive cocircuit 
D = D + containing y but not x. 
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2. A circuit C = C + ~ C -  and a cocircuit D = D + ~ D -  exist such that y E C +, 
C -  c {x}, x E D +, D -  __. {y}, and C n D c_ {x, y}. 

From this, we derive the following 1emma. 

L e m r n a  5.6. Let M be an acyclic oriented matroid with a generic element x,  and let 
y be another element such that x is contained in all positive cocircuits which contain y. 
Then a unique positive cocircuit D in M exists f o r  which there is a circuit C = C + ~ {x} 
satisfying C n D = {x, y}. 

Proof. Since M is acyclic, x is not a loop. Since x is in all positive cocircuits  containing 
y, y is not a coloop. Thus, the hypothesis  of  Proposi t ion 5.5 holds, and the first alternative 
fails. Therefore the second alternative holds, so a circuit  C = C + ~ C -  and a cocircuit  
D =  D + ~ D - e x i s t s u c h t h a t y  E C  +, C -  _C {x}, x E D + , D - _ C  { y } , a n d C n D _  
{x, y}. Since M is acyclic and y E C +, we must  have x E C - ,  so x E C -  n D +. By 
orthogonality,  then, since C -  N D -  = 0, we must  have y e C + O D +. Thus, D -  = 0 
and C n D = {x, y}, so C and D satisfy the claim of  the lemma. 

Next, note that C contains the generic element  x ,  hence is of  full rank r (C) = r (M) = 
r .  Assume,  indirectly, that another posit ive cocircuit  B = B+, and a circuit  A = A + ~ {x} 
satisfying A n B = {x, y}, exist. Let  F be the complement  of  D in M. Both F and the 
complement  of  B are flats of  rank r --  1, so F --  B is a flat of  corank at least 2. Therefore 
it does not  contain C - {x, y}, which is an independent  set of  rank r - 1, so an e lement  
v E (C - {x, y}) O ( F  O B) exists. Thus, v E (C + O B +) - D +. El iminat ing x from the 
pair  of  cocircuits B + ~ 0 and ~ ~ D + and keeping v, we find a cocircuit  S ----- S § ~ S -  
such that x r S, v E S + _ B +, and S -  c D +. Now, v E S + n C § so by orthogonality,  
since C -  = {x} and x r S, we must have S -  n C + ~ 0. However, S -  _c D + and 
D + I"1 C + = {y}, so y E S - .  Thus, y E S -  n A +, so by orthogonali ty of  A and S we 
must have S + n A + ~ I~. Nonetheless,  S + c B + and B + n A § = {y}, yet  y r S +. 
Thus, S + n A + = ~, which is the desired contradiction. []  

L e m m a  5.7. The signed face lattice P ( M)  of  any rooted matroid M contains a unique 
facet  which is positive under its signing X (M).  

Proof. Let  x ,  y be the distinguished elements of  M,  and let X = X (M).  Let  F be any 
facet o f  M and let D be its complement ing posi t ive cocircuit.  Since x,  y are generic,  
the circuits satisfying C N D = {x, y} are exactly those sets C = 1 U {x, y} with I 
being a basis of  F .  Pick such a basis I of  F and the corresponding circuit  C, and write 
C = C + ~ C -  with x E C - .  By orthogonality, y E C +. 

Let  R be any r idge contained in F .  Since R is a flat of  corank 2, we have that 
I - R ~ 0. Let  B be the cocircuit o f  M complement ing the hyperplane R + y, and write 
B = B + ~ B - w i t h x  E B + , s o t h a t x  E B + n C - . N o t e t h a t B N C =  ( l - - R ) + x .  
By Proposit ion 5.3 and the definition of  X fol lowing it, either I - R c_ B +, in which 
case X (R, F )  = + ,  or I - R c B -  in which case X (R, F )  = - .  In the second case, 
(1 - R) O C -  # 0 by orthogonality of  B and C, so C -  # {x}. Therefore, C = C + ~ {x} 
only i f  ~( (R, F )  = + for all r idges R C F ,  i.e., i f  F is a positive facet under  ~(. Now, M 
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satisfies the hypothesis  of  Lemma 5.6 since x is an interior  point. Therefore a cocircuit  
D = D + and a circuit  C = C + t~ {x} satisfying C O D = {x, y} exist,  and we conclude 
that M has at least  one posit ive facet  under X. 

