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Abstract. We describe here the notion of generalized stress on simplicial complexes, 
which serves several purposes: it establishes a link between two proofs oftbe Lower Bound 
Theorem for simplicial convex polytopes; elucidates some connections between the al- 
gebraic tools and the geometric properties of polytopes; leads to an associated natural 
generalization of infinitesimal motions; behaves well with respect to bistellar operations 
in the same way that the face ring of a simplicial complex coordinates well with shelling 
operations, giving rise to a new proof that p.1.-spheres are Cohen-Macaulay; and is dual 
to the notion of McMullen's weights on simple polytopes which he used to give a simpler, 
more geometric proof of the g-theorem. 

1. Introduction 

About  25 years ago two important  extremal problems for convex polytopes were solved 
at almost the same time. McMul len  [12] proved the Upper  Bound Conjecture,  which 
predicts the maximum number  of  faces of  each dimension that a convex d-poly tope  
(d-dimensional  polytope) with n vertices can have. Barnette [1], [2] settled the Lower  
Bound Conjecture, which specifies the min imum number of  faces of  each dimension 
that a simplicial  convex d-po ly tope  with n vertices can possess. 

The first proofs of  these results were somewhat  unrelated, but in the subsequent 
decade Stanley developed a common algebraic perspective for recasting and ul t imately 
reproving both of  these results [21 ]. In fact, he established the complete  characterizat ion 
of  face-vectors of  simplicial  (or dually, simple) polytopes (the g- theorem) original ly 
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conjectured by McMullen. This quickly led to the further development of very powerful 
connections between the combinatorics of convex polytopes and the algebraic geometry 
of associated toric varieties [6], [16]. This interplay has proved to be very fruitful and 
far from exhausted, and many issues are as yet unresolved. Some important progress, 
as well as questions, center around the extensions of the face-counting results to other 
classes of objects such as nonsimplicial (or nonsimple) polytopes, unbounded polyhedra, 
or simplicial spheres. 

We describe here the notion of generalized stress, which serves several purposes: it 
establishes a link between two proofs of the Lower Bound Theorem; elucidates some 
connections between the algebraic tools and the geometric properties of polytopes; leads 
to an associated natural generalization of infinitesimal motions; behaves well with re- 
spect to bistellar operations in the same way that the face ring of a simplicial complex 
coordinates well with shelling operations, giving rise to a new proof that p.1.-spheres are 
Cohen-Macaulay; and is dual to the notion of McMullen's weights on simple polytopes 
which he used to give a simpler, more geometric proof of the g-theorem [13], [14]. 
Generalized stress was first introduced in [ 10], and a detailed overview was presented 
in [11]. 

2. The Lower  Bound Theorem 

For a simplicial convex d-polytope P,  let 

g2 = f , - d f o + ( d + l )  
2 " 

We begin by sketching two proofs of the Lower Bound Theorem, which states: 

Theorem 1 (Barnette). For all simplicial polytopes, g2 is nonnegative. 

Here, fj- denotes the number of j-faces (j-dimensional faces) of P. The first proof is 
due to Stanley, the second to Kalai. 

2.1. Stanley's Proof 

Stanley's [21 ] proof of this result is actually an easy corollary of his proof of the more 
powerful g-theorem, and requires some preliminary definitions. Let A be a simplicial 
(d - 1) -complex ((d - 1)-dimensional complex) on the vertex set { 1 . . . . .  n }. The f -vector 
of A is the vector of nonnegative integers f = (f0 . . . . .  fa-1),  where 3~ denotes the 
number of faces (elements) of A of dimension j (cardinality j + 1). With the convention 
that f-1 = 1, the h-vector of A is the vector of integers h = (h0 . . . . .  ha) defined by 

(;) L _ l ,  hk ~ (--1) j-k J 
- k  

k = 0  . . . . .  d. 
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As is well known, the h-vector encodes the same amount o f  information as the f-vector ,  
since 

J+~(  d - k  ) h k ,  j = - - I  . . . . .  d - - 1 .  
J3= d - j - 1  

k=0 

Now define go = h0 = 1 and gk ---- hk -- hk-1, k = 1 . . . . .  [d /2J .  
The face ring of A over R is A = R[Xl . . . . .  xn]/ la ,  where It, is the ideal generated 

by all square-free monomials xi~ . . .  xi, such that {il . . . . .  is} is not a member  of  A. We 
grade A in a natural way by degree, A = A0 ~3 AI ~B A2 ~ �9 �9 -. For 01 . . . . .  Od~ AI, 
define B = B0 ~ Bl fl) . . . .  A/(01 . . . . .  Od). Stanley [19], [20] proves: 

Theorem 2 (Stanley). A is Cohen-Macaulay i f  and only if  Or . . . . .  Od exist such that 
B = Bo ~ . . .  ~ Bd and dim Bk = hk,  k ~--- 0 . . . . .  d. In this case the Oj can be chosen 
generically (i.e., with coefficients that are algebraically independent over R). 

I f  the ring A is Cohen-Macaulay, then A is called a Cohen-Macaulay complex. 
Reisner [ 18] gives a homological characterization of  the class of  Cohen-Macaulay com- 
plexes, which includes shellable simplicial complexes, simplicial balls and spheres, and 
boundary complexes of  simplicial polytopes. The h-vectors of  Cohen-Macaulay com- 
plexes are clearly nonnegative, but they must also satisfy certain nonlinear conditions. 

For01 . . . . .  Od ~ A1, B = A / (01 . . . . .  Od), and oo ~ B1, define C = Co ~B C1 ~3 . . . .  
B/(og). Stanley exploits a connection between the face ring o f  a simplicial convex poly- 
tope and the cohomology of  an associated toric variety, and invokes the Hard Lefschetz 
Theorem for such varieties to prove: 

Theo rem 3 (Stanley). Suppose that A is the face ring of  the boundary complex A of  
some simplicial convex d-polytope. Then O1 . . . . .  Od E A 1 and co ~ Bl exist such that: 

1. B = B o ~ 3 . - . ~  Bd anddimBk = hk, k = O  . . . . .  d. 
2. Multiplication by co a-2k is a bijection between Bk and Ba-k, k = 0 . . . . .  Ld/2J. 

In particular, multiplication by o9 is an injection from Bk into Bk+t, k = 0 . . . . .  Ld/2J - 1. 
As a consequence, C = Co fl) . . . ~ CLd/2 j and gk = dim Ck, k = 0 . . . . .  Ld/2J. 

An immediate corollary is that the numbers gk are nonnegative, k = 0 . . . . .  [d /2 ] .  
(This was first conjectured by McMullen and Walkup [15].) In particular, g2 > 0. We 
also see that h i -~ ha-i, i = 0 . . . . .  [d /2J .  These are the Dehn-Sommerville relations, 
which can be proved directly by various combinatorial methods, and hold more generally 
for simplicial spheres. 

Stanley's theorem yields an explicit numerical characterization of  the f -vec tors  
of  simplicial d-polytopes, which is expressed in terms of  the hk and the gk (the g-  
theorem) [21]. 

Theorem 4 (Stanley). Suppose that h = (h0 . . . . .  hd) • Z d+l, go = h0, and gk = 
hk -- hk-1, k = 1 . . . . .  Ld/2J. Then h is the h-vector of  a simplicial d-polytope i f  and 
only if'. 

1. hi = dd-i, i = 0 . . . . .  ld/2J.  
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2. gi > 0, i = 0 . . . . .  Ld/2J. 
It? �9 

3. go --  1 and gi+l <- gi ' t ~--- 1 . . . . .  Ld/2J - 1. 

See, for example, [21] for the definition of the pseudopower gy). 

c. w. Lee 

2.2. Kalai's Proof  

Kalai's proof [8] that g2 is nonnegative is quite accessible, but does not have the full 
force of the g-theorem. Again, we need to start with some definitions. Let G = (V, E) 
be a graph, where V = {1 . . . . .  n}. Choose a point vi ~ R d for each vertex of the 
graph and make a bar-and-joint structure by placing bars connecting pairs of points 
corresponding to the edges of G (we do not worry about self-intersection). Often we 
refer to the vi themselves as the vertices, and the bars as the edges. A stress on this 
bar-and-joint structure is an assignment of  numbers ~.ij to edges vi vj such that 

) ~ i j ( 1 ) j  - -  Oi) = O (1) 
j :  l ) i v j E E  

holds for every vertex /)i. The vector space of all stresses is the stress space of the 
structure. 

An infinitesimal motion of the structure is a set of vectors U1 . . . . .  ~n e R d such that 
d([I (vi + t ~ i ) -  (vj + t~ j )  112)/dt = 0 for all edges vi vj. Equivalently, (vi - vj) r (-6i - ~ j )  = 
0 for all edges, or the projections of  vi and ~j onto the affine span of {vi, vj } agree. Some 
infinitesimal motions are trivial in the sense that they are induced by rigid motions of R d 
itself. Motions apart from these are called nontrivial. If  the structure admits only trivial 
motions, it is infinitesimally rigid. 

Using the classical relationship between the space of infinitesimal motions and the 
space of stresses of a structure, and the fact that the bar-and-joint structure associated with 
the edge-skeleton of a simplicial convex d-polytope P, d > 3, is infinitesimally rigid 
(where we take the vi to be the vertices of  P itself), Kalai observes that the dimension 
of the stress space of P is g2, and hence g2 must be nonnegative. 

In this striking proof of the Lower Bound Theorem Kalai speculates whether it might 
be possible to extend the notions of stress and rigidity appropriately to the higher- 
dimensional faces of P to reprove the nonnegativity of  the other gk, and possibly even 
find a new proof of the g-theorem. The notion of generalized stress presented below 
accomplishes this, but these results depend in an essential way upon McMullen's new 
proof of the g-theorem [13], [14] using weights on simple polytopes. 

