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Abstract.  Let K be a configuration, a set of points in some finite-dimensional Euclidean 
space. Let n and k be positive integers. The notation R(K, n, r) is an abbreviation for the 
following statement: For every r-coloring of the points of the n-dimensional Euclidean 
space, R", a monochromatic configuration L which is congruent to K exists. 

A configuration K is Ramsey if the following holds: For every positive integer r, a 
positive integer n = n(K, r) exists such that, for all m > n, R(K, m, r) holds. 

A configuration is spherical if it can be embedded in the surface of a sphere in n-space, 
provided n is sufficiently large. It is relatively easy to show that i fa  configuration is Ramsey, 
it must be spherical. Accordingly, a good fraction of the research efforts in Euclidean Ramsey 
theory is devoted to determining which spherical configurations are Ramsey. It is known 
that the n-dimensional measure polytopes (the higher-dimensional analogs of a cube), the 
n-dimensional simplex, and the regular polyhedra in R 2 and R 3 are Ramsey. 

Now let E denote a set of edges in a configuration K. The pair (K, E) is called an edge- 
configuration, and Re(K, E, n, r) is used as an abbreviation for the following statement: 
For any r-coloring of the edges of R", there is an edge configuration (L, F)  congruent to 
(K, E) so that all edges in F are assigned the same color. 

An edge-configuration is edge-Ramsey if, for all r > 1, a positive integer n = n (K, E, r) 
exists so that i fm > n, the statement Re(K, E, m, r) holds. If K is a regular polytope, it is 
said K is edge-Ramsey when the configuration determined by the set of edges of minimum 
length is edge-Ramsey. 

It is known that the n-dimensional simplex is edge-Ramsey and that the nodes of any 
edge-Ramsey configuration can be partitioned into two spherical sets. Furthermore, the 
edges of any edge-Ramsey configuration must all have the same length. It is conjectured 
that the unit square is edge-Ramsey, and it is natural to ask the more general question: 
Which regular polytopes are edge-Ramsey? 

In this article it is shown that the n-dimensional measure polytope and the n-dimensional 
cross polytope are edge-Ramsey. It is also shown that these two infinite families and the 
n-dimensional simplexes are the only regular edge-Ramsey polytopes, with the possible 
exceptions of the hexagon and the 24-cell. 
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1. Introduction 

In [6], Erd6s et al,, noted the following facts: 

Theorem 1.1 [6]. The k-dimensional simplex is edge-Ramsey. 

Theorem 1.2 [6]. If an edge configuration (K, E) is edge-Ramsey, each of the edges 
in E must have the same length. 

In [ 15] Graham proves the following results: 

Theorem 1.3 [15]. If an edge configuration (K, E) is edge-Ramsey, the endpoints of 
the edges in E can be covered by the surfaces of two spheres. 

Let (K, E) be a configuration. Then let G (K, E) denote the graph whose vertex set 
is K and whose edge set is E. 

Theorem 1.4 [15]. If (K, E) is a configuration of line segments such that K is not 
spherical and G(K, E) is not bipartite, then (K, E) is not edge-Ramsey. 

In this dissertation when we say that a polytope is edge-Ramsey, we mean that the 
edge configuration determined by its edges of minimum length is edge-Ramsey. When 
we say a configuration is bispherical we mean that its vertices lie on two spheres, but no 
single sphere contains all its vertices. We prove the following: 

1. The measure polytope, the n-dimensional analog of the cube, is edge-Ramsey 
(Theorem 2.1). 

2. The cross polytope, the n-dimensional analog of the octahedron, is edge-Ramsey 
(Theorem 3.3). 

3. If a configuration is edge-Ramsey when we allow similarity as well as congru- 
ence transformations, it is edge-Ramsey under congruence transformations alone 
(Theorem 5.4). 

4. There is an edge-configuration (K, E) with K bispherical and G(K, E) bipartite 
such that (K, E) is not edge-Ramsey (Theorem 5.1). 

5. The only regular polygons that can be edge-Ramsey are the triangle, the square, 
and the hexagon (Theorem 4.3). 

6. We can obtain a complete classification of those regular polytopes which are edge- 
Ramsey, except for the hexagon and the 24-cell (Section 4). These last two cases 
remain unsolved. 