We proceed to show that i f  F is a positive facet, then its complement ing  cocircuit  D 
admits  a circuit C = C + ty {x} sat isfying D n C = {x, y}. The uniqueness o f  F fol lows 
from the uniqueness part of  L e m m a  5.6. Let  then F be a posit ive facet with complement  
D,  put S = D - {x, y}, and consider  the deleted acyclic matroid N = M -- S, whose 
e lement  set is F U {x, y}. First, note that the points x ,  y remain generic in N.  Also,  
{x, y} = D - S is a positive cocircuit  in N,  so F remains  a facet (and a hyperplane)  
in N.  Next, consider  any r idge R o f  F in M and let B = B + ~ B -  be the cocircuit  of  
M c o m p l e m e n t i n g R + y ,  w i t h x  6 B + . T h e n S  C B, s o ( F - - R ) + x  = B - - S  = 
(B + - S) ~ ( B -  - S) is a cocircuit  in N.  Since F is a posit ive facet, we have (Proposi t ion 
5.3 and the definition of  X) that F - R C B +. Therefore ( F  --  R) + x is a posit ive 
cocircuit  in N (and its complement  R + y is a facet of  N).  

We now show that no hyperplane o f  N containing x but not y is a facet o f  N.  Let  H be 
such a hyperplane,  and let G = H O F = H - x be the corresponding fiat of  corank 2. I f  
G is not a r idge o f  N,  then, by Proposi t ion 5.3, both parts of  the cocircui t  complement ing  
H in N intersect F ,  so this cocircuit  is not positive and H is not a facet. Suppose then that 
G is a r idge o f  N.  Eliminating x f rom the pair  of  positive cocircuits ( ( F --  G ) + x ) t~ 0 and 
0 tY {x, y}, and keeping y, a cocircuit  B = B + ~ {y} is obtained, with 0 ~ B + c ( F -  G).  
However,  then B _c ( F  --  G) + y which is the cocircuit  complement ing  H in N,  so 
that in fact this cocircuit  equals B, which is not  positive. Hence, once again, H is not a 
facet of  N.  We conclude that x belongs to all positive cocircuits of  N which contain y. 
Apply ing  Lemma 5.6 to N,  we find a circuit C = C + ~J {x} containing {x, y}. However,  
then this is a circuit of  M as well,  which intersects the complement  D of  F in {x, y}, as 
desired. This completes  the proof. []  

Lemmas  5.7 and 5.4 finally yield the fol lowing result. 

Theorem 5.8. The fami ly  79 o f  s igned face  lattices o f  rooted matroids is an exact signed 

family.  

We now show that any matroid polytope arises as the face lat t ice of  some rooted 
matroid.  For  that, we need to discuss some material  about extensions. An  extension of  an 
oriented matroid M is an oriented matroid M '  = M U E,  where E is a new set of  elements,  
such that the original matroid is the delet ion M = M '  - E of  M' .  I f  E ---- {e} consists of  
one element,  then M '  is a single element  extension o f M .  I f M '  = M + e  is an extension of  
M and D '  = D '+ ~ D ' -  is a cocircuit  of  M '  with e 6 D '+, then D '  - e = (D '+ - e) tY D ' -  
is a cocircuit  of  M. The following fundamental  theorem on extensions due to Las Vergnas 
[3, Proposit ion 7.2.4] provides a certain converse of  that fact. 

Proposition 5.9. Let (1)  1 . . . . .  O r )  be an ordered basis o f  M and let (el . . . . .  er) 
{_,  +}r be an ordered tuple o f  signs. Then there is a unique single element  extension 
M (vEI, , . . Er M'  D + . ,  1) r ) = = M + e o f  M f o r  which the fo l lowing holds: i f  D = ~ D -  
is a cocircuit o f  M and vi E D ~' , where i is the smallest  index such that vi ~ D, then 
D + e = (D + + e) t9 D -  is a cocircuit  o f  M' .  
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The following proposition is an easy consequence of Proposition 5.9. We thank 
G. Ziegler for pointing it out. 