3. Generalized Stress 

3.1. Working Toward a Definition 

We could define generalized stress by starting with some analog of classical stress or 
infinitesimal motion, but instead we work toward the definition by following the path by 



P.L.-Spheres, Convex Polytopes, and Stress 393 

which 'it was originally discovered. This route was primarily motivated by attempts to 
mimic some aspects of  Kalai 's algebraic shifting technique [7]. 

For x = (Xl . . . . .  xn), and for (rl . . . . .  rn) ~ Zn+, by x r we mean x p  . . .x~, ~ Define 
also suppx r = {i: ri ~ 0} (the support ofxr) ,  r!  = r l ! - - - r n ! ,  and Irl = rl + - - -  + rn. 
Write ei for the vector of  length n consisting of  all zeros, except for a one in the ith 
position, and e = (1 . . . . .  1). 

Let A be a simplicial complex (not necessarily of  dimension d - 1) With n ver- 
tices {1 . . . . .  n}, and let R = R[xl . . . . .  xn] = Ro (t) R1 (3 RZ (3 "'" be the ring of  
polynomials, graded by degree. Consider any elements 01 . . . . .  Od ~ R1. We wish to 
determine information about the dimension of  Bk (as a vector space over R), where B = 
Bo(3BI~  B 2 ~ . . .  is the result of  taking R and factoring out the ideal J = J o ~ J l  ~ J 2 ( 3 . . "  
generated by IA and 01 . . . . .  Oa. Place an inner product on the vector space Rk by defining 
( ~ r :  Irl=k arxr' Zr:  Irl=k brxr} : ~---.r: Irl=k arbr. W r i t e  gk = Jk (]) J / .  I t  i s  straightfor- 
ward to see that )'-~: Irl=k brxr is in J ~  if and only if it is orthogonal to: 

1. All monomials of the form xSx q where xq is square-free, suppxq r A, and 

I s l + l q l  = k .  
2. All polynomials of  the form xsOj, where Isl = k - 1. 

Define vi = (oil . . . . .  vial) r,  i = 1 . . . . .  n, where Oj = ~-,i"=1 1)iJ xi,  J = 1 . . . . .  d. Then 
the first condition is equivalent to the condition 

b r = 0  if suppx r C A ,  (2) 

and the second condition is equivalent to the condition 

n 

bs+e, vi = O, (3) 
i=1 

for every s ~ Z~_ such that Isl = k - 1. Thus we have a linear equation on the vectors 
1) i for every such s. 

The second condition can be expressed more compactly if we look at 

x r 
b(x)  = E br T .  

r: Ir[=k 

Define M to be the d x n matrix with columns ol . . . . .  on. Then Y]r: IrL=k brx~ satisfies 
condition (3) if and only if 

i=1 

o r  

j = l  . . . . .  d, 

o 
i=1 

where the left-hand side is to be regarded as a polynomial with vector coefficients, or 

M V b  = O. (4) 
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This leads directly to our definit ion of  general ized linear stress: 

Def in i t ion  1. Let  A be a s implicial  complex  (not necessari ly o f  d imension d - 1) on 
the set {1 . . . . .  n}, and let Vl . . . .  vn ~ R d. Let M be the d x n matr ix  with columns 
Vl . . . . .  on. For  each k = 0, 1, 2 . . . . .  a linear k-stress on A (with respect  to Vl . . . . .  Vn) 
is a po lynomia l  of  the form 

X r 

b ( x ) =  ~ br'7. 
r: Irl=k 

that satisfies 

and 

br = O i f  s u p p x  r C A ,  

M V b  = O. 

The collection of  all l inear k-stresses forms a vector  space, which is denoted  Ske. (In [ 10] 
we used the notation Bk.) 

There was evidence to suggest that the Hard Lefschetz e lement  a~ in the proof  o f  the 
g- theorem could be chosen to be Xl + -  .- + xn. This was confirmed by McMul len  [13], 
[14]. So we are also interested in the effect o f  factoring out xl  + - - -  + x ,  f rom R as well.  
This suggests the definition of  general ized affine stress: 

Def in i t ion  2. Let  A be a s implicial  complex  (not necessari ly o f  d imension d - 1) on 
the set {1 . . . . .  n}, and let Vl . . . .  Vn E R d. Let M be the (d + 1) x n matr ix  obtained 
by appending a final row of  ones to the matr ix M with columns vl . . . . .  vn. For each 
k = 0, 1, 2 . . . . .  an affine k-stress on A (with respect  to vl . . . . .  v.) is a po lynomia l  of  
the form 

X r 

b(x) = ~ br 
r: I r l = k  

that satisfies 

and 

b r = O  i f  s u p p x  r C A ,  

M V b  = O. 

The collection of  all affine k-stresses forms a vector space, which is denoted S~. (In [10] 
we used the notation Ck.) 

Equivalently, an affine k-stress is a l inear k-stress that satisfies the addit ional  condit ion 

e rVb  = O, 

o r  

~ Ob 
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o r  

~ bs+e, = 0 (5) 
i=1 

for every s ~ Z~_ such that Isl = k - 1. That is, we have an affine relation on the vectors 
vi for every such s. 

It is obvious that b(x)  is an affine k-stress with respect  to vl . . . . .  v~ if  and only if  it  
is a linear k-stress with respect to ~1 . . . . .  Un, where 

, 1  . . . . .  . 

3.2. Connections to Cohen-Macaulay  Complexes 

Suppose that A is a simplicial  complex (not necessari ly of  dimension d - 1) with n 
vertices. Let  A be its face ring, and assume we have 01 . . . . .  Od E A 1 and vl . . . . .  Vn E R d 

such that Oj = ~_,in=l vijxi ,  j = 1 . . . . .  d, and vi = (vii . . . . .  Old) T, i = 1 . . . . .  n. Let  

A = Ao (9 A1 (9 A2 (9 . . . .  R / I A ,  B = Bo (9 BI (9 B2 (9 . . . .  A/(O1 . . . . .  Od), and 
C = Co (9 C1 (9 C2 ( 9 " "  -~ B/(Xl + " "  + xn). Simply from the way the definitions are 
crafted we immediately conclude: 

T h e o r e m  5. Regardless o f  whether or not A is Cohen-Macaulay,  d im  Bk = dim S[, 

k = 0, 1, 2 . . . . .  and dim Ck = dim S t ,  k = 0, 1, 2 . . . . .  

C o r o l l a r y  1. Let A be any simplicial (d - 1)-complex with n vertices. 

1. A is Cohen-Macaulay i f  and only i f  vl . . . . .  vn E R d exist such that dim S~ = hi ,  
k = 0 . . . . .  d. In this case the vi can be chosen generically (i.e., with components 
algebraically independent over R). 

2. Suppose that A is in f ac t  a simplicial (d - 1)-sphere. I f  Vl . . . . .  vn E R d are chosen 
such that dim S[ = hk, k = 0 . . . . .  d, and fur ther  dim S~ = gk, k = 0 . . . . .  [d /2J ,  
then the h-vector o f  A satisfies the numerical  conditions o f  the g-theorem. 

3.3. Differential OperaWrs 

Differential operators with constant coefficients acting on the stress spaces play an 
impoltant  role. In particular, we can construct an operator that will  provide a relationship 
between linear and affine stresses, and which is seen in Sections 9 and 10 to serve as the 
Lefschetz element in the proof  of  the g-theorem. 

For  c ~ R n, define the function trr on the space of  l inear  stresses by 

n O b  

ar = c r v b  = ~ ci 8xi 
i=1 
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for any linear stress b(x). Define in particular 

 20b o) (b) ---- (re (b) ---- ~x/" 
i=l  

Theorem 6. Let A be any simplicial complex with n vertices, and let vl . . . . .  Vn E R d. 
Then, for  k 1, 2, 3 . . . . .  the function trc maps S~ into e = S~_l, and, f o r k  = 0, 1 ,2  . . . . .  
the kernel of  to restricted to S~ is S~. 

Proof. Let b be a linear k-stress and r ~ Z~. such that [r I = k - 1. The coefficient of  
xr / r !  in ac(b) is )--~,in__l cibr+e,. I f s u p p x  r r A, then suppx r+e' r A for i = 1 . . . . .  n. So 
br+e, = O, i = 1 . . . . .  n, and Crc(b ) satisfies condition (2). Further, M V ( c T V b )  = 
M[(V2b)c] = [V(MVb)]c  = O since M V b  = O, and so ac(b) satisfies condi- 
tion (4). []  

3.4. Coning 

We conclude this section with a simple but useful result first proved by Tay et al. [22]. 
Suppose that A is a simplicial complex with vertex set {1 . . . . .  n}, and vl . . . . .  vn ~ R d. 
Let ao . . . . .  an ~ R such that a0 r 0 and let A be the simplicial complex A �9 0 = 
{F U {0}: F ~ A}. Sometimes this operation is called coning. How does the linear 
k-stress space S[(A)  o f  A with respect to Vl . . . . .  vn relate to the linear k-stress space 

S[(A)  of  A with respect to 90 = (0 . . . . .  0, a0) ~r, 91 = (Vl, a l )  T . . . . .  9n = (Vn, an)r? 

T h e o r e m  7. Let S,e(A) and S~(LX) be as above. ThenS[(A) is isomorphic to S[(A).  