2. All n-Dimensional Measure Polytopes are Edge-Ramsey 

Let (K, E) be an edge-configuration. Recall that we use Re (K, E, n, r) as an abbreviation 
for the statement that, for any r-coloring of the edges of R n, there is an edge configuration 
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(L, F)  congruent to (K, E) with all edges of  F assigned the same color. An edge- 
configuration (K, E) is edge-Ramsey if, for all r, there is an n such that statement 
Re(K, E, n, r) is true. Erd6s et al. have asked if  the square is edge-Ramsey [6]. The 
answer is yes. In this section we prove a generalization (Theorem 2.1) of  this result. 

To state the generalization we need two definitions. An n-dimensional measure poly- 
tope is the n-dimensional analog of  the cube. We use the term n-dimensional measure 
polytope here to conform to the system of names o f  regular polytopes used by Coxeter 
in [4]. It is the convex hull o f  all points in R n with all coordinates equal to 0 or 1. 

A face polytope of a convex polytope, K,  is the intersection of  K and a nonempty 
set of  the boundary hyperplanes of  K. Of  course, a face polytope of  K has smaller 
dimension than K. The face polytopes o f  an n-dimensional measure polytope with side 
a are measure polytopes with side a of  dimension n - 1 or less. 

For example, a cube is a three-dimensional measure polytope. It has six face polytopes 
of  dimension two and twelve face polytopes o f  dimension one. 

Theorem 2.1. For all r, n, m, and a, there is a p such that if the m-dimensional 
measure polytopes of side a whose vertices have coordinates equal to 0 and a /21/2 are 
r-colored in R p, there is an n-dimensional measure polytope of  side a such that all its 
m-dimensional face polytopes are the same color. 

Before giving the proof, we must state some facts about coordinate representations 
and prove a lemma. One way of  representing the 2 n points of  an n-dimensional measure 
polytope of  side a in any s-dimensional space where s > 2n is as follows. First pick out 
2n coordinates and arbitrarily fix the remaining s - 2n coordinates. Then form n pairs of  
consecutive coordinates from the 2n coordinates. In each pair let one coordinate equal 
a/21/2; let the other equal 0. 

Since there are two ways of  assigning coordinates to each consecutive pair, there are 
2" such points. All m-dimensional face polytopes are sets of  2"  points whose coordinates 
are fixed in n - m of  the pairs and allowed to vary in the remaining m coordinate pairs. 
Note that there is only one such polytope in 2n-dimensional space since there are no 
dimensions whose coordinates may be arbitrarily fixed. 

Call the pairs of  coordinates allowed to vary moving coordinate pairs. Call a mea- 
sure polytope with this coordinate representation an n-dimensional measure polytope in 
moving coordinate form with side a. There are other simpler representations, but this 
one is needed in the proof of  Lemma 2.1, 

Lenuna  2.2. For any m, n, r, and a, there is s such that if the m-dimensional measure 
polytopes of side a in R s are r-colored, an n-dimensional measure polytope of side a in 
R s exists such that if two of its m-dimensional face polytopes are translates, they are the 
same color. 

Proof. Recall Ramsey's theorem states that, for every n > m and every r, there is a 
number s ---- Ram(n, m, r) such that if all the m-element subsets of  an s-element set S 
are colored using r colors, there will be an n-element subset of  S with all its m-element 
subsets the same color. Let r '  = r (~") .  
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Let s = Ram(2n, m -t- n, r '). Color the m-dimensional polytopes of side a of R s with 
r colors. From this coloring, derive an induced coloring of the m + n sets of a set of s 
elements with r '  colors as follows. For every subset T of m + n elements of the s-element 
set S, pick the corresponding set T' of m + n coordinates of R s. Recall that (~+n) is the 
number of ways 2m elements can be chosen from an m + n set. Then for each of the 
(mz~n) sets of 2m elements of T, we obtain an m-dimensional measure polytope of side 
a as follows: 

First fix a 2m-element subset U contained in T. Form the set of coordinates, U', 
corresponding to elements in U. Then set a coordinate equal to 0 if it is not a member of 
T', and set a coordinate equal to a/2 I/2 if it is a member of T'  but not of U'. From the 
2m coordinates of U'  form m pairs by putting the first two elements in one pair, the third 
and fourth in another, etc., until we have m pairs. Then let these pairs be the moving 
pairs. Then, by the previous note, the figure thus obtained is an m-dimensional measure 
polytope in moving coordinate form of side a, P(U'). 