Proposition 5.10. Let M be an acyclic oriented matroid, let (vl . . . . .  vr) be any 
ordered basis o f  M,  and let M '  = M ( v  + . . . . .  v +) = M + e be the corresponding 
single element extension. Then M '  and M have the same rank, e is a generic and 
interior point  in M' ,  and P ( M ' )  = P ( M ) .  

We can finally establish the main theorem of this section. 

Theorem 5.11. Face lattices o f  oriented matroid polytopes are signable. 

Proof. Let  M be an acyclic oriented matroid. Pick an ordered basis (vl . . . .  , or) of M 
and let M '  = M + y = M ( v  + . . . . .  v+). Then (Vl . . . . .  Vr) is an ordered basis of M'  as 
well. Let M" = M'  + x = M ' ( v  + . . . . .  v+). Thus, M" is obtained from M by taking 
twice the single element extension with respect to (v + . . . . .  v+). By Proposition 5.10, 
M" and M have the same oriented matroid polytope P ( M " )  = P(M),  and x and y are 
generic interior points in M". Thus, M" is a rooted matroid, and by Theorems 5.8 and 
4.2, its face lattice, which equals the face lattice of M, is signable, [] 

Remark.  If  F is any facet in P (M), {vl . . . . .  Vr-l} any basis of F, and 1) r any element 
outside of F, then taking the two-element extension M" with respect to the ordered basis 
(Vl . . . . .  vr) as above, we find that F itself will be the unique positive facet in the exact 
signing of P (M) = P (M") coming from the signed face lattice of the rooted matroid M". 

We end this section with the upper-bound property for simplicial oriented matroid 
polytopes. 

Theorem 5.12. Simplicial oriented matroid polytopes are partitionable and possess  
the upper-bound property. 

Proof. Let M be a simplicial oriented matroid polytope, i.e., one whose face collec- 
tion P (M) is a simplicial complex A (M). The claim about partitionability follows from 
Theorem 5.11. We need to show that A(M) is totally signable. Let v be any vertex of 
A(M). Endow M with an ordered basis (vl . . . . .  Vr) in which v = Vl is the first element, 
and l e t M ' = M + y = M ( v  + . . . . .  v + ) a n d  M "  = M '  + x  = M ' ( v  + . . . . .  v +) b e t h e  
corresponding extensions. Then M" is a rooted matroid which has the same simplicial 
oriented matroid polytope A(M") = A(M) as M. Let Xv = X (M") be the resulting 
exact signing of A(M) = A(M").  Let F be any facet containing v, and let R = F -- v. 
Let D'  be the cocircuit of M'  which is the complement of the hyperplane spanned by 
R + y in M',  and write D'  = D '+ ~ D ' -  with v = vl ~ D '+. Then, by Proposition 5.9, 
D" = D'  + x = (D '+ + x )  ~ D ' -  is the cocircuit of  M" which is the complement of  
the hyperplane spanned by R + y in M". Therefore both v and x lie in D "+, and so R 
is a positive ridge (and v a positive vertex) of F by definition of the signing Xv. Hence 
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v is positive in all facets containing it. Thus, simplicial oriented matroid polytopes are 
totally signable, and so by Theorem 4.4 possess the upper-bound property. [] 

6. Notes on Computational Complexity and Face Enumeration 

In this section we discuss the computational complexity of face enumeration and of de- 
ciding shellability and partitionability, and raise a few questions. Here all data is assumed 
to consist of rational numbers. 

The following result of Linial [11] shows that, in general, enumeration of faces in 
a given complex, or elements in a poser, is computationally hard. We provide a short 
proof by direct reduction from Valiant's canonical #P-complete problem of comput- 
ing the permanent of a {0, 1}-valued matrix (the permanent of an n by n matrix A is 
perm(A) - :  ~,~r ]-]inl Ai,zrfi), the sum extending over all permutations zr on [n]). 