In particular, Se(A) with respect to v~ . . . . .  v, is isomorphic to S~( ~X ) with respect to 
O, Vl , �9 �9 �9  1)n. 

g 
Proof Let b(xl . . . . .  x, )  E S k ( A ) .  For a polynomial expression f in xl . . . . .  x , ,  define 

s ( f )  = f ( X l  - -  (al/ao)xo . . . . .  xn -- (an/ao)xo). We claim that/~ = ~(b) is in Ske(A). 
For 

and 

O X'---~ Vi = i=1 ~X/l~i 

y ~  ~ Ob 
1) i 

i= l  

= 0  

a ~ a i  : ao  J -  - -  i 
i=O o x i  OXo / : l  Oxi  
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- -  S ~ a i s  - -  - -  ao+ 
i=l  i-----1 

= S - - a i  + ai  
\ i = 1  

= 0 .  

Conversely, suppose that/~(x0, xl . . . . .  xn) ~ S~(A). For a polynomial expression f in 

x0 . . . . .  xn, define s ( f )  = f(O, xl . . . . .  xn). We can check that b = s(/0 is in S~(A): 

.~ Ob 

i=] OXi 
-~. v i 

~ O .  [] 

4. Why "Stress"? 

The use of the terms "linear" and "affine" in the definition has already been justif ied--  
the conditions for b(x) to be a stress involve either linear or affine relations on the vi. 
However, it is not yet clear why the term "stress" makes sense. This will be motivated 
in several stages. First we show that S~ is isomorphic to the classical stress space of 
a bar-and-joint structure. The higher dimensions will require some preliminary work. 
However, first, we consider some simple examples. 

4.1. Examples 

The first example is an easy but important one that will resurface later in this paper. 

Example  1. Consider a geometric d-simplex in R d and let A be its boundary complex. 
Choose Ol . . . . .  Vd+l to be the vertices of the simplex itself. Assume further that the 
simplex is positioned such that no proper subset of the vertices is linearly dependent. 
Then nonzero ci e R exist such that 

d+l  

E Ci T3i = , 0 
i=1 
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and all linear relations on the v i are nonzero scalar multiples of  this one. We claim that 
for all k = 0 . . . . .  d, S~ e is one-dimensional and is spanned by 

X r 
E c r y .  

r! r: Irl=k 

We can verify this by using the fact that 

d+l  d+l  

E Cs+eil)i -~" cs E Cil)i = 0 
i=1 i=1 

for all s ~ Za+ +1 such that Is[ ----- k - 1. Observe that c r is nonzero for all r. On the other 
hand, " e dim S~ = 0 for all k > d, dim S~ = 1, and dim S~ = 0 for all k > 1, since the vi 

are affinely independent and so y ' f+~  = c i r  

Example  2. Suppose that P is the standard octahedron in R 3 with vertices vl = 
(1, 0, 0) r ,  v: = ( -  1, 0, 0) r ,  v3 = (0, 1, 0) r ,  v4 = (0, - 1, 0) r ,  v5 = (0, 0, 1) r ,  and 

V6 ~ 

to  Vl, 

1. 
2. 
3. 

. 

5. 
6. 
7. 
8. 

(0, 0, - 1) r .  Then, for the boundary complex A of  P ,  the stress spaces with respect 
. . . .  v6 are given by: 

Soe=R.  
S~ is three-dimensional and has a basis {xl + xz, x3 + x4, x5 + x6}. 
$2 e is three-dimensional and has a basis {(xl + x2)(x3 + x4), (xl + x2)(x5 + x6), 
(X 3 -'[- X4)(X 5 -'[- X6) }. 
$3 e is one-dimensional and has a basis {(xl + xe)(x3 + x4)(x5 + x6)}. 
S e = {0} i fk  > 3. 
S~=R. 
S~ is two-dimensional and has a basis {xl + x2 - x3 - x4, xl + x2 - x5 - x6}. 
S t = { 0 } i f k >  1. 

4.2. Connection with Classical Stress 

Turning now to general simplicial complexes, we can describe the low-dimensional stress 
spaces and clarify the connection with classical stress: 

T h e o r e m  8. Let  A be any simplicial complex with n vertices, and let vl . . . . .  vn E R a. 
Then: 

1. S ~ - - - - S ~ = R .  
2. Sel is isomorphic to the space o f  all linear relations on the vectors vl . . . . .  vn. 
3. S t is isomorphic to the space o f  all affine relations on the vectors Vl . . . . .  on. 
4. S~ is isomorphic to the classical stress space on the bar-and-joint structure where 

the vertices are placed at the points vl . . . . .  On, under the correspondence )~ij = 
bei + bej f o r  all i ~ j .  
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Proof. Only the fourth part requires any explanation. Assume b ~ S~. Set )~ij = be,+ej 
for all i, j = 1 . . . . .  n. Of c o u r s e ,  )~ij -~- )~ji, and )~ij = 0 if {i, j} is not an edge of A. 
From conditions (3) and (5) we find that, for all j = 1 . . . . .  n, 

O ~ ~ ) ~ i j l ) i  
i=1 

= E )~ij 1)i "at- )~jj 1)j 
i: i# j  

i: i# j  i: i~j  

= ~ ~. i j (oi-  vj), 
i: {i,jl~E 

where E is the set of edges of A. Therefore the ~'ij s a t i s f y  the equilibrium condition (1). 
Conversely, assume we have numbers ~.ij for each {i, j } ~ E that satisfy condition (1). 

For j = 1 . . . . .  n define 

bjj = -  ~ )~ij, 
i: {i.j}~E 

and for i # j define 

bei+eJ : {oi j if otherwise.{i'j}eE' 

Reversing the previous calculations shows that the resulting quadratic polynomial b(x) 
is an affine 2-stress. [] 

4.3. Coefficients of Square-Free Terms 

Our next step is to show that under suitable conditions the coefficients of the square-free 
monomials of a linear or affine k-stress uniquely determine the remaining coefficients of 
the polynomial. We then concentrate our attention on the square-free terms, regarding 
the coefficients as assignments of numbers to various faces of the simplicial complex, 
and give a geometric necessary condition on these numbers that turns out to be a natural 
generalization of classical stress. We are, in fact, able to give explicit formulas for the 
coefficients of the non-square-free monomials in terms of the coefficients of the square- 
free monomials, and in the process show that the above necessary condition is also 
sufficient and thus characterizes the coefficients of the square-free terms. 

For a simplicial complex A with n vertices and for Vl . . . . .  v, ~ R d, we say that the vi 
are in linearly general position with respect to A if {vii . . . . .  vi, } is linearly independent 
for every face {il . . . . .  is} of A. 

Theorem 9. Let A be any simplicial comptex with n vertices and assume that vl . . . . .  v, 
are in linearly general position with respect to A. If  b(x) is a linear stress, then the 
coefficients of the non-square-free monomials in b(x) are linear combinations of  the 
coefficients of the square-free monomials and hence are uniquely determined by them. 
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Proof. Let  b (x )  ~ S[. We use reverse induction on q = ca rd ( suppxr ) .  The result  is 
tr ivially true i f  q = k, so assume the result  is true for some q such that 2 < q < k and 
suppose that ca rd ( suppx  ~) = q - 1. Choose j such that rj > 1 and let  s = r - ej .  
Condit ion (3) implies  

n 

E bs+e~ vi = O. 
i=1 

However, by the induction hypothesis  the coefficients bs+e, are l inear combinat ions  of  
the coefficients o f  the square-free monomia ls  when r i = 0, since card(supp x s+ei) = q in 
this case. This leaves the q -  1 coefficients bs+e, for i 6 supp x r to be uniquely de termined 
since the corresponding vi are l inearly independent  by assumption.  In particular,  b~+ej = 
br is a l inear combinat ion of  the coefficients of  the square-free monomials .  [ ]  

The above proof  shows how condit ions (2) and (3) can be used in a systematic  way 
to find all the coefficients of  b(x)  i f  the coefficients of  the square-free terms are given. 

C o r o l l a r y  2. Let  A be any simplicial complex with n vertices and let vl . . . . .  vn E R a 
be chosen in a linearly general position with respect to A.  Then dim S e =- 0 f o r  all 
k > d i m A + l .  

Proof  In the case that k > dim A + 1 there are no faces o f  cardinal i ty k, so all 
coefficients of  square-free monomia ls  of  a l inear k-stress must  be zero. [ ]  

4.4. A Geometrical  Interpretation o f  Stress 

For F = {ii . . . . .  is} E A, define conv F (with respect  to vl . . . . .  vn) to be 
conv{vfi . . . . .  or}. In an analogous way, define a f f F  and span F .  We sometimes abuse 
notation and write bF and x F for br and x r, respectively, where ri ----- 1 i f  i 6 F and 
ri = 0 i f /  ~ F .  We also use the notat ion F + i for F U {i} and F - i for F\{ i } .  Finally,  
i f  i 6 F ,  by bF+i we mean br+ei, where r is as above. 

