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AbstraeL The nonrevisiting path conjecture for polytopes, which is equivalent to the 
Hirsch conjecture, is open. However, for surfaces, the nonrevisiting path conjecture is 
known to be true for polyhedral maps on the sphere, projective plane, toms, and a Klein 
bottle. Barnette has provided counterexamples on the orientable surface of genus 8 and 
nonorientable surface of genus 16. In this note the question is settled for all the remaining 
surface except the connected sum of three copies of the projective plane. 

1. Introduction 

One of the most well-known open problems in the combinatorial theory of polytopes 
is the Hirsch conjecture, which gives an upper bound on the diameter of the graph of a 
polytope. The graph ofa  polytope P is the 1-skeleton of P. More specifically, the Hirsch 
conjecture states that A(d, n) < n - d, where A(d, n) is the maximum diameter among 
the graphs of d-dimensional polytopes with n facets. A facet is a (d - 1)-dimensional 
face. The Hirsch conjecture was formulated by Hirsch in 1957 and reported by Dantzig 
in his book Linear Programming and Extensions [5]. The conjecture has implications 
for the complexity of linear programming algorithms like the simplex method. Since 
the distance between two points on the graph of a polytope P is a lower bound on the 
number of iterations of an edge-following algorithm for an LP problem with feasible 
region P,  the diameter A (d, n) gives the worst-possible complexity for the best-possible 
edge-following algorithm. A nice survey on the Hirsch conjecture is the paper by Klee 
and Kleindschmidt [9]. 

Equivalent to the Hirsch conjecture is the nonrevisiting path conjecture [8] of Klee 
and Wolfe. If  p is a path in the graph of a polytope, a revisit of p to a face F is a pair of 
vertices (x, y) such that p[x, y] N F = {x, y}, where p[x, y] is the path along p from 
x to y. In other words, p visits F at x, leaves F, and subsequently, revisits F at y. 
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Nonrevisiting Path Conjecture. Any two vertices of a polytope P can be joined by a 
path that does not revisit any facet of P. 

The Nonrevisiting Path Conjecture is known to be true for three-dimensional poly- 
topes [1] and is open in higher dimensions. Klee and Walkup [10] showed it to be false, 
in general, for unbounded polyhedra. Klee [7] has asked about the validity of the Non- 
revisiting Path Conjecture for more general complexes. Since the underlying topological 
space of the boundary complex of a polytope is a sphere, it is natural to ask whether 
the conjecture is true for cell complexes whose underlying space is a sphere. In this 
regard, the conjecture is true for 2-spheres, but there is a counterexample due to Mani 
and Walknp [11] for the 3-sphere. 

This note concerns the Nonrevisiting Path Conjecture for polyhedral maps. By a 
surface S we mean a connected, compact 2-manifold without boundary. These comprise 
the orientable surfaces Tg of genus g, which are the connected sums of g toil, and the 
nonorientable surfaces Uh, which are the connected sums of h projective planes. Let G 
be a graph embedded on a surface S. The closure of a connected component of G\S is 
called a face. If the faces are all simply connected and the intersection of any two distinct 
faces is either a common edge, common vertex, or empty, then M = (G, S) is called 
a polyhedral map. Two distinct faces that satisfy the condition stated above are said to 
meet properly. A surface S has the nonrevisiting path property if, for any polyhedral 
map M on S and any two vertices x and y on M, there is a path joining x to y that does 
not revisit any face. Recent research has been directed toward the following question. 

Question. Which surfaces possess the nonrevisiting path property? 

The nonrevisiting property holds for the sphere [ 1 ], [8], projective plane [2], torus [3], 
and Klein bottle [6], [12]. However, Barnette [4] has recently provided counterexamples 
for/ '8 and U16. In this note we settle the question for all the remaining surfaces except 
U3, the connected sum of three copies of the projective plane. This may also clarify a 
misconception [6] that the nonrevisiting path property holds for T2, the two-hole torus. 

Theorem. The nonrevisiting path property holds for the sphere, torus, projective plane, 
and Klein bottle; it does not hold for all other surfaces except possibly U3. 

2. The Counterexamples 

The proof of the theorem stated in the Introduction requires the construction of coun- 
terexamples for all surfaces except the sphere, projective plane, torus, Klein bottle, and 
/-/3. The first counterexample is a polyhedral map M on T2. Figure 1 shows 16 faces. The 
polyhedral map M is obtained by identifying like labeled edges of these faces. In order 
to conclude that the result is indeed a polyhedral map, it must be verified that: 

(1) The neighborhood of each vertex is homeomorphic to a disk (as opposed to, say, 
two disks pinched together at that vertex). 
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Fig. 1. Counterexample M on surface T2. 
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(2) Pairs of distinct faces meet properly. 
(3) The surface is T2. 

It is easy to check that the boundary cycles of the faces have a coherent orientation, 
i.e., an orientation such that, for each edge, the directions induced by the two incident 
faces are opposite. Thus the surface is orientable. Because the surface has 10 vertices, 
28 edges, and 16 faces, the Euler characteristic is g = 10 -- 28 + 16 = --2, which 
implies that the genus is (2 - X)/2 = 2. Therefore the surface is T2. Conditions (1) and 
(2) above are easily checked since the example is small. 

To show that M does not satisfy the nonrevisiting property, we prove that the vertices 
labeled x and y in Fig. 1 cannot be joined by a nonrevisiting path. Assume, by way of 
contradiction, that p is a nonrevisiting path joining x and y. Because of the symmetry 
of M there is no loss of generality in assuming that the vertex adjacent to x along p 
is the vertex labeled A. The path p has now left the faces labeled F3 and Fa and has 
visited the face F6. Since p is assumed to be nonrevisiting and the vertex y lies on F6, 
the remainder of  p must also lie on the face F6. There are two ways to get from A to 
y along F6, via vertex 2 or via vertex 3. If  p passes through vertex 2, then the face F4 
is revisited by p; if p passes through vertex 3, then the face F3 is revisited. Either way 
leads to a contradiction. 

In order to construct a counterexample for the surface Tg, g > 3, let M be a polyhedral 
map on the surface Tg_2 such that M has a triangular face F0. The connected sum M#M 
of M and M, formed by removing face F0 from M and face F9 of M and identifying 
the two___triangular boundary cycles, is a map on the surface Tg..__Moreover, any two faces 
of M#M meet properly; otherwise if faces F in M and F '  in M meet improperly, then 
either F and F9 meet improperly on M or F '  and F0 meet improperly on M. Both are 
impossible because M and M are polyhedral maps. The proof that x and y cannot be 
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Fig. 2. Counterexample N on surface U4. 
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joined by a nonrevisiting path in M # M  is identical to the proof for M alone. Thus the 
theorem is proved for the orientable surfaces. 

For the nonorientable case consider the 17 faces in Fig. 2. As in the orientable case, 
identify edges with the same labels to obtain a polyhedral map N. It is easy to verify 
that the surface is nonorientable because there is no coherent orientation of the boundary 
cycles of the faces. The Euler characteristic is 11 - 30 + 17 = - 2 ,  so the underlying 
surface is U4, the connected sum of four projective planes (or, equivalently, two Klein 
bottles or a torus and Klein bottle). The proof that N does not satisfy the nonrevisi t ing 
path property is identical to the one given for M. Counterexamples for the surfaces 

Uh, h > 5, are also obtained in a manner  similar to the orientable case, by taking the 
connected sum of N and a polyhedral map N on Uh-4.  
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