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Abstract. Let Z be a centrally symmetric polygon with integer side lengths. We answer 
the following two questions: 

(1) When is the associated discriminantal hyperplane arrangement free in the sense of 
Saito and Terao? 

(2) When are all of the tilings of Z by unit rhombi coherent in the sense of Billera and 
Sturmfels? 

Surprisingly, the answers to these two questions are very similar. Furthermore, by means 
of an old result of MacMahon on plane partitions and some new results of Elnitsky on 
rhombic filings, the answer to the first question helps to answer the second. These results then 
also give rise to some interesting geometric corollaries. Consideration of the discriminantal 
arrangements for some particular octagons leads to a previously announced counterexample 
to the conjecture by Salto [ER2] that the complexified complement of a real free arrangement 
is a K (Jr, 1) space. 

1. Introduction 

We begin by reviewing some terminology and history of the relation between plane par- 
titions, rhombic filings, zonotopes, and hyperplane arrangements. A plane partition Jr 
is a two-dimensional array (7l'i,j)i,j> 0 of nonnegative integers which weakly decreases 
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Fig. 1. Picture of a plane partition as a bunch of stacked cubes. 

along rows and down columns, and has only finitely many nonzero entries, e.g. 

3 1 1 0 0 - - -  
2 1 0 0 0 - . .  

z r =  0 0 0 0 0 . . -  
0 0 0 0 0 . . -  

�9 . , . . 

A plane part i t ion Jr is said to f i t  inside an r x s x t box  i f  its first row has at most  r 
nonzero entries, its first column has at most  s nonzero entries, and all entries gri,j do 
not exceed t (see [Sta]). The terminology comes from picturing Jr as a set of  unit  cubes 
stacked rri,j high on the (i, j ) - c e l l  of  the r x s floor inside an r x s x t box. Figure  1 
illustrates the parti t ion 7r above inside a 3 x 2 x 3 box. 

The problem of  counting how many plane parti t ions fit inside an r x s x t box was 
solved by MacMahon  who was further able to q-count  them with w(zr) = ~-~i.j zrid. 

T h e o r e m  1.1 [M]. 

qW(,) = H ( r  + s + t ) H ( r ) H ( s ) H ( t )  

7r H ( r  q- s ) H ( r  + t ) H ( s  + t)  ' 

where  the sum runs over  all  p lane  par t i t ions  which  f i t  inside an r x s x t box,  and  

H ( n )  = [ n -  1 ] ! q [ n - 2 ] ! q - - - [ 2 ] [ q [ 1 ] [ q ,  

[n]!q = [n]q[n - -  1]q . . . [2 ]q[1]q ,  

[n]q = 1 + q + q2 + . . .  + qn-~.  

A different point  of  view has been exploi ted more recently in [DT] and [K]. It was 
observed [DT] that the set of  plane parti t ions fitting in an r x s x t box is in bi ject ion 
with the set of  rhombic  ti l ings of  a central ly symmetr ic  hexagon having three consecutive 
sides of  length r ,  s and t. The bi ject ion is given by  viewing zr as a s tack o f  unit  cubes 
inside the r x s • t box from a vantage point  which is far away from the origin in the 
direction (1, 1, 1), so that the boundary of  the box appears to be a hexagon,  and the 



Free Arrangements and Rhombic Tilings 

Fig. 2. Picture of the same plane partition as in Fig. 1 viewed as a rhombic tiling of a hexagon. 
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visible faces of  the unit cubes are unit rhombi. For example,  our earlier plane partition 
:r corresponds to the rhombic filing of  a hexagon with side lengths 2, 3, and 3 in Fig. 2. 

Rhombic filings appear in a different connection in some recent work by Elnitsky on 
reduced decompositions of permutations [?]. He shows that counting rhombic tilings is 
equivalent to enumerating certain equivalence classes (called Cl-equivalence classes) of  
reduced decompositions of  certain permutations. He also proves a formula (conjectured 
by Propp and Kuperberg) for the number  of  rhombic filings of  a centrally symmetr ic  
octagon with four consecutive sides of  length r,  s, 1, and 1. An example of  such a tiling 
is shown in Fig. 3 for r = 3 and s = 4. 