T h e o r e m  10. L e t A b e a n y s i m p l i c i a l ( d - 1 ) - c o m p l e x w i t h n v e r t i c e s a n d l e t v i  . . . . .  vn 
R a. Let b(x)  be a linear (resp. affine) k-stress, k > 1. Choose any face  F o f  A o f  

cardinality k - 1 and any point v in span F (resp. aft  F). Then 

1) + E bF+i(1)i -- 1)) 
i~ lk  F 

lies in span F (resp. aft  F). Equivalently, i f  wi is the vector joining the projection o f  vi 
onto span F (resp. aft F)  to vi, then 

bF+iWi -~- O. (6) 
i ~lk  F 



EL-Spheres, Convex Polytopes, and Stress 401 

Proof. Suppose that v E span F. Then, using condition (3), 

1)"]- ~ bF+ i(1) i -- U) 
i ~lk F 

: 1)'-I- y~ .  b F + i V i -  ~ bF+iV 
i ~lk F i ~lk F 

~ 1 ) - - E b F + i l ~ i - -  E bF+il) 
iEF iElk F 

which is in span F. I f  b is an affine stress, then by condition (5) the sum of the coefficients 
in the above expression is 

1- -  E b F + i -  E bF+i = 1. 
i EF i Elk F 

So we have an element of aft F. [] 

Note that for linear k-stress, w i is the altitude vector for the point v i in the simplex 
conv({O} U (F + i)), and for affine k-stress, wi is the altitude vector for the point vi 

in the simplex conv(F + i). In particular, condition (6) for affine 2-stress is identical to 
condition (1) defining classical stress. So affine k-stress generalizes classical stress in a 
natural way, and could in fact have been defined by condition (6) in the first place. This 
is the definition that Kalai was thinking of (personal communication). Linear k-stress 
seems less natural at first sight since it is dependent upon choice of origin. In the case of 
simplicial polytopes, however, we see in Section 10 that linear stress becomes invariant 
under rigid motions when dualized and interpreted as McMullen's weights on simple 
polytopes. 

Example  3. Let P be a simplicial convex d-polytope in R d, A its boundary complex, 
and Vl . . . . .  Vn its vertices. Then the above theorem shows that dim S~ = 0. Take any 
b(x)  E S~ and consider any subfacet F (i.e., of cardinality d - 1). There are exactly two 
facets containing F and hence only two altitude vectors wi with respect to aff F, where 
i E lk F. By convexity these two vectors are not collinear and we know 

~-~ bF+iWi ~ O, 
iElk F 

from which it follows that bF+i -~ 0 for i E l k  F. Thus all the coefficients of the square- 
free monomials of b(x)  are zero, and so all of the remaining coefficients must likewise 
be zero. 

4.5. Formulas for  the Coefficients 

Condition (6) is a nice geometrical necessary condition for the coefficients of the square- 
free terms of generalized stress. However (again with suitably general vi), this condition 
is also sufficient, as we now show. 

Assume A is a simplicial complex of dimension at most d - 1 with vertices 1 . . . . .  n, 
and that / )1  . . . . .  O n E R d are in linearly general position with respect to A, Assume 
further that U l . . . . .  Ud E R a. 
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Suppose that G = {il . . . . .  is} _c {1 . . . . .  n}, where s < d. Fix an ordering o f  the 
elements of  G and define 

[ G ] m d e t [ v i ,  . . .  1)is usq_ 1 . . .  Ud]. 

If  i �9 G, we compute [G - i] using the ordering induced by G and multiplying by 
+1  (resp. - 1 )  if  i is in an odd (resp. even) position with respect to this ordering, and 
we compute [G - i 4- j ]  by replacing the column corresponding to vi with the column 
corresponding to vj. 

We say that u ~ . . . . .  U d are in linearly general position with respect to A and vl . . . . .  vn 
if [G] is nonsingular for every face G of  A. 

Theorem 11. Let A be a simplicial complex on n vertices o f  dimension at most  d - 1, 
let vl . . . . .  vn be in linearly general posit ion with respect to A ,  and let Ul . . . . .  Ud be 
in linearly general posit ion with respect to A and vl . . . . .  on. Suppose that we have 
numbers be assigned to each (k - 1)-face F o f  A that satisfy condition (6). For each 
r �9 Zn+ such that ]r[ = k and S = suppx  r �9 A, define 

br = Y ~  bF ~ I  [F  - i]ri-1.. 
(k - 1)-faces F containing S i~F 

r ! Then b(x )  = E r :  ]rl=k br (x  / r . )  is a l inear k-stress. 

Proof. We already know that there can be at most one linear k-stress b(x)  with the 
given coefficients of  the square-free terms. We must show that in fact there is one, and 
that it is given by the formula above. Consider one instance of  condition (3): 

n 

y ~  bs+ejVj = O,  
j= l  

where [s[ = k - 1. Let S = suppx s. The coefficients bs+ej appearing in the expres- 
sion correspond to monomials with support size either card(suppx s) (if j E S) or 
card(suppx s) + 1 (if j �9 lk S). So we can contemplate the possibility of  using these 
conditions repeatedly to determine the coefficients of  monomials with smaller supports 
from the coefficients of  monomials with larger supports. In the process we need to verify 
that: 

(i) For a given instance of  the condition it is possible to solve for the unknown 
coefficients, i.e., that 

bs+ejVj �9 span{vj:  j �9 S}. (7) 
j elk S 

(ii) I f  the same coefficient is determined from two different applications o f  condi- 
tion (3) in this manner, that we do not get contradictory values. 

The proof  will therefore be by reverse induction on p = card(suppxr) .  The formula 
stated in the theorem is trivially true if  k = 1 or if p = k so we assume that k > 2 and 
1 < p < k. Choose any m for which rm > 1. Let s ---- r - e m  and S = supp x s = supp x r. 
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If p = k - 1, then (7) is true by the assumption that the coefficients satisfy condi- 
tion (6). So suppose that p < k - 1. Find q such that Sq > 1. 

Fix an ordering of the elements of S, (vii . . . . .  rip). Let vs denote vi~ ^ �9 . .  A via, let 
Vs_q denote the same wedge product with Vq removed, and let Vs-q+j denote vj ^ Vs-q. 

For each j ~ S, define s ( j )  = s - e  o +ej.  Note that card(supp x ~(j~) = card(supp x s) + 
1. So by the induction hypothesis, the formula gives coefficients such that 

tl 

E bs(j)+eil3i = O. 
i=1  

Wedge this with Vs-q+j and sum over all j r S: 

Z ~ (bs(j)+eiVi A 1)s_q+j)= O. 
jr i=1  

If i = j or if i ~ S - q, then vi A Vs_q+ j ~- O. If  i r S, then one of the terms in the 
above expression is 

bs(j)+e~ vi A vj A VS-q. 

However, interchanging the roles of i and j also yields the term 

bs(i)+ej vj A 73 i A 1)S_ q . 

These terms cancel since s ( j )  + ei = s(i) + ej. Looking at the remaining terms (where 
i = q) we see 

~"~(bs(j)+eq 1)q A 1)S_q+j) = O.  
yes 

However, s ( j )  + eq = r - eq + ej + eq = r + ej, so 

= ~_,(br+e, vj A VS) 0 
jCS 

Therefore 

Y •  br +e~ vj E span S, 
jr 

and we have confirmed (7) since br+ej = 0 if j ~f S and j r lk S. 
We proceed to find br, using the same s and m. Since 

Z bs+e, V j = - -  E b s + e ,  Vj, 
j~s j~lkS 

Cramer's rule can be used to solve for br (which equals bs+ej when j = m) in the system 

d 

Ebs+ej l3 j  't- Z c j u j  = -  ~ bs+e, lJj 
jES j=p+l j~lkS 
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giving 

br 
IS - m + (-Y~7~tt s bs+ej vj ) ] 

is] 

[S - m + j] br g--, 
= _ . ,  l e ~  ~ e j  l 

[s] j e lk  S 

Applying induction and using some Grassman-Plticker relations, 

br = -  2 [ S - m + j ]  Z b F I ~  [F-i](r-em+e~)'-I 
j ~ l k  S [ S ]  (k - l ) - faces  F containing S + j i~F 

= -- Z Z b E [ S - m - t - J ]  ]-I [F-- i] (r-e ' ) ' - I  
(k - 1)-faces F containing Sj~F\S [ S ]  iEF\j 

E [S---] [F--i]~r-e') '-I E [ S - m + j ] [ F - J ]  
(k - 1)-faces F containing S jEF\S 

bF ~ I [ F  _ i](r_em),_l[S][F _ m] 
= S ,  [s--i 

(k - l ) - faces  F containing S i~F 

= Y ~  b F I - I [ F - i ]  r'-l. 
(k - l ) - faces  F containing S iEF 

The fact that this final formula is independent of the choice of m shows that we will not 
get contradictory values for br from different choices of s. [] 

Filliman [4] and Tay et al. [22] have also shown the sufficiency of condition (6), but 
without the explicit formula above. (Unfortunately, however, the proof of  the g-theorem 
for p.1.-spheres in [4] is incorrect.) 

5. Generalized Infinitesimal Mot ion  

The relationship between the space of classical stresses (affine 2-stress) and the space 
of classical infinitesimal motions of bar-and-joint structures is straightforward: they are 
the left and right nullspaces of a common matrix. This suggests a natural way to define 
generalized infinitesimal motions associated with affine k-stress. 

Suppose that b(x) is an affine k-stress of a simplicial complex A with respect to 
vl . . . . .  Vn ~ R d. Looking at the equivalent condition on coefficients of square-free 
terms, we have a number bF assigned to each (k - 1)-face F, such that, for every 
(k - 2)-face G, 

~-~ bG+iWi ~- O, 
i ~lk G 
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where wi is the altitude vector of  ~)i in the simplex conv(G + i). We can express these 
conditions in terms of  a matrix R whose rows are indexed by the (k - 1)-faces F and 
whose columns occur in groups of  d with one group for each (k - 2)-face G. In the 
row corresponding to F and the group of  columns corresponding to G we place the row 
vector of  length d: 

O r if G ~ F, 

w r if G C F. (G,F) 

Here, W(G,V) is the altitude vector of  the simplex cony F with respect to conv G. Then the 
left nullspace of  R is S~. An  infinitesimal k-motion will then be defined to be an element 
of  the right nullspace of  R, and is described by an assignment of  a vector ~c  E R d to 
each (k - 2)-face G such that, for every (k - 1)-face F ,  

~ w i .-v i = 0 .  
iEF 

We have condensed the notation, writing wi for W~F-i,F) and -6i for vF- i .  
We can reformulate this condition by writing Gi for F -- i and ui for the unit outer 

normal vector of  conv Gi with respect to conv F in aff F.  This yields 

~__j Ui Uwi II �9 ~i = 0, 
iEF 

which upon dividing by volk_l (F)  implies 

2_,  ui �9 -- O. 
v o l k - 2 ( a i )  iEF 

Therefore 

,7 .VOlk-2(Gi)(Ui  "-mi) = O, 
iEF 

where mi = ~i/vol2_2(Gi).  
So an infinitesimal k-motion is a choice of  vector ~G E R d for each (k - 2)-face G 

such that 

vOlk-2(G)(uG �9 ~ )  = 0 (8) 
GcF 

for every (k - 1)-face F ,  where u 6 is unit outer normal of  conv G with respect to conv F 
in a f fF .  