Proposition 6.1. Counting the number of vertices of a rational polytope {x: Ax < b} 
given as an intersection of half-spaces is #79-complete. 

Proof The problem is easily seen to be in #7 9. Let A be a {0, 1 }-valued matrix of size 
n, the permanent of which is to be computed. Let 

P =  X E ]l~nxn : X i , j  >~ O, X i , j  = Xi , j  ~- l ,  l < i, j < n 

"= j = l  

be the Birkhoff polytope of bistochastic n by n matrices. Since, as is well known, the 
vertices of P are precisely the permutation matrices, it follows that 

perm(A) = f] ( e  fq {X: (A, X) = n}), 

that is, the permanent of A is given by the number of vertices of a suitable face of 
Birkhoff's polytope. [] 

However, in the simplicial situation, things are better behaved, and signability can 
be used to compute face numbers, as we now demonstrate. Let ~" and ~ be finite sets 
representing facets and ridges, respectively, of a simplicial complex. Let 

X : 7 ~ x ~ "  ~ { - , 0 , + }  

be an extended signing: X (R, F)  5k 0 means that the ridge R 6 7"~ is covered by the 
facet F 6 ~', in which case X gives the sign of R in F. Note that .T', 7-~, and X can be 
encoded in a number of bits proportional to the number 17Zl �9 I~- I  of ridge-facet pairs. 

Lemma 6.2. There is a polynomial-time algorithm that, given d ~ N, finite sets 7"~ 
and ~ ,  and an extended signing X on ~ • ~ ,  computes a vector f = (fo . . . . .  fa) for 
which the following holds: if A is a simplicial complex of combinatorial dimension d 
whose sets of  facets and ridges could be put in bijections with ~ and ~ ,  respectively, 
and which admits an exact signing which agrees with X under these bijections, then f 
is the f-vector of  A. 
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Proof. From X, compute an h-vector h = (h0 . . . . .  ha) as described in Proposition 3.2, 
and apply the linear transformation to get an f-vector. I f  A satisfies the hypothesis of 
the lemma, then this computed h-vector, hence f-vector,  equals those of A. [] 

In many situations a natural, say geometric, presentation of a simplicial complex can 
be used to produce, in polynomial time, sets ~- and R and exact signing X as above, from 
which the face numbers can be computed via Lemma 6.2. As an example, we outline a 
proof of the following known fact, which stands in contrast with Proposition 6.1 above. 

Proposition 6.3. It is possible to compute in polynomial time all face numbers of a 
simplicial convex polytope K = {x: Ax <_ b} given as an intersection of half-spaces. 

Proof. It is possible, in polynomial time (using linear programming techniques), to 
check whether K is nonempty, and if it is, transform it to an affinely equivalent polytope 

K = {x: aix  <_ bi, i = 1 . . . . .  m} 

of full affine dimension d > 0, such that F/ = K n {x: aix = bi} is a facet of K for 
i = 1 . . . . .  m. The ridges are then determined as those intersections Ri, j = F i n Fj 
of affine dimension d -- 2. Thus, the sets j r  and ~ and the covering relations R -~ F 
are determined. Next, a vector g ~ Qa can be computed that totally orders the facets 
by the value (g, ai). This total order is a so-called line shelling of K. Therefore, by 
Theorem 3.6, the signing X induced by this total order is exact. Lemma 6.2 now assures 
the efficient computability of the face numbers of K. [] 

The signability of fans and oriented matroid polytopes also leads to efficient face 
enumeration in the simplicial case, under a suitable presentation of the object in ques- 
tion. We have the following result for fans, which extends the previous proposition. The 
analogous outcome for oriented matroid polytopes is omitted. 

Theorem 6.4. It is possible to compute in polynomial time all face numbers of 
a simplicial fan ,.q presented by the collection of its simplicial maximal cones  Ki --~ 

{X: Aix <_ bi}, i ---- 1 . . . . .  m. 