Furthermore, Elnitsky is able to q-count these filings r using a certain weight function 
w( r )  which is related to the rank function in the higher Bruhat order of Manin and 
Schechtmann [MS], [Zil] which are described in Section 5 of  this paper: 

T h e o r e m  1.2 [El]. 

E qW<r) : [2]q[r q- s q- 1]!q[r -t- s q- 2]!q 
r [r]!q[S]!q[r q-2]!q[S q- 2]!q ' 

where the sum runs over all unit rhombic tilings r of a centrally symmetric octagon with 
four consecutive sides of lengths r, s, 1, and 1. 

On the other hand, a certain subclass of  rhombic tilings appears naturally as a very 
special case in the work of  Billera and Sturmfels [BS] on fiber zonotopes. A polytope 

"1 

Fig. 3. Picture ofa rhombic tiling of a (3, 4, 1, 1) octagon. 
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Fig. 4. The two coherent filings of a (1, 1, I) hexagon. 

E H. Edelman and V. Reiner 

Z in ~d is a zonotope if  it is the Minkowski sum of a generating multiset of vectors 
V = {Vi}i=l,...,n C ~d,  i.e., 

A two-dimensional zonotope is a centrally symmetric n-gon where n is the number of  
distinct vectors among the {Vi}. A rhombic tiling of Z C R 2 can be produced in the 
following way: Choose n generic values ~# = (~1, ~P2 . . . . .  ~n) in R, and "lift" the head 
of the vector vi out of the plane by the height ~i, yielding a vector vi in ~3 which agrees 
with vi in the first two coordinates, and has ~i as its third coordinate. Then form the 
zonotope Z '  generated by V' = {v~}i=L..n. Project the "top" faces of Z '  (i.e., the faces 
which are visible from far away on the positive x3-axis) down onto Z in IR 2, and this 
gives a tiling of Z by rhombi. If a rhombic tiling of Z comes from such a choice of 
and this projection process, it is called a coherent tiling of Z. Figure 4 shows the two 
coherent filings of a centrally symmetric hexagon with unit sides. 

Not all rhombic tilings of a two-dimensional zonotope Z are coherent, and it is an 
interesting problem in general to decide which filings are coherent. The following is a 
special case of Corollary 4.2 of [BS]. 

Theorem 1.3. Let Z be a zonotope in R 2 with n generating vectors. There is an (n - 2)- 
dimensional zonotope F ( Z) called its fiber zonotope, whose vertices are in bijection with 
the coherent rhombic tilings of  Z. 

Warning. If  two of the zonotope generators v i and vj are identical, then care must be 
taking in the above theorem to distinguish rhombi that come from projections of faces 
whose generators include v~ and v~., even though these faces will "look" identical. An 
example of the fiber zonotope F ( Z )  for a centrally symmetric hexagon of side lengths 
1, 2, and 1 is shown in Fig. 5. 

Finally, we can explain how hyperplane arrangements enter the picture. The fiber zono- 
tope F ( Z )  is "dual" to an arrangement .Az of hyperplanes in ~n-2 in the sense that 
vertices of F ( Z )  are in bijection to the regions of .Az (here a region of ,Az means a 
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/ / 1  m 

u4~ 

Z 

Fig. 5. 

F(Z) 

The fiber zonotope F(Z(I; 2, 1)). 
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connected component of the complement of.Az in lRn-2). This hyperplane arrangement 
.Az is also known as the discriminantal arrangement associated to the set V of vectors 
which generate Z (see [Ba]). The arrangement .4z for the previous example is shown in 
Fig. 6. 