Theorem 12. Suppose that vectors ~ G  are given f o r  each (k - 2)-face G. Then the 
fol lowing two conditions are equivalent: 

1. The ~ G  constitute an infinitesimal k-motion. 
2. For each (k - 1)-face F a vector mF E R a parallel  to F exists such that'mF "UG = 

mG " U6 f o r  all G C F.  
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/'roof One direction is easy. Suppose that (2) holds. Then, for each (k - 1)-face F,  

E volk-2(G)(UG" raG) = E VOlk-2(G)(UG-mF) 
GcF GcF 

= O . m  F 

= 0  

by Minkowski's theorem. So (1) holds. 
On the other hand, suppose that (1) holds. Fix F and regard the UG and the m6 as 

sitting naturally in R k-1 and constructthe (k - 1) x k matrix U whose columns are the 
u6. The rows of U are linearly independent, so the left nullspace of U has dimension 
one. Now the vector y whose entries are the volk_2(G) is in the nullspace of U, and the 
vector z whose entries are the UG �9 ~G is orthogonal to y. Therefore z is in the rowspace 
of U, and in particular a single vector ~-F exists such that ~ e  �9 U = z. [] 

This gives us equivalent formulations of condition (8). Suppose that vectors ~ are 
given for each (k - 2)-face G. For a (k - 1)-face F and G C F, let me  be the projection 
ofmG onto the (k - 1)-dimensional linear space V parallel to F. For a real number t let 
F(t )  be the (k - 1)-simplex determined by translating a f fG by the vector tma .  

Corollary 3. The following conditions are each equivalent to condition (8): 

1. Y~GcF volk-2(G)(u6 �9 ma)  = O. 
2. F( t )  is congruent to F.  
3. F(1) is congruent to F. 
4. (d /d t )  vol2_l (F( t ) )  = O. 

Proof. (1) is clear since uG �9 m a  = u6 �9 m e ,  (2) and (3) hold since by the theorem 
we are equivalently translating each a f fG by the same vector mF. (4) then follows 
immediately. [] 

The last condition is a very natural generalization of the definition of classical in- 
finitesimal motion (infinitesimal 2-motion) and was also observed by Filliman [4]. See 
[22] for a deeper study of the relationship between generalized stress and skeletal rigidity 
of cell complexes (not necessarily simplicial). 

6. Bistellar Operations 

In this section we examine how the various stress spaces change under the action of certain 
local changes in a simplicial (d - 1)-complex A. Let F and G be disjoint nonempty 
subsets of {1 . . . . .  n} of cardinality p and q, respectively, such that p + q = d + 1, 
F E A, G ~ A, and lk F = OG = {G': G'  is a proper subset of G}, the boundary of G. 
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The simplicial complex A' = (AkF)  tO (G �9 OF) is the result of performing a bistellar 
operation on A. During this operation we remove all faces containing F and introduce 
all sets of the form G to F '  where F '  E O F. The faces of A' that are new are those faces 
of A' that contain G, and the faces of A which are lost are the faces of A that contain F. 
The local change in the structure of A induces a corresponding simple "local" change 
in the linear stress spaces. 

Theorem 13. Assume A and A ' are as above and that vl . . . . .  vn are in linearly general 
position with respect to both A and A'. Then 

[dimS~e(A) + 1 /f p > q 
dimS~(A) = ~dimS~e(A) - 1 i f  p < q 

| dim S~ e (A) otherwise. 

and q < s < d - q, 
and p < s < d - - p ,  

Proof. The main idea is to use an intermediate simplicial complex A" to mediate the 
changes in the stress spaces. Define A" = A tO (G .  OF) and observe that A" also equals 
A' tO ( F .  OG). We will show that 

[d im Ss e (A) 
dim S*e(A") = / c t i m s [ ( z x )  + 1 

i f  O < s < q - 1 ,  
if q < s < d ,  

and by symmetry 

] dim Ss t (A') 
dim S~e(A") = / d i m  S~e(A ') + 1 

if 0 < s < p - 1 ,  
if p < s < _ d .  

Since A and A" share the same faces of cardinality s when 0 _< s _< q - 1, then Sse (A) 
must be the same as Ses(A ") for these values of s. Assume that q _< s < d and take 
S = F D G, a subset of cardinality d + 1. All of the proper faces of S are in A". Define 
c(x)  to he the unique (up to scalar multiple) linear s-stress on the simplicial complex 
consisting of all subsets of S as constructed in Example 1. Each face of A is also a face 
of A", so S,e (A) _ SaC(A"). Suppose that b(x )  is a linear s-stress that is in A" but not 
in A. This implies that br is nonzero for some r such that suppx r E openstar G (the 
set of all faces of  A" that contain G). We claim that the restriction of b to the faces of 
S must be a nonzero multiple of c(x); i.e., that there is a nonzero real number t such 
that br = tCr for all x r supported on openstar G, and hence b(x)  - t c ( x )  is in Sse(A). 
Since G is the only face of cardinality q in openstar G, this is clearly true if s = q. So 
assume q + 1 < s < d. Choose any r such that br is nonzero and suppx r E openstar G. 
Since s > q, there is a j such that supp x r-ej ~ openstar G. Condition (3) implies that 

n b E i = I  r-ej+ei 1)i - ~ "  O. AS this sum involves only the d + 1 vectors vi such that i E S, the 
coefficients in this sum must be a common multiple of the corresponding coefficients 
of c(x) .  Using this procedure repeatedly to determine the other coefficients br verifies 
the claim. The resulting direct sum decomposition of Ss e (A") establishes the change in 
dimension. [] 
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7. Simplicial Spheres, EL-Spheres, and Pseudomanifolds 

7.1. P.L.-Spheres 

Bistellar operations are ideally suited for proofs by induction on p.1.-manifolds, especially 
considering Pachner's result [ 17] that any two p.1.-manifolds that are p.l.-homeomorphic 
can be transformed into each other by a sequence of bistellar operations. In particular, 
every p.1.-sphere can be obtained from the boundary of a simplex by such operations, 
and the discussion in the previous section almost immediately proves: 

Corollary 4. I f  A is a simplicial p.l.-sphere, then A is Cohen-Macaulay. 

Proof Assume that A is a (d - 1)-dimensional simplicial p.l.-sphere with vertices 
{1 . . . . .  n}. Choose vl . . . . .  vn E R d in linearly general position with respect to all 
subsets of {1 . . . . .  n} of cardinality d. The boundary of a (d - 1)-simplex is Cohen-  
Macaulay by part (1) of Corollary 1 and Example 1, since its h-vector equals (1 . . . . .  1). 
It is well known that the components of  the h-vector of  a simplicial complex change 
under the action of a bistellar operation in exactly the same way as the changes in the 
dimensions of the linear stress spaces described in Theorem 13. So since A can be 
obtained from the boundary of a simplex by a sequence of bistellar operations, we have 
hs(A) = dim S[ for all s. Therefore A is Cohen-Macaulay by Corollary 1. [] 

7.2. Pseudomanifolds 

We now turn to a larger class of simplicial complexes which includes simplicial mani- 
folds. A simplicial (d - 1)-complex is said to be a pseudomanifold if: 

(i) Every maximal face has dimension d - 1. 
(ii) Every (d - 2)-face is contained in exactly two faces of dimension d - 1. 

(iii) Any two (d - 1)-faces can be connected by a path of (d - 1)-faces, each two 
succeeding faces of which are adjacent (share a common (d - 2)-face). 

Theorem 14. I f  A is an orientable ( d -  1)-pseudomanifold on n vertices and vl . . . . .  vn 
are in a linearly general position with respect to A,  then dim S~(A) = 1. 

Actually, Tay et al. [23] prove the stronger result that the dimension of Sde (A) equals 
the dimension of the homology Hd (A,  R), and the proof of  the above theorem hints why 
this is true. 

Proof Let b(x) be a linear d-stress on A. By Theorem 9 it suffices to study the square- 
free coefficients of b(x). Choose a consistent orientation of all the facets ((d - 1)-faces) 
of A and use this to induce an ordering of the elements of each facet. Let G be a subfacet 
((d - 2)-face) of A, and let F1 and F2 be the two facets containing G. Theorem 10 
implies that [F1]bEF,~ = [Fz]bEF + so a constant t exists such that bF • t[F] -1 for every 
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facet F.  The coefficients of  the non-square-free terms are then uniquely determined. So, 
up to scalar multiple, there is only one element in Se(A). [] 

In Section 9 the geometrical significance of this canonical linear d-stress (the one 
for which be = [F] -1 for each facet), in the case that A is the boundary complex of  a 
simplicial convex polytope, will become apparent. 