Proof. The collection ~ of facets of S is simply .7 r = {K1 . . . . .  Kin}. The ridges are 
obtained as those intersections Ri,j = Ki n Kj  of affine dimension d - 1. A vector 
g E Qd can be computed that does not lie in the linear span of any ridge, from which 
a signing X is determined which by Theorem 4.5 is guaranteed to be exact. The face 
numbers of S are then obtained via Lemma 6.2. [] 

We now turn to discuss the complexity of deciding shellability and partitionabil- 
ity. Here we assume a (pure) d-dimensional simplicial complex to have the vertex set 
[m] = { 1 . . . . .  m} and to be presented as a list F1 . . . . .  Fn of d-subsets of [m] constituting 
its facets. Thus, the input size for computational complexity estimates can be taken as nd. 
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Both shellability and partitionability are in the complexity class.A/'7 9. Given a shellable 
simplicial complex, a shelling total order of its facets can be exhibited. Directly follow- 
ing the definition of a shelling in Section 2, it is possible to verify efficiently that this is 
a shelling (namely in time polynomial in nd). Given a partitionable simplicial complex, 
an exact facing ~0 can be exhibited. To verify that it is exact, it is necessary to check that 
each face G e A is covered, namely satisfies ~0(F) c_ G c_ F, by exactly one facet 
F of A. As shown by Noble [14], this can be efficiently done in the following way: 
checking that each face is covered by at most one facet can be done by verifying that 
~o(F) O ~o(F') ~ F n F '  for all pairs F, F' of facets; checking that each face is covered 
by at least one facet can be done by verifying, for each facet F,  that the number of faces 
of F covered by the various facets of A equals 2 d. 

We point out the following interesting fact and question. Consider the complexity of 
the following decision problem: given a simplicial complex A presented as above, and 
a positive integer f presented in binary, does f equal the total number of faces of A? In 
other words, what is the complexity of deciding the set 

s = {(A, f ) :  f is the total number of faces of A}? 

When restricted to the class of partitionable simplicial complexes, this decision problem 
is in.A/P: there is an exact signing X which can be exhibited, from which the f -vec tor  of 
A, and hence the total number of faces, can be computed in polynomial time via Lemma 
6.2, and compared with the number f .  What is the complexity of this decision problem 
for an arbitrary simplicial complex? 

Next, we discuss the case of fixed dimension d. For our purposes, the input size in this 
case can be taken to be simply the number n of facets. Clearly, both d-partitionability 
and d-shellability are in .A/'79 for any d. For d < 2 both are decidable in polynomial 
time, the simplicial complexes in question being simply graphs. For any d > 4 the 
polynomial-time decidability is open. In dimension 3 (geometric dimension 2), if at- 
tention is restricted to pseudomanifolds, i.e., connected simplicial complexes in which 
every ridge is contained in either one or two facets, then the following result of Danaraj 
and Klee [5] is available. 

Proposition 6.5. Shellability of three-dimensional pseudomanifolds is polynomial- 
time decidable. 

The proof is based on the interesting fact, proved in [5], that any shellable three- 
dimensional pseudomanifold is in fact extendibly shellable, i.e., any partial shelling of 
it extends to a shelling. Thus, the following polynomial-time greedy-type algorithm de- 
cides shellability of such complexes: pick up facets of the given A in a greedy fashion, 
maintaining the property that the facets F1 . . . . .  Fk picked so far form a partial shelling. 
The next facet Fk+l can be taken to be any facet F not picked yet, which extends the 
partial shelling, i.e., satisfies the property that for all 1 < i < k there is an r < k such 
that F i n F c_ Fr N F and Fr n F is a ridge of A. The three-dimensional complex is 
shellable if and only if this algorithms terminates with a shelling. Note that in higher 
dimensions this algorithm may fail. 
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We conjecture that, in contrast, deciding whether a three-dimensional pseudomani- 
fold is partitionable is already A/P-complete. This would follow i fa  switching simplicial 
complex, which we now define, exists. We say that a facing ~o of a simplicial complex 
A is a Z-facing, where E is a subcomplex of A, if the following hold: every face in 
A - E is covered by exactly one facet of A under ~o, whereas every face in 1~ is covered 
by no face of A under ~0. For example, a E-facing is an exact facing of A if and only if 
Z = 0 is the empty complex. We call A a switching simplicial complex if  it has three 
distinguished vertices Vl, v2, v3 for which the following hold: 