Now that we have defined this polytope we return to the problem of the coloring. 
P (U') is given one of the r colors by the coloring of R s. For each of the [,n+n] choices of ~ 2 m !  
2m elements out of the m + n elements of T, we get one of the r colors in this manner. 
We form the product coloring by assigning to each (m + n)-element set the product of 
each of the colors associated by each choice of 2m elements out of m + n elements. So 
for each set Of m + n elements, we get one of r '  possible product colorings. 

Now that we have defined the coloring we prove the lemma. Because of Ramsey's 
theorem, we have one 2n-element set V with all its (m + n)-element subsets monochro- 
matic. Let V' be the 2n coordinates corresponding to V. Form n pairs from the 2n 
elements of V' as before, pairing the first two elements, then the third and fourth, etc. 
Denote by P(V') the n-dimensional measure polytope in moving coordinate form of 
side a whose vertices are formed by allowing each of these n pairs of coordinates of V' 
to be moving pairs, and setting the rest of the coordinates equal to 0. 

Then we claim that if L 1 and L2 are translates of each other and both are m-dimensional 
face polytopes of P(V'), then they are the same color. We note that it can easily be proved 
that since L1 and L2 are translates of each other, they have the same m pairs as moving 
coordinates. The only difference between them is that some of their fixed coordinates 
have been moved from the first to the second position (or second to first) in these 
pairs. 

We note exchanging the position of any nonzero coordinate within its pair will not 
affect the relative position of the moving coordinates and the fixed nonzero coordinates 
because we have chosen the pairs so that none of the 2n coordinates are between any 
pair's elements. Then, since the relative position of the moving coordinates and the fixed 
nonzero coordinates are the same for both L 1 and L2, they correspond to the same choice 
of 2m elements out of (n + m)-element sets. Since the product coloring is constant on 
these (n + m)-element sets and since L1 and L2 correspond to the same choice of 2m 
elements out of an (n + m)-element set, L1 and L2 will have the same color. Thus the 
lemma is proved, and we are ready for the proof of the main theorem. [] 

Proof of Theorem 2.1. We apply Lemma 2.2 to get K, a Ram(n, m, r)-dimensional 
measure polytope in moving coordinate form of side a in which the color of an m- 
dimensional face polytope is the same as any polytope which is a translate of it. Then 
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the color of an m-dimensional face polytope of K depends only on which m of the 
Ram(n, m, r) pairs are chosen as moving coordinate pairs. 

From this, we get an induced coloring of the m subsets of a Ram(n, m, r)-set. We 
assign an m subset the color of an m-dimensional measure polytope which has m moving 
coordinate pairs corresponding to the m subset. By Ramsey's theorem, there must be a 
monochromatic n subset, S. Let S' be the set of n coordinates corresponding to S. I~ t  
P (S') be an n-dimensional measure polytope which has n moving coordinate pairs cor- 
responding to the set S' and the rest arbitrarily fixed. We show all the m-dimensional face 
polytopes of P(S') are monochromatic by showing an arbitrary pair of these polytopes 
are the same color. Let this arbitrary pair be Ml and M2. M1 and M2 have the same color 
as their corresponding 2m-element sets. These 2m-element sets are in S since MI and 
M2 are in P(K') .  Since these sets are in S they are the same color and hence MI and M2 
have the same color. [] 

3. All Cross Polytopes are Edge-Ramsey 

The n-dimensional cross polytope is the n-dimensional analog of the octahedron. It can 
be defined as the convex hull of all points in R n with all coordinates equal to 0 except 
one and this exceptional coordinate is equal to 1 or - 1. 

To simplify matters we prove for any r and m the existence of an n such that if  R n is 
r-colored, a monochromatic m-dimensional cross polytope of side 2 (rm+2)/2 exists. This 
allows the use of coordinates 0 and 1 in the proof. For a proof of side a replace 1 with 
a/2 (rm+2)/2. To allow all coordinates to have coordinates equal to 0 or 1 we assume that 
all points are embedded in an n-dimensional measure polytope in moving coordinate 
form of side 21/2. We recall that there is only one such polytope in 2n-dimensional space. 
We assume that all points are vertices of this polytope. 