Suppose that A is a simplicial (d - 1)-complex on {1 . . . . .  n} and Vl . . . . .  vn ~ R a. 
For G = {il . . . . .  is }, a subset of  { 1 . . . . .  n}, define the function re  on the space of  linear 
stresses by 

aSb 
z t ( b )  = 

Oxi~ . . .  Oxi, " 

In particular, write 

Ob 
vi (b) . . . .  . 

Oxi 

T h e o r e m  15. Let A be a simplicial orientable (d - 1)-pseudomanifold on {1 . . . . .  n} 
and let vl . . . . .  vn E R d be in linearly general position with respect to A .  Suppose that 
b(x)  is the canonical linear d-stress o f  A and G is a f ace  o f  A o f  cardinality s. Then 
rG(b) is a linear (d - s)-stress supported on clstar G. In the special case that l k G  is 
a (d - s - 1)-sphere, then up to scalar multiple rG(b) is the unique nonzero linear 
(d - s)-stress supported on clstar G. 

Proof. The first part of  the theorem is obvious: if  the coefficient of  x r is nonzero in 
rG (b), then the coefficient of  Xil " . . x i ,  x r must be nonzero in b (x). Hence G U (supp x r) 
is a face of  A and so suppx r ~ clstar G. 

For the second part, note that clstar G can be obtained by starting with Ik G and 
successively joining it to the vertices of G. Since lk G is a (d - s - D-sphere,  it has a 
unique linear ( d -  s)-stress (up to scalar multiple). By repeated application of  Theorem 7, 
so does clstar G. Now it is easy to see that z~(b)  is nonzero since b(x)  is, and so z t ( b )  
must be a generator of  the linear (d - s)-stresses on clstar G. [] 

8. Shd l ings  

Consider a simplicial (d - 1)-complex on {1, . . . ,  n} such that every maximal  face has 
dimension d - 1 (is a facet). Then the complex is said to be shellable if  the facets can 
be ordered F1 . . . . .  Fm in such a way that, for k = 1 . . . . .  m, there is a unique minimal 
face Gk that is in F~ but is not in Uik__-~ ~ i .  Here, F i  denotes the simplicial complex 
consisting of all subsets of  F,-. It is well known that, as each facet Fk is added, precisely 
one component  hs of the h-vector increases by one, the remaining components  being 
unchanged; specifically, s = card Gk. Using this and understanding the changes in the 
face ring during the shelling, Kind and Kteinschmidt [9] give an inductive proof  that 
shellable simplicial complexes are Cohen-Macaulay.  

It is also possible to use generalized stress to prove this result by showing that the 
dimension of Ss e increases by one when Fk is added, while the dimensions of  the other 
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linear stress spaces do not change. However, we content ourselves with considering the 
special case when A is a simplicial (d - 1)-sphere. Assume that vl . . . . .  Vn ~ R d are in 
linearly general position with respect to A, and let b(x)  be the canonical linear d-stress 
on A. When Fk is added, the closed star of G~ = Fk\Gk  is completed. If card Gk = s, 
then card G~ = d - s, and Theorem 15 implies that up to scalar multiple there is a unique 
linear s-stress rG; (b) supported on clstar G~. The coefficient of this stress associated with 
the face Gk is nonzero, so this stress was not present before Fk was added. So we can 
use the shelling of A to derive a basis for the stress spaces. 

Theorem 16. l f  A is a sheUable simplicial ( d - -  1)-sphere whose n vertices, vl . . . . .  vn �9 
R d, are in linearly generalposit ion with respect to A ,  and F1 . . . . .  Fro, G] . . . . .  G~ and 
b(x ) are as above, then {rr, (b): card G' k = d - s} is a basis for  Ses. Hence the collection 

{rG(b): G is a face  o f  A o f  cardinality d - s} spans Se~. 

9. Simplicial Convex Polytopes 

In this section we specialize further and consider the case when A is the boundary 
complex of some simplicial convex d-polytope P C R a. This was the motivating case 
for defining generalized stress in the first place and trying to understand the g-theorem. 

9.1. Canonical Stress and Volume 

Assume that P contains the origin in its interior. Then the vertices vl . . . . .  on of P are in 
linearly general position with respect to A. Since A is shellable, we know dim S e = hi, 

i = 0  . . . . .  d. 
The definition of affine stress seems more geometrically natural for simplicial com- 

plexes since affine stress is invariant under translation. The linear stress spaces, while 
also geometrically definable, depend upon the choice of origin and change with transla- 
tion. It turns out, however, that this situation changes entirely when we turn to the polar 
P* of P and describe the linear stresses in terms of conditions on P*. This will become 
clearer in Section 10, but already in this section we begin to see the significance of using 
the polar to understand stress. 

Forx  �9 Rn, consider the polytope Q(x)  = {y �9 Rd: y T v  i < Xi, i = 1 . . . . .  n}. Of 
course, Q(e) is the polar P* of P. Since P* is simple, for values o f x i  n e a r  1, Q ( x )  and 
P* are strongly isomorphic. It is well known that the volume of Q(x)  as a function of 
the xi is a homogeneous polynomial V(x )  = )--~-r: Irl=d b r ( x r / r ! )  of degree d, br = 0 

whenever suppx r r P, and bF -~- [ F ]  -1  for every facet F of P. The canonical linear 
d-stress b(x)  on A also shares these properties, and so perhaps the following result is 
not completely unexpected: 

Theorem 17. Let P be as above. Then the canonical linear d-stress is precisely V (x ). 

Proof. F o r  e v e r y  u �9 R d, Q(x  I . . . . .  Xn) -t- u = Q ( x 1  --I- uT1)I . . . . .  Xn + uTvn) ( w e  a r e  
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just translating Q(x) by the vector u ). So V(xl . . . . .  x n ) - V ( x l + u r v l  . . . . .  xn+urvn) = 
0. Fix r such that [rl ---- d - 1. Then 

Od-1 
O = [ V ( X l  . . . . .  Xn) -- V ( x  1 + uTo1 . . . . .  X n + uTpn)]  

(OX1) rl " " " (OXn) r" 

d n 

= Y ~  br+e, Xi - -  - -  Z br+e, (xi -t- uT1) i) 

i=1 i=1 

~-~ br+eiUT tli 
i=1 

uT  br+e Vi �9 
\ i = l  ' / 

However, this is true for every u, so Y~-7=1 br+e, Pi = 0 and V(x) is a linear d-stress. 
That V(x) is the same as the canonical linear d-stress follows from the fact that the 
coefficients of  the square-free terms of  V(x) agree with those of  the canonical linear 
d-stress. []  

9.2. Lower-Dimensional Canonical Stresses 

The above proof mimics the proof of  Minkowski 's theorem that 

n /)i .~vob_~(~)~ = o ,  

which we already used in Section 5. (F1 . . . . .  Fn are the facets of  P* corresponding to 
the vertices Vl . . . . .  vn of  P.)  In fact, the relationship between Minkowski 's theorem and 
stress is quite strong, as we will see. 

One way to prove the g-theorem would be to show that the application o f  09d-2i 
induces a bijection between Sed_i and S/e, i = 0 . . . . .  [d /2J .  Actually, it would suffice to 
show that 09: S/e --+ Se_l is surjective for i = 1 . . . . .  Ld/2J. McMullen's  new proof of  
the g-theorem shows that the bijections proposed here are valid. 

Given the canonical linear d-stress V (x), we might consider applying 09 repeatedly 
to get canonical linear i-stresses 09d-i(V(x)), i ----- 0 . . . . .  d -- 1. Let W(x) = V(xl + 
1 . . . . .  xn + 1). Then, for small x, W(x)  is the volume of  a polytope near P*. Write 
W(x) = )-]/d=l Wi(x), where Wi(x) is a homogeneous polynomial o f  degree i, i = 
0 . . . . .  d. It is clear that the constant Wo(x) is the volume of  P* and Wd(X) = V(x).  It 
is also easy to see that W1 (x) = )--]~=1 (VOld-1 (Fi)/ll vi II)xi. 

Theorem 18. Let P be as above. Then J - i ( V  (x)) = (d -- i)! Wi(x), i = 0 . . . . .  d. 

Proof. We calculate the contribution o f  br(xr/r!) in V(x) to the coefficient o f x  s in 
Wi (x), where x s I xr. Expanding 

br (Xl + 1) r~ " ' "  (xn + 1) r" 

r l ! . .  �9 rn! 
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we see that the contribution is 

b r(::/ t::__) = b r 
rl[ " 'rn!  Sl[(rl - - S l ) [ ' ' ' S n ! ( r n  - -Sn)!  

On the other hand, the contribution of 

X r X1 J r. 
br T. = br "'" xn 

�9 r l [  �9 r n !  

in V(x)  to the coefficient o f x  s in wd-i (V(x)) ,  where i = d -- [s[, is 

d-i 
br (r,-s, ....... --sn) = (d -- i)[br 

rl[ ' ' ' rn!  Sl! (rl - - S l ) I ' " S n I ( r n - - S n ) [ "  
[] 

Corollary 5. Let P be as above. 

1. The canonical linear O-stress ofl (V (x ) ) equals d! vol(P*). 
2. The canonical linear 1-stress w d-1 (V (x ) ) equals 

?1 
(d - 1)! E VOld- l (Fi)  

i=l [11)i [I Xi" 

That is, the canonical linear combination of  the vi induced by co is (up to scalar 
multiple) the same as that induced by Minkowski' s theorem. 

We can find the coefficient of the square-free term of Wi corresponding to an (i - 1)- 
face F of P by looking at the corresponding (d - / ) - f a c e  F* of P* and computing the 
contribution to the local change in the volume of P* due to the translations of the facets 
containing F*. This change depends upon the (d - / ) - v o l u m e  of F* and the size of  the 
cone of the associated normal vectors, rescaled to account for the fact that they may not 
be of unit length. 