1. F = {{vl}, {v2}, {v3}, ~} is the collection of all faces of A which are contained in 
{Vl, v2, v3}. 

2. A admits a I~-facing with a nonempty E _c F if and only if Z = F or Z = {~}. 

Proposition 6.6. For any d > 3, if a d-dimensional switching simplicial complex 
exists, then d-partitionability is A/P-complete.  

Proof. The following problem is known to be A/P-complete [7]: given a collection 
{$1 . . . . .  Sn } of 3-subsets of [m] = { 1 . . . . .  m }, decide if there is a subcollection forming 
a partition of [m], i.e., a subcoltection {Si: i ~ I} whose members are pairwise disjoint 
and their union equals [m]. If  a d-dimensional switching complex A exists, then it can 
be used as a building block to reduce this problem to d-partitionability in polynomial 
time. The details are omitted. [] 

It would be interesting to settle the question of whether or not there is any d for which 
a d-dimensional switching simplicial complex exists. 

As a final remark about the algorithmic aspects of shellability and partitionability, we 
mention the remarkable fact that starting in dimension 6 (geometric dimension 5) it is 
undecidable whether or not a given simplicial complex A is a sphere [ 19]; but if A is a 
pseudomanifold in which each ridge lies in exactly two facets and is shellable, then it is 
a sphere. Note that in contrast, there are nonspherical partitionable pseudomanifolds in 
which each ridge lies in exactly two facets, such as the real projective plane of Example 
2.1. See [6] for more details. 

7. Final Remarks 

In view of the various classes of posets and simplicial complexes studied in this paper, it 
would be interesting to settle several open questions concerning the hierarchy suggested 
by Fig. 1. For example, it is known that the Barnette sphere (see [3]) is a fan but not 
an oriented matroid polytope; can an oriented matroid polytope which is not a fan be 
found? Also, as raised by J. Bokowski, can a fan be constructed which is also an oriented 
matroid polytope, but is not convex? 

As mentioned earlier, it is believed that fans and oriented matroid polytopes are non- 
shellable in general; but the resolution of either seems difficult at present. It is also open, 
and of great interest, whether all spheres are signable (see Fig. 1). 
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spheres 

signable 

spherical 
polytopes 
(fans) convex 

polylopes 

oriented rnatroid polytopes 

matroids 
shellable 

Fig. 1. A hierarchy of posets and simplicial complexes. 

Another topic of interest circles around face rings of partitionable complexes. With 
each d-dimensional simplicial complex with n vertices is associated its so called Stanley- 
Reisner ring, a quotient of a polynomial ring /C[X] (where /C is a field and X = 
(xl . . . . .  x , ) ;  see [ 17] for details). When this ring is Cohen-Macaulay, then, factoring out 
a system of parameters, a finite dimensional graded/C-algebra,,4 = d ~ i = 0  ~4i is obtained, 
and the dimensions dimx: (,Ai) = hi form the h-vector of A. If ~o is an exact facing coming 
from a shelling of A (see Section 2), then the (residue classes of the) monomials X ~(e) 
form a/C-space basis for ,,4 [8]. The role of these monomials when ~0 is an exact facing 
not coming from a shelling is not clear and should be the subject of future study. An inter- 
esting open question here is whether all Cohen-Macaulay complexes are partitionable. 

Concluding, in this article we have introduced the class of signable posets, and shown 
that it includes shellable posets and face lattices of partitionable complexes, fans, and 
oriented matroid polytopes. We have used signability in proving the upper-bound the- 
orem and for efficient face enumeration for various complexes in these classes. In a 
continuation article [15], poset signings are further investigated, and are shown to play 
an important role in the algorithmic and enumerative study ofrecursively signable posets, 
their flag vectors, and their chain complexes and barycentric subdivisions. 
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A p p e n d i x  

Here we provide proofs omitted from the main text. 