Now we introduce a representation of the n-dimensional cross polytope. Since all 
points are embedded in a 2 n-dimensional measure polytope in moving coordinate form 
of side 21/2. We have 2 n+l coordinates in 2 n pairs. Then, for each i ----- 1, 2 . . . . .  n, we 
construct a pair of points as follows. For 1 < j < 2 ", we let the j th  pair of coordinates 
of the first point of the ith pair of points equal (1, 0) if the binary representation of j - 1 
has ith bit (we count bits from the right) 1, and (0, 1) otherwise. The second point is 
the complement of the first in that it has l ' s  where the first has O's, etc. We refer to this 
pair of points as the ith pair of points. If  a point is a member of the ith pair of points we 
say it has index i. It is easily verified that these 2n points form an n-dimensional cross 
polytope with side 2 ~/2. Moreover, it is easily seen that any m of these pairs form an 
m-dimensional cross polytope. We give an example. 

The six vertices of the three-dimensional cross polytope can be represented as: 

(0, 1,0, 1,0, 1,0, 1, 1,0, 1,0, 1,0, 1,0), 
(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1), both of which have index 3. 
(0, 1,0, 1, 1,0, 1, 0, 0, 1,0, 1, 1,0, 1,0), 
(1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1), both of which have index 2. 
(0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,0), 
(1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1), both of  which have index 1. 

Now we introduce the notion of type. 
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We recall we have assumed that all points are vertices of the unique n-dimensional 
measure polytope in moving coordinate form with side 21/2 in 2n-dimensional space. 
This allows us to use only 1 and 0 as coordinates. The definition of type can be extended 
to sets of points, all, of whose points are either 0 and an arbitrary constant a by substituting 
a for 1 in the following definition. Edge bc is assigned a type as follows: 

We find the first pair where b and c differ. We note which of the points b or c had 
coordinates of  the form 01 in that pair. We call this point, f ,  the first point. We form a 
string of binary digits as follows: The first bit will always be a 0. Recall that the first bit 
is furthest to the right. If  (for i > 2) the ith pair where b and c differ has the coordinates 
01 at f ,  then the ith bit of the string will be 0. If  it has coordinates 10 at f ,  the ith bit of 
the string will be 1. Thus we obtain an injection from any edge to a string of 0's and l 's .  

We see that i fm pairs differ, we have 2 'n-1 possible types. Moreover, we note that each 
m-dimensional face polytope in moving coordinate representation contains all possible 
types of edges with m pairs different, one for each of its main diagonals. We also note 
that each edge with m pairs different is in exactly one m-dimensional face polytope. 

Lenuna  3.1. Suppose b is a member of  the ith pair o f  points, c is a member of  the j th  
pair, and d is a member of  the kth pair, with k > j > i. Then the edge db and the edge 
dc will be of  the same type. In other words, between points belonging to different pairs, 
the type is determined solely by the maximum index of  the two pairs. 

Proof. Assume d starts with 2 k 01's followed by the same number of 10's, etc. Then if 
k > i and b is a member of the ith pair, the edge bd will consist of (ignoring pairs that 
are the same in both) 2 k-1 pairs going from 10 to 01 followed by the same number of 
pairs going from 01 to 10. This pattern continues in the same manner until all pairs are 
used, with exactly half the pairs remaining the same in both points. [] 

An example will help make this clear. Assume 

d = ( 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 )  

which has index 3. Then if 

c = ( 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 )  

which has index 2 or if 

c = (1, 0, 0, 1, 1, 0, 0, 1, 1,0, 0, 1, 1, 0,0,  1) 

which has index 1, the type of dc will be 1100. 

L e m m a  3.2. For all m, k, and r, there is u = f (k m, r) such that if  the u-dimensional 
measure polytope P in moving coordinate form of  side a as above has its edges of  length 
d = a(m) l/2 r-colored, there is a k-dimensional face polytope of  side a such that all its 
diagonals of  length d have the property that two edges with the same type have the same 
colon 
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Proof. We give the m-dimensional measure polytopes whose vertices are vertices of P 
the following coloring: We look at its 2 'n-1 major diagonals and give each m-dimensional 
polytope the product coloring of its diagonals as follows. Each type which has m moving 
coordinates corresponds to one of 2 m-1 different binary strings. Treating these strings as 
numbers we order them. Each m-dimensional measure polytope has its main diagonals 
corresponding to this set of binary numbers. We get the product coloring as follows. We 
get the first color from the main diagonal corresponding to the lowest binary number, the 
second color from the diagonal corresponding to the second lowest binary number. We 
continue in this manner until we have an r 2"-'-coloring of the m-dimensional measure 
polytopes. 