The problem of counting the coherent rhombic filings of the zonotope Z is then 
equivalent (bearing in mind the above warning) to counting the vertices of the fiber 
zonotope F(Z), which is then equivalent to counting the regions of the discriminantal 
arrangement.Az. Counting regions in hyperplane arrangements is a well-studied problem 
(see [Za]), and has close connections to the theory of free arrangements. We refer the 
reader to the excellent book by Orlik and Terao [OT] on this subject for a definition of 

.Az 

Fig. 6. The discriminantal arrangement .Azo,2A). 
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a free arrangement and its exponents, but recall here the main application of freeness to 
counting regions: 

Theorem 1.4 [0% Theorems 2.86 and 4.137]. Let .A be a free arrangement of hyper- 
planes in R d with exponents {el, e2 . . . . .  ed}. Then the number of  regions of  ~4 is 

d 

I - I (1  + ei). 
i=1 

With this background in mind, we now discuss the contents of this paper. Section 2 
contains the main results of the paper (Theorems 2.5 and 2.6). Theorem 2.5 answers 
the question "When is the discriminantal arrangement A z  free?", where Z is a two- 
dimensional zonotope whose zonotope generators are of unit length, i.e., a centrally 
symmetric polygon with integral side lengths. Theorem 2.6 answers the question "When 
are all the filings of Z by unit rhombi coherent?" 

The proof of Theorem 2.5 requires some lengthy induction tables to prove that certain 
arrangements are free, and we have included these in Section 3. Section 3 also contains a 
conjecture about the freeness of certain liftings of Weyl arrangements which is suggested 
by these induction tables. 

Section 4 discusses two interesting one-parameter families of arrangements. One 
of these families is a previously announced counterexample to the 1975 conjecture of 
Saito that the complexified complement of a free arrangement is a K (zr, 1)-space. The 
counterexample arises naturally in consideration of the discriminantal arrangements .Az 
associated to octagons with four consecutive sides of lengths 2, 2, 1, and 1. 

Section 5 discusses the connection of MacMahon and Elnitsky's q-counting results 
to the higher Bruhat orders of Manin and Schechtmann, and to the weak order [Ed] on 
the regions of the discriminantal arrangements .Az. From these connections we deduce 
an interesting consequence (Theorem 5.3) about the factorization of the rank-generafing 
function for these weak orders in certain instances. 

2. The Main Results 

We begin with some definitions, and a few simple observations about two-dimensional 
zonotopes and their discriminantal arrangements. We frequently use the notation [n] := 
{1, 2 . . . . .  n} and [a, b] := {a, a -t- 1 . . . . .  b - 1, b} for integers a < b. For terminology 
and results on hyperplane arrangements the main reference is lOT]. 

Let Z(vl ,  v2 . . . . .  vn) be a two-dimensional zonotope having unit length zonotope 
generators {vl . . . . .  vn} C ~2, i.e., a centrally symmetric polygon in the plane with 
integral side lengths. If  Z has its distinct zonotope generators the vectors ul,  u2 . . . . .  ut 
with multiplicities rl ,  r2 . . . . .  rt, respectively, then by negating some of these vectors 
and renumbering, we may assume that each ui points into the right half-plane, and that 
they are in clockwise order starting from the positive y-axis, as shown in Fig. 7. 

In this case we say that Z is a Z(rl ,  r2 . . . . .  rl) (ignoring the vectors Ul, u2 . . . . .  ut), 
which is equivalent to saying that one can find a clockwise consecutive sequence of half 
the sides of the polygon Z having lengths rl, rE . . . . .  rl in order. By an obvious bijection, 
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i ~  U3 

(0, O) ~ . ~  x 

Ul-I 

Ul 

Fig. 7. The convention for ordering the zonotope generators. 

any two Z ( r l ,  r 2 . . . . .  r l ) ' S  have the same number of  filings by unit rhombi, hereafter 
simply called tilings. 

If  Z = Z(Vl, v2, �9 �9  v,)  is a two-dimensional zonotope, then the discriminantal 
arrangement .Az lives inside a codimension 2 subspace of  R n and consists of  the hyper- 
planes defined by the linear forms 

ls = det(v~,, vs:)x~3 - det(vs,, v~)x~ + det(vs~, v~3)Xs , 

as S = {s1, $2, $3} runs over all 3-subsets of  In] (see Formula 5.3 of  [BS]). Depending 
upon the number of  coincidences among the three vectors {Vs,, vs2, Vs3 }, this formula 
either gives a defining form of  0 and is omitted, or a multiple of  one of  the forms xi - xj, 
or a multiple of  the forms 

aXs~ + bxsz + CXs3, 

where 

aVsl -Jr bvs2 --[- CVs3 = 0 

is the unique (up to scalar multiple) linear dependence among the three distinct vectors 
vsl, vs~, v~3. Since each of  these linear forms is a dependence on the vectors {vi}, .Az is 
actually an arrangement inside the subspace IR n-2 given by the nullspace of  the 2 x n 
matrix having the vi 's  as columns. 