Proposi t ion 5.2. Let M be an acyclic oriented matroid and let G E P (M) be a face 
of M. Then the contracted matroid M~ G is again an acyclic oriented matroid, and its 
face lattice is P ( M / G )  = {H - G: G C H E P ( M ) }  which is the upper interval of  G 
in P(M).  

Proof. Suppose indirectly that C '  = C '+ is a positive circuit in M / G .  Then there is 
a circuit C = C + tO C -  in M such that C '+ = C + - G and C ' -  = C -  - G,  so that 
C + - G  ~ f l andO # C -  _c G. I f n o w  u Di is aunion  ofpos i t ivecoc i rcu i t s  wh ich i s  the 
complement  of  G in M, we find that C + O D i ~ ~ for some Oi, whereas C -  N Di = ~J, 
contradicting the orthogonali ty property for C and Di. Thus, M / G  is acyclic.  

Next, note that the cocircuits of  M~ G are exactly those cocircuits D o f  M satisfying 
D O G = O. Thus, F is a facet o f  P ( M / G )  i f  and only if, F U G is a facet in M. The 
rest of  the claims follow since each face is an intersection of  facets. [ ]  

Proposi t ion 5.3. Let M be an acyclic oriented matroid, let F be a facet of M, and let 
G C F be aflat o fM ofcorank 2. Let H be any hyperplane of M satisfying H n F = G, 
and let B = B + tO B -  be its complementing cocircuit. Then all elements o f F  -- G lie 
on the same part of B if and only if G is a ridge of M. 

Proof We claim that the fol lowing holds for any oriented matroid: let F be any hy-  
perplane and G C F a flat of  corank 2. Then F - G is part i t ioned in the same way by 
all cocircuits complementing hyperplanes meeting F in G. This c laim will establish the 
"if" direction: i f  F is a facet and G is a ridge, then there is another facet F '  such that 
G = F n F ' ;  the complement  o f  F '  is a posit ive cocircuit,  so contains all e lements  o f  
F -  G on the same part. Therefore all elements o f  F - -  G lie on the same part o f  any cocir-  
cuit complementing a hyperplane H satisfying H n F = G. To prove the claim, suppose 
indirectly that there are two hyperplanes H1, H2 violating it. Thus, Hi n F = / - /2  n F = G 
and, letting Bi = B + ~ B~- be the cocircuit  complement ing Hi (i = 1, 2), we may  assume 
that there are two elements u, v E F -- G satisfying u ~ B + n B + and v E B + n B~. Let 
B = B + ~ B -  be the cocircuit  obtained from B1 and B2 by eliminating v and keeping u, 
and let H be the complement  of  B. Since B C Bl U B2 and G O (B1 U B2) = 0, we have 
G C H.  Now,  v r B so v E H and, since v fi F - G, we must  have H = F .  However,  
u E F n B = F -  H which is a contradiction. The claim and the " i f '  direction are proved. 

Suppose now that G is not a r idge and that, indirectly, there is a hyperplane meet ing 
F in G, whose complement  is a cocircuit  with B + n F # O and B -  O F = O. Pick such 
a hyperplane with I B - I  as small  as possible.  This hyperplane is not a facet since G is 
not a ridge, hence B -  is nonempty. Let D = D + be the complement  of  F ,  and p ick  an 
element v E B -  C D. Also,  p ick  an e lement  u q B - D  ( sou  E B + ) . L e t  A = A+~JA - 
be a cocircuit  obtained by el iminating v from the pair  D + ~ fl and B + ~ B -  and keeping 
u. Then A -  C B - -  v a n d u  E A + C D + U B + . N o w  

A A F = A + D F  c B + D F =  B A F ,  
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and G is the intersection of F with the complement  of  B, so letting H be the hyperplane 
complementing A, we find that G __c H N F.  Since G is a flat, this implies that either 
G = H t') F or H = F.  However, the last possibility is impossible, since u ~ A n F.  
Hence H fq F = G, and [A-I < I B - I ,  which contradicts the choice of  B and its 
complementing hyperplane. [] 
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