Theorem 19. The coefficient of the square-free term of Wi corresponding to F is 

VOld_/ (F*) 

voli(conv({O} kJ {vi: i E F}))" 

See also [4]. 
So each Wi is associated in a very natural way with the (d - / ) - v o l u m e s  of the 

(d - / ) - f a c e s  of P*. 
Notice that we can write 

d 
W(x) = ~ Wi(x) 

i=0 

d t o d - i ( v ( x ) )  

= Z (d---i)--T i=O 

d wi(V(x))  

= Z  i! i=0 
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9.3. Easy Bijections 

Some of the bijections associated with 09 can now be confirmed. 

413 

T h e o r e m  20, Let P be as above. Then Cod: SJ ~ S~ is a bijection. Further, if d > 3, 
then wd-2: Se_l ~ Sel is a bijection. 

Proof The first statement is trivially true by part  (1) o f  the previous corollary 
simply because P* has positive (and hence nonzero) volume. From the D e h n -  
Sommerville relations we know that dim Sde_l = hd-i = hi = dim S(. So it suffices 
to show that 09d-2:S~_1 ~ S~ is a surjection. From Theorem 16 we know that 
{r l (V(x))  . . . . .  rn(V(x))} spans SJ_ 1. We need to show {09d-2r1(V(x)) . . . . .  
wd-2rn (V (x))} spans S~. Since dim S~ = h l = n - d, it is sufficient to demonstrate that 
the given subset of  S~ has rank n - d .  However, since 09 and ri commute,  this subset equals 
( d - 2 )  ! {rl (W2 (x)) . . . . .  r ,  (W2 (x)) }. It is straightforward to check that )--~__- 1 xi ri (W2 (x)) 
= 2W2(x). It is known from the Brunn-Minkowski  theory that the quadratic form W2(x) 
has d zero eigenvalues (associated with the space of  translations x = (u r Vl . . . . .  u r v,)),  
one positive eigenvalue, and n - d - 1 negative eigenvaiues; see, for example,  [5]. So 
the rank of the quadratic form is n - d, as is required. Note that this is the case r = 1 of  
the Hodge-Riemmann-Minkowski  inequalities developed by McMullen [ 1 3]. [] 

This theorem implies that 09: S e ~ S( is a surjection when d > 3. Therefore 
dim S~ = h2 - hi = g2 > 0, and we have bound together the main ideas of  Stanley's 
and Kalai 's  different proofs of  the Lower Bound Theorem. 

9.4. Simplicial 3-Polytopes 

What we have done so far essentially gives a complete description of the situation for 
simplicial 3-polytopes. If  P above is three-dimensional, then: 

1. The canonical linear 0-stress is 3 ! times the volume of  P*. 
2. The canonical linear 1-stress is equivalent to the linear relation induced by 

Minkowski 's  theorem. 
3. The canonical linear 2-stress is the classical Maxwell  stress (shown by FiUi- 

man [5]). 
41 S e = R .  
5. Sf has dimension n - 3 and is isomorphic to the space of  all linear relations on 

the vi. 
6. $2 e has dimension n - 3, is spanned by the r iV(x) ,  and is isomorphic to S~ under 

the bijection induced by multiplication by 09. 
7. $3 e is spannedby  V(X) .  
8. S ~ = R .  
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9. S~ has dimension n - 4 and is isomorphic to the space of all affine relations on 
the vi. 

10. S~ and S~ are trivial. 
11. That o93:$3 e --+ So t is a bijection is equivalent to P* having nonzero volume. 
12. That o9:$2 e ~ S~ is a bijection is equivalent to infinitesimal rigidity of the edge- 

skeleton of P and and is a consequence of the Brunn-Minkowski theory. 

So already in dimension three there is a striking confluence ofgeometric and algebraic 
results. 

10. Relationship to Weights 

10.1. Ring o f  Differential Operators 

Let A be the boundary complex of a simplicial convex d-polytope P containing 
the origin in its interior, and let Vl . . . . .  vn be the vertices of P. Consider the ring 
R[O/OXl . . . . .  O/OXn] of all differential operators with constant coefficients in the vari- 
ables xl . . . . .  xn. Define the polynomial V ( x )  as before and factor out the ideal of 
operators that annihilate the polynomial V(x ) .  Khovanskii (personal communication) 
observes that the resulting ring D is isomorphic to the cohomology ring of the projective 
toric variety associated with P. This implies the following result, which can be proved 
directly. 

Theorem 21. Let A be as above. Then D is isomorphic to B = A/(01 . . . . .  Od) where 
the coefficients o f  the Oi are related to the coefficients o f  the vertices o f  P as in Section 3.2. 

Proof. Clearly, r s ( V ( x ) )  equals zero for any subset S r A. However, the invariance 
of the polynomial V (x) under translation (see the proof of Theorem 17) implies that 

a v ( x )  _ 0 

i=l 1)ij OX-------Z 

for each j = 1 . . . . .  d. Finally, Theorem 16 implies that the image of V ( x )  under 
the homogeneous differential operators of degree k spans Sde_~, hence has dimension 
hd-k ---- hk. Using Theorem 2, this suffices to prove that D is isomorphic to B under the 
map O/Oxi --~ X i . [] 

This viewpoint allows us to define a multiplication on stresses. Let a(x)  and b(x)  be 
linear stresses. Find operators a' and b' such that a' ( V (x ) ) = a (x ) and b' ( V (x ) ) = b(x  ). 
Define a ( x ) .  b(x)  to be the linear stress (a 'b ' ) (V(x ) ) .  The multiplication is well defined, 
f o r i f  a " ( V ( x ) )  = a(x )  and b" (V (x ) )  = b(x) ,  then 

(a"b" - a'b') (V (x)) = (a"b" - a 'b" § a'b" - a'b') (V (x)) 
= b"(a"  - a ' ) ( V ( x ) )  + a'(b" - b ' ) ( V ( x ) )  
~ - 0 .  
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It is also clear that the product of  a (d - / ) - s t r e s s  and a (d - j ) -s t ress  is a (d - i - j ) -  
stress. Writing ~/e = S~_i" we then regard the space of  all linear stresses as a graded 

algebra S0 e <9---  ~ Sae. This algebra is isomorphic to D, hence also to B. 
It sometimes helps to take a slightly schizophrenic viewpoint, on the one hand thinking 

of  a linear stress a(x) as a polynomial,  and on the other identifying it with the operator 
a '  for which a'(V (x)) = a(x). 

10.2. Weights 

McMullen reproved the g-theorem using the notion of weights on polytopes. An i-weight 
on a convex polytope P is a real-valued function a on the / - faces  of  P which satisfies 
the Minkowski relation 

Z a(F)UF, G = 0 
FcG 

for each (i + D-face G of  P.  Here the sum is taken over all i-faces F contained in G, 
and UF, G is the unit outer normal vector of  F with respect to G within a f fG .  Clearly, 
one na tura l / -weight  is given by a(F)  = vol i (F)  for each i-face F.  We call this the 
canonical i-weight. The real vector space of / -weigh ts  on P is denoted ~ i  (P) ,  and we 
denote (~=o ~ i (P)  by ~ ( P ) .  McMullen [14] defines a multiplication on f~(P)  that 
endows ~ (P)  with a graded algebra structure. 

T h e o r e m  22. Let A be the boundary complex of a simplicial convex d-polytope P C 
R d containing the origin in its interior, and take Vl . . . . .  vn to be the vertices of  P. Then 
S/e(A) is isomorphic to f2e-i( P*) as vector spaces. 

Proof. Suppose that b(x) is a linear k-stress. Then, by condition (6), for every face G 
of  cardinality k - 1 we have the condition 

Z bG+iWi = O. 
i ~lk G 

For a particular i ~ lk G and F --- G + i, wi is in the same direction as the corresponding 
uG*,r*. So, writing (G) for vold_k(conv({O} U {vi: i ~ G})) and similarly for (F) ,  we 
have 

~-~ bG+itOi : O, 
iElk G 

E bFUG,.F*IIWill = O, 
F=G+iDG 

E bFUG*'F* (F) = O, 
F~G (G) 

E bFUG%F,(F) = O. 
F*cG* 

Hence taking a(F*) = bF(F)  for each (d - k)-face F* yields a (d - k)-weight  
on P*. [] 
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Although we do not give the details here, it can be shown that the above map is an 
algebra isomorphism from S0 ~ ~ . - -  ~ Sd e tO f2(P*), and that the ring D of differential 
operators is isomorphic to the polytope subalgebra FI (P*) defined by McMullen [ 13]. 

10.3. The Logarithm of a Polytope 

In the next few sections we sketch some relationships between weights and stresses. 
I f  we rescale the vectors vi so that they become unit vectors, then the matrix 

becomes 

U l  � 9  Un] , 
7/'1 � 9  7/" n 

where zri = ]lvi II -1, i = 1 . . . . .  n. We can define linear stress spaces S--/e with respect to 
�9 ~ n u l , . .  un. Theroleofog= ~_,i=l(O/ x i ) i s rep lacedby thato f '~= vZ'_,in=lzri(O/Oxi)in 

the results we have presented so far. McMullen proves that multiplication by 
~---d-2i is a bijection from ~i to f2d-i, i = 0 . . . . .  Ld/2J. Note that P* is now given 
by {y ~ Rd: y r .  uri < rri}. So we replace Q(x) by Q(x)  = {y e Rd: yrui < xi} and 
define V (x) = vol Q (x). In a similar way, we define Wi (x), i = 0 . . . . .  d. We still have 

(V(x)) 
W(x)  = ~ i! 

i = 0  

Let p = ~, and Pi = Wi, which corresponds to the canonical/-weight on P*. Then 
Pi = pi / i ! (keeping in mind our willingness to confuse at our convenience a differential 
operator with the image of V(x) under the action of the operator). Formally writing 
[P*] = ~_,di=l Pi, we have 

a pi 
[P*] = 

This corresponds to the result of McMullen [13], [14] that [P*] = e x p p  and p = 
log[P*]. 