Given two sets of  vectors V = {vl . . . . .  vn} and U = {ul . . . . .  un} both in IR d we say 
that V is projectively equivalent to U if an invertible linear transformation L:  R d ---> IR d 
and a sequence of  nonzero scalars dl . . . . .  dn exist such that 

L vi ---- diui 

for all 1 ~ i < n. We say that two zonotopes are projectively equivalent if  their gen- 
erators are projectively equivalent. We also say that two hyperplane arrangements are 
projectively equivalent if their linear forms are projectively equivalent in the dual space. 

Lemma 2.1. l f  Z1 and Z2 are projectively equivalent two-dimensional zonotopes, then 
the discriminantal arrangements .Az~ and .Az2 are projectively equivalent as well. 
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Proof. Suppose that Z1 is generated by V = {Vl . . . . .  vn}, Z2 is generated by U = 
{Ul . . . . .  un}, and 

Lvi  = diui 

for all 1 < i < n where L is an invertible linear transformation and {di} is a set of 
nonzero scalars. Then for a fixed 3-subset S = {Sl, s2, s3} C [n] we have 

is equal to 

ls = det(us~, u~2)xs 3 - det(u~,, Us3)X~ + det(us z, u~)xs, 

1 1 
ls -- - -  det L det(Vsl, Vsz)Xs3 -- ~ det L det(Vs,, Vs3)Xs2 d,,ds~ d,,d,3 

1 
+ ~ det L det(Vs2, v~3)xs ~ �9 

as2ass 

I f  we apply the linear transformation xi ~ (1/di)xi  and scale ls by multiplying by 
dsld,~ds3 (1 /det  L) we get 

det(Vs,, Vs2)Xs3 - det(Vsl, Vs3)Xs2 + det(Vs2, Vs3)Xs, 

and hence .4Zl and `4z2 are projectively equivalent. [] 

In fact, something stronger is true in the case where the two-dimensional zonotope is 
generated by only three distinct generators. The proof is left to the reader. 

L e m m a  2.2. I f  Z l and Z2 are two-dimensional zonotopes each o f  the fo rm Z (rl , r2, r3), 
then .4z~ is projectively equivalent to .4z2 and both are projectively equivalent to the 
arrangement .4rl xr2 xr3 defined by the linear forms  

{xi - x j l i  < j , { i , j }  c__ [ 1 , r l ] o r [ r l  + 1,rl  + r 2 l o r [ r l  + r 2 +  1,rl  + r2 + r3]}, 

{xi + x j  + X k l ( i , j , k )  E [1, rl] x [rl + 1, rl + r2 ]  x [rl + r 2 +  1, rl + r2 + r3]}. 

Given a hyperplane arrangement .4 in a vector space V and a subspace X which is 
the intersection of some subset of its hyperplanes, the localization arrangement .4x is 
the arrangement in the quotient space V / X  defined by 

{ H / X :  H E .4, X c_ H}. 

The Localization Theorem (see Theorem 4.37 of [OT]) asserts that any localization `4x 
of a free arrangement .4 is free. Say that Z is a subzonotope of Z '  if  they have the same 
zonotope generators Ul . . . . .  ul, and multiplicities rl . . . . .  rt and r~ . . . . .  r;, respectively, 
with 0 _< r,n _< r~n for all m, i.e., some of the zonotope generators of  Z '  may not appear 
in Z. A fundamental fact in the proofs of the main results will be that subzonotopes of 
Z can form "obstructions" to both the freeness of .4z and to the property of  Z having 
all filings coherent. 
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rz-I 

Fig. 8. Extending a tiling of Z to one of Z'. 

Proposition 2.3. I f  Z is a subzonotope of  Z' ,  then: 

(1) .A z is projectively equivalent to a localization o f  .A z,, and hence i f  .A z is not f ree  
then .Az, is not free. 