If  we make u large enough, there is a k-dimensional measure polytope L, formed 
by fixing in some way u - k of the pairs, that has all its m-dimensional face polytopes 
the same color. This follows from Theorem 2.1. Then L satisfies the conditions of  the 
theorem. [] 

Theorem 3.3. All cross polytopes are edge-Ramsey. 

Proof. Use Lernma 3.2 (set a = 21/2m = 2 (rn+l), d = 2 rn+2)/2 to have all coordinates 
equal to 1 or 0) to get an m-dimensional measure polytope, P, such that all of its diagonals 
of length d with 2 ~r"+l) pairs differing have the color determined solely by their type. 
Then we use the above representation of a cross polytope to get an (rn + 1)-dimensional 
cross polytope K whose vertices are a subset of the vertices of P and whose edges are 
edges diagonals of P of length d. Since the edges of  K are all diagonals of P with length 
d their color is solely determined by their type. By Lemma 3.1 we have rn + 1 pairs 
of points indexed from 1 to rn + 1 such that the type and hence the color of any edge 
between points in a different pair is determined solely by the maximum index of the two 
pairs. 

Then give i the color of any edge between any point in the ith pair and any point in a 
lower pair, and use the pigeonhole principle to get n indices with the same color. These n 
pairs will form a cross polytope L. Any edge of L will be given the color corresponding 
to its type. This color will be the same as that assigned to the index corresponding to 
that type. In our construction we have every index assigned the same color. Hence L 
will have all its edges monochromatic and we are done. We can substitute an arbitrary 
constant for one in this construction to get a cross polytope with any side desired. [] 

A configuration K is super-Ramsey if there is a constant c so that if n > c log r 
and R n is r-colored, then there is a monochromatic set congruent to K. Let K be a 
configuration, and let p = p(K)  denote the minimum radius of  a sphere containing K. 
The configuration K is hyper-Ramsey if, for every e > 0, a constant c exists such that 
if n > c log r and the surface of the n-dimensional sphere of radius p + e is r-colored, 
then there is a monochromatic copy of K. We note that the given representation of a 
cross polytope, K, can be viewed as a subset of a measure polytope, P, with the same 
circumscribed hypersphere of minimum radius. Then from [11] we can see this implies 
the cross polytope is hyper-Ramsey, and hence super-Ramsey. 
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4. Polygons Which Are Not Edge-Ramsey 

I f  P is a regular polygon with n sides, P is not edge-Ramsey unless n = 3, 4, or 6. The 
proof of this statement requires the following elementary construction. Divide all line 
segments into classes, with each class consisting of parallel line segments. A coloring of 
line segments in which parallel line segments always receive the same color is called a 
slope coloring. There is a natural bijection, rr, between the set of  all slope colorings and 
the set of all colorings of the points of the unit sphere centered at the origin, in which 
antipodal points get the color of the line segment connecting them. This bijection stems 
from the obvious fact that each class of parallel line segments uniquely corresponds to 
an antipodal pair of points. 

The remainder of the argument requires the following result of  Graham [15]. 

Theorem 4.1 [15]. Let K = {xl . . .  x~} be a configuration, and let cl . . .  c~ be real 
numbers, no nonempty subset of which sum to zero. Suppose that summation Y~/1 cixi = 0 ,  

and let p be the minimal possible radius of  all spheres on whose surface K can be 
embedded. Then there is a finite number o f  colors r, such that, for  any n, the surface of  
the n-dimensional sphere of radius p can be r-colored so that it (the surface) does not 
contain a monochromatic copy of  K. 

For clarity, we emphasize that the integer n in Theorem 4.1 does not depend on r. After 
r is fixed, n can be chosen arbitrarily large, and we can still find a coloring satisfying 
the theorem. The following elementary result is stated without proof. 