10.4. Restrictions 

The dual interpretation of Theorem 15 is interesting. Let G be a face of P of cardinality 
s, and let a(x) be the unique (up to scalar multiple) (d - s)-stress supported on clstar G. 
Then a(x) is dual to the necessarily unique s-weight a* supported on the set of all s- 
faces that meet G*. We call a* the weight associated with G*. In particular, the weight 
associated with a facet F* of P* is a 1-weight that is supported on the edges of P* that 
meet F*, and so this must be the same weight described by McMullen in [14]. 
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What is dual to the notion of  the restriction of  an / -weigh t  a* on P* to a facet F*? Let 
a(x) be the dual (d - / ) - s t r e s s  on P and let vk be the vertex of  P corresponding to F*. 
We could simply truncate a (x), eliminating the terms not supported on openstar Vk. This 
would not necessarily be a stress on openstar Vk, but it would directly correspond to the 
restriction of a* to F*. On the other hand, we can apply O/Oxk to a(x), which depends 
only on the terms of  a(x)  that are supported on openstar Vk. This gives a (d - i - 1)- 
stress on clstar vk. Projecting clstar vk onto a hyperplane orthogonal to vk, deleting Ok, and 
applying Theorem 7 yields a simplicial (d -- 1)-polytope F dual to F* and a (d - i - 1)- 
stress dual to the restriction of  a* to F*. 

We now have another way of  interpreting McMullen 's  alternative formula [13], [ 14] 
for multiplying by a 1-weight a*. Remembering that we can view a linear i-stress on 
P as either a polynomial of  degree i or an operator o f  degree (d - i) as it suits us, we 
choose to let a* correspond to an operator a = )--~=1 rlj(O/Oxj) of  degree 1, and to let 
any other given weight y* correspond to a polynomial y. Then 

n Oy 

ya = E rlj Oxi' 
i=1 

which can be regarded as a dual recasting of  McMullen 's  formula 

n 

y'a* = E rlia*(F~)' 
i=I 

where a*(F*) denotes the restriction of  a* to the facet F*. 

10.5. Shellings and Flips 

McMullen [13] uses a shelling argument directly on the simple polytope P* to find a 
basis for f2 and to prove that dim f2i = hi, i ---- 0 . . . . .  d. A general hyperplane is moved 
"upward" through P*. When a vertex of  type i is encountered (i.e., a vertex with exactly 
i edges "below" the hyperplane), an arbitrary/-weight can be assigned to the / - face  F 
determined by these edges. The Minkowski relations defining the weights can be used 
to find the unique/-weights that must be assigned to the/ - faces  that do not have a vertex 
o f  type i at the top. 

It happens that this basis is not dual to the closed star stress basis constructed in 
Section 8. For the dual basis, again a general hyperplane is moved upward through P*. 
When a vertex of  type i is encountered, we take F* to be the accompanying/-face and add 
into the basis for f2d_i the (d -/)-weight associated with F* as in the previous section. 
In some sense the elements of  this basis are more local than those of  McMullen 's  basis. 

We conclude with some comments on McMullen's  flips [13]. As he points out, flips 
are dual to bistellar operations. Even though we are considering bistellar operations in 
a more general context, it is straightforward to verify that our Theorem 13 is dual to 
McMullen's  Theorem 11.3 in [13], and that the justifications of  these two theorems are 
essentially the same in a combinatorial sense. 
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11. Generalized Circulations 

In Section 5 we considered a matrix whose left nullspace defined affine k-stress. The fight 
nullspace then turned out to be an appropriate generalization of infinitesimal motions. 
We can try the same procedure with k-weights on a simple d-polytope P. For each 
(k + 1)-face G, consider a rigid motion ~oG that maps affG onto (R k+l , 0 . . . . .  0) C R d 
and then projects this space naturally onto R k+l. Construct a matrix R with one row 
for each k-face F of P and columns occurring in groups of k + 1, one group for each 
(k + 1)-face G. The row vector of length k + 1 in row F, group G, is 

O r if Fff .  G, 
goG(u~,a) if F C G, 

where UF,6 is the unit outer normal vector of F with respect to G in affG. 
Define m = ~0 -1 (m') (where ~o -1 is interpreted in the obvious way) to be a (k + 1)- 

circulation when m' is a member of the fight nullspace of R. So m is an assignment to 
each (k + 1)-face G of a vector parallel to G that satisfies the conditions 

E mG �9 UF, G ~ 0 
GDF 

for every k-face F. Denote the space of (k + 1)-circulations by Ck+l. 
In the case that k = 0, we have a vector, or flow, associated with each edge of P and 

a condition on each vertex of P that forces flow conservation. For higher values of k we 
can interpret the (k + 1)-circulation as a translation of the (k + 1)-dimensional content of 
the (k + 1)-dimensional faces in directions parallel to these faces with flow conservation 
across every bounding k-face. 

Theorem 23. Let P be a simple d-polytope. Then dim C k  + 1 -~- hk -- f k -I- ( k + 1)fk+l. 

Proof. This is an immediate consequence of the fact that R is an fk x (k + 1)fk+l 
matrix with a left nullspace of dimension hk. [] 

It is clear that dim C1 = h0 - f0 + fl = fl  - fo + 1, which is the dimension of the 
space of ordinary circulations on a graph with f0 vertices and fl  edges. In general, in 
terms of the f-vector  of the simple d-polytope P (the reverse of the f-vector  of the dual 
simplicial polytope) 

d ( _  1 j-k(J)k h * =  E ) 3~ 
j=k 

( _ l ) J - k  J - = f k - - ( k + l ) f k + l +  E JJ" 
j=k+2 

So 
d 

dim Ck+ 1 E ( -  
j=k+2 k,k] j" 
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12. Unbounded Simple Polyhedra 

Consider the boundary complex A of  a simplicial convex d-polytope P with vertex set 
vl . . . . .  vn. Consider the ring B = Bo <9.. .  <9 Ba = A/(O1 . . . . .  0n), where the Oi are 
constructed from the vj as in Section 3.2. As we have already mentioned, the g-theorem 
implies that hi = hd-i,  i = 0 . . . . .  ld/2J and also that gi > gi-1, i = 1 . . . . .  /d /2J ,  
and this is proved by showing that multiplication by w d-2i is a bijection between Bi and 
Bd_i, i = 0 . . . . .  /d/2J.  

Now let v be any vertex of  P and consider the simplicial complex E = A \ v .  In [3] 
it is proved that h i (E)  > hd_i(E), i = 0 . . . . .  [d /2J ,  and also that h i ( E )  > h i + l ( E ) ,  

i = Ld/2J . . . . .  d. This is a consequence of  the g-theorem, but now we can view this as 
a consequence of  a weakened Lefschetz-type theorem on the face ring of  E.  Let A t = 
R[xl . . . . .  xn]/l:: and B' = B~ <9. . .  <9 B' d = A'/(O1 . . . . .  Od). Take o: = Xl + . . .  + xn 
as before. 

Theorem 24. Multiplication by (0 d-2i is a surjectionfrom Bi to Ba-i,  i = 0 . . . . .  /d /2J .  

It is more convenient to prove this with weights instead of  stress. Let P* be the simple 
d-polytope dual to P and let F* be the facet of  P* corresponding to v. It can be arranged 
(for example, by choosing the origin suitably close to v) that discarding the inequality 
defining the facet F* results in an unbounded simple polyhedron Q* which is dual to 
the simplicial complex E. We can define weights on Q* in the natural way, even though 
Q* is unbounded. So dim [2i(Q* ) = hd- i (E) ,  i = 0 . . . . .  d. What we actually prove is: 

Theorem 25. Multiplication by pd-2i is an injection from ~'~i(Q*) to ~'2d_i(Q*), i = 
0 . . . . .  l a / 2 j .  

Proof. Use McMullen's  construction to consider a basis of  f2(P*) determined by a 
hyperplane. Choose this hyperplane so that it first moves past the vertices in F* before 
it encounters the remaining vertices of  P*; i.e., arrange for F* to be at the "bottom" 
of  P*. 

Consider a vertex vj of  type i in P and the associated basis element a o f  f2i (P*). In the 
case that vj is also in F*, vj is also a vertex of  type i in F* and the restriction of  a to F* is 
an element of  the basis of  f2 (F*). Reversing this restriction gives an injection of  f2i (F*) 
into ~'2 i (P*).  In the case that vj is not in F*, the restriction of  a to F* is zero. Notice that 
the weights of  Q* correspond naturally to the weights of  P* that are zero on F*. Hence 
we have an injection of  f2i (Q*) into ~i(P*). Identifying f2i (F*) and f2i (Q*) with their 
images in [2i(P*) yields the direct sum decomposition ~i(P*) = ~2i(F*) <9 ~i(O*). 

Looking at the description of  the multiplication of  weights in McMullen [ 13], it is 
seen that multiplying p by a weight that is zero on F* results in a weight that is also zero 
on F*. Therefore, since multiplication by pd-2i is a bijection from f2i (P)  = f2i (F*) <9 
ff2i(Q*) to ~ d - i (  P)  = ~ d - i (  F*) <9 f2d-i(Q*), it must be an injection from ~2i(a* ) to 

~'~ d-i ( Q* ). [] 
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