L e m m a  4.2. If  K is a regular polygon with n sides, the line segments connecting 
adjacent vertices can be translated so they lie on the line segments connecting the origin 
to the vertices of  a regular polygon of  n sides. 

Remark .  We note for odd polygons to get this result we must use translations along 
the length of the line segment itself to obtain the inversion of the line segment with 
respect to either of its endpoints to obtain this result. Hence this result would not be true 
for vectors. 

L e m m a  4.3. For any n there is an r such that there is a coloring with r colors of  the 
m-sphere for any m that does not contain a monochromatic copy of any configuration 
which, when antipodes are identified, form a regular polygon with 2n sides when n > 3. 

Proof. If  a polygon with 2n sides does not have n of its vertices the same color it will 
not be monochromatic when colors of  antipodes are identified. So we see that the all 
critical configurations involve n points lying on a maximal regular polygon of 2n sides. 

Note that Graham's result implies that there is finite number r such that there is a 
coloring of the n-sphere with r colors for any n that does not contain a monochromatic 
copy of a configuration whose convex hull contains the origin. We can prove this by 
noting that the convex hull of a set of points is the set of linear combinations of  the set 
of points by positive coefficients which add up to 1. If  the convex hull of a set of  points 
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does not contain the origin, one of the support lines of  the set separates the origin from 
the set. It follows that the diameter parallel to that support line forms a semicircle in 
which the set lies and that only one of the n points of the set can lie. For every possible 
set of n points which lie on the vertices of a 2n-gon and contain the origin in its convex 
hull, we use Graham's theorem to find a coloring that does not contain a monochromatic 
copy of it. Then we take the product coloring derived from these colorings. This product 
coloring does not contain a monochromatic copy of any of these configurations. 

The one configuration containing n out of 2n points of the regular polygon of 2n 
sides remaining is n adjacent points of the regular polygon. When 2n > 6, we have three 
adjacent points p, q, and r, satisfying p + r - cq = 0 with c > 0 and c not equal to 1 or 2 
as long as 2n does not equal 6. From Graham's theorem an r-coloring exists which does 
not contain a monochromatic copy of this configuration. The product of this coloring 
with the product coloring produced earlier gives a coloring which does not contain a 
monochromatic copy of any set of n points which, through identification of antipodes, 
produces a regular polygon of 2n sides when 2n > 6. [] 

Theorem 4.4. The pentagon and  regular po lygons  wi th  seven or  more  sides are not  

edge-Ramsey.  

Proof.  Under the identification, Jr, described previously, this is equivalent to finding 
a coloring that does not contain a monochromatic copy of the regular polygon of n 
sides in the unit sphere, when colors of  antipodes are identified. Since a slope coloring 
is invariant under translation, Lemma 4.2 implies that if  we can find a slope coloring 
without a monochromatic copy of the center of a polygon of n sides connected to its n 
vertices, we will also have a slope coloring with no monochromatic copies of the edges 
of the regular polygon of n sides. Lemma 4.3 gives us such a coloring if n is even and 
greater than six. We note that the line segments connecting the center of  a regular polygon 
of an odd number of  sides 2m + 1 together with the inversion of these segments through 
the center of a regular polygon of 4m + 2 sides to its vertices. So any slope coloring 
which does contain a monochromatic copy of the regular polygon of 4n + 2 sides will 
not contain a monochromatic copy of a regular polygon of 2n + 1 sides. 

This observation and the comments made above imply that the only possible polygons 
which can be edge-Ramsey are those with three, four, or six sides. [] 

We use the machinery of this proof to answer a question in [ 16]. Is there a finite 
configuration of points T such that if Rt is the minimum radius of a sphere containing 
T for any r, is there an n such that if the sphere of dimension n and radius Rt is given 
any r-coloring it will contain a monochromatic copy of T? We answer in the affirmative 
that there is such a T = {(1, 0), (1/2, 31/2/2), (1/2, -31/2/2)}. T is isomorphic to three 
adjacent vertices of the hexagon of radius 1. 

From what has been shown above we know that a slope coloring excluding the regular 
hexagon would exclude the triangle, but the triangle is edge-Ramsey, so there cannot be 
such a slope coloring. However, for every set of three vertices, K, of  the hexagon, which 
under identification of antipodes forms a hexagon and which contains the origin in its 
convex hull, there is a number r such that, for all m, the unit m-sphere can be r-colored 



350 K. Cantwell 

such that there is no monochromatic copy of K. We can form a product coloring as we 
have done above so that there is a finite number r such that, for all m, the unit m-sphere 
can be r-colored and there is no monochromatic copy of any such configuration. I f  we 
could find a coloring that excluded three consecutive vertices of a hexagon, T, we could 
find a slope coloring that excluded the hexagon would not be edge-Ramsey. We have 
proved above that the triangle is edge-Ramsey. 

So T which can be given coordinates T = {(1, 0), (1/2, 31/2/2), (1/2, -31/2/2)} 
will occur for all possible r-colorings of  the unit sphere since T is isomorphic to three 
consecutive vertices of the hexagon. Thus T is the first known configuration having the 
property that, for any r, there is an n, such that if  the sphere of minimal radius containing 
T of n-dimensions is r-colored, it contains a monochromatic copy of T. 

5. Miscellaneous Results on Edge-Ramsey and Related Configurations 

In this section we give an example illustrating the techniques and results developed thus 
far. 

Theorem 5.1. The three-point configuration, consisting of  two points a and b together 
with the midpoint c of the line segment ab and the edges ac and cb, is not edge-Ramsey, 
although it is bispherical and its edge graph is a bipartite graph. 

Proof. On each line, we color edges of  length lab1~2 such that if two edges are adjacent, 
they have opposite colors. This prevents any monochromatic copy of the three-point 
configuration from occurring. [] 

Theorem 5.2. It is possible to color all equilateral traingles in any space with two 
colors such that no octahedron has all its face triangles the same color. 

Proof. We note that the faces of the octahedron can be divided into four pairs such 
that each pair contains two triangles that lie on parallel planes. These two parallel tri- 
angles can be interchanged by a 180 ~ rotation about the centroid. We also note that, in 
any n-dimensional space, we can two-color triangles such that no triangle is the same 
color as a triangle which can be made into a translate of it by a 180 ~ rotation about its 
centroid. [] 

Theorem 5.3. An edge-configuration (K, E) exists whose endpoints form a non- 
spherical set which is edge-Ramsey. 

Proof. We have already found a triangle (mentioned at the end of the previous section) 
T so that for any r there is an n such that when the n-dimensional sphere at the origin of  
minimum radius d which contains T is r-colored, it contains a monochromatic triangle 
congruent to T. 

We simply look at all edges connecting the origin to the n-dimensional sphere and 
give each point of the sphere the color of the edge connecting it to the origin. Then we 
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will have a monochromatic triangle and a monochromatic set of edges connecting the 
origin to the triangle. We now show that the set of points forming the triangle and the 
origin is not spherical. 

The origin is on the same plane as the triangle; otherwise, it would not be the center of 
the minimum sphere containing the triangle. Let the origin and the points of the triangle 
lie on some sphere C. Then the center of C must be connected to the origin by a line 
perpendicular to the plane containing the triangle. Let the distance from the center of the 
sphere C to the origin be q. Then the radius of the sphere C must also be q. However, 
the distance from the center of the sphere to a point of the triangle will be (d 2 -t- q2)1/2, 
which will be greater than q, giving a contradiction. [] 

The following result is trivial and is stated only for emphasis. 

Theorem 5.4. If a configuration is edge-Ramsey under congruency transformations, 
it is edge-Ramsey under similarity transformations. 

Finally we use the previous theorems to determine which regular polytopes are edge- 
Ramsey. It was already known that the n-dimensional simplices were edge-Ramsey. In 
the first section we have shown that n-dimensional measure polytopes are edge-Ramsey. 
In the second section we have shown that the n-dimensional cross polytopes were edge- 
Ramsey. Finally, the results in the third section prevent all the regular polygons from 
being edge-Ramsey, except the triangle, the square, and the hexagon. From [4] we recall 
that the n-cell is the regular polytope with n solid faces. Since the pentagon is not 
edge-Ramsey, the icosahedron, the dodecahedron, the 600-cell, and the 120-cell are not 
edge-Ramsey, as they all contain pentagons. 

There are two cases left: the hexagon and the 24-ce11. It remains unknown whether 
these two configurations are edge-Ramsey. 
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