(2) I f  Z has an incoherent tiling, then Z '  has an incoherent tiling. 

Proof. (1) Assume the zonotopal generators (with multiplicities) of Z '  are numbered 
vl . . . . .  vn, for the purposes of computing the discriminantal arrangement, and that the n- 
subset N of [n'] gives the indices of those vi 's  which generate Z. Then.Az is projectively 
equivalent to the.localization of .Az, to the subspace X which is the intersection of all 
hyperplanes defined by ls where S is a 3-subset of N. 

(2) Given an incoherent tiling of Z, draw the outline of Z '  around it, and extend this to 
a filing of Z'.  This can always be done and this tiling of Z '  is easily seen to be incoherent. 
An example of this extension technique is shown in Fig. 8. [] 

We come now to the first main result, which characterizes when .,4z is a f ree  arrange- 
ment. We refer the reader to Chapter 4 of [OT] for the definition of a free arrangement 

the definition of the exponents, exp.A, the characteristic polynomial X (.,4, t) of an 
arrangement, and for the Factorization Theorem of Terao. 

Theorem 2.4 (Factorization Theorem lOT, 4.137]). If.,4 is a free  arrangement in •d 
with exp.A = (el . . . . .  ed), then 

d 

X (.,4, t) = I - I ( t  -- ei). 
i=1 

Theorem 2.5. Let Z be a two-dimensional zonotope as before. Then fl, z is free i f  and 
only i f  one o f  the following four  cases holds, with the exponents exp(.Az) listed: 

(1) Z is a Z(r,  s) parallelogram, and the exponents are 

{1,2 . . . . .  r -  1, 1,2 . . . . .  s -  1}. 

(2) Z is a Z(r,  s, t) hexagon in which either r, s, or t is at most  2 (up to projective 
equivalence, it may be assumed t < 2), and the exponents are 

{1,2 . . . . .  r + s - 1 }  i f  t = l ,  

{ 1 , r + l , r + 2  . . . . .  r + s - l , s + l , s + 2  . . . . .  r + s }  i f  t = 2 .  
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(3) Z is projectively equivalent to a Z(r, s, 1, 1) octagon, and the exponents are 

{1, r + 2 ,  r + 3  . . . . .  r + s , s + 2 ,  s + 3  . . . . .  r + s + l } .  

(4) Z is projectively equivalent to a Z(r, 1, s, 1) octagon in which the four distinct 
zonotopal generators ul,  u2, u3, th  of  Z are not projectively equivalent to 

(0, 1), (1, 1), (1, 0), (1, - 1 ) ,  

and the exponents are 

{1, r + 2 ,  r + 3  . . . . .  r + s , s + 2 ,  s + 3  . . . . .  r + s +  1}. 

Proof. We first narrow the possible arrangements .Az which can be free by showing 
that certain "minimal  obstructions" are not free, and then applying Proposition 2.3(1). 
Let Z1 be any Z(1,  1, 1, 1, 1) decagon, Z2 any Z(2,  2, 2, 1) octagon, Z3 the Z(2,  1, 2, 1) 
octagon which is ruled out by case (4) in the theorem (i.e., generated by (0, 1), (1, 1), 
(1, 0), and (1, - 1 ) ) ,  and Z4 any Z(3 ,  3, 3) hexagon. It is not hard to compute  what 
the associated discriminantal arrangements for these Z1, Z2, Z3, Z4 look like up to 
projective equivalence (although the answer  sometimes depends on the choice of  their 
generators {ui }). It is known [Zi3, Proposit ion 2.3] that if  an arrangement is projectively 
equivalent to a free arrangement, then it is free as well. Thus it is enough to check the 
freeness of  an arrangement up to projective equivalence. For each case we have computed 
the characteristic polynomial  ;((.Az,) (using the PASCAL program "Matroid," available 
f rom the first author on request), and observed that they do not factor over the integers. 
This implies by the Factorization Theorem (Theorem 2.4) that the arrangements ,4z, are 
not free: 

;((.Az,, t) = (t - 1)(t 2 - 9t + 21), 

;((.Az:, t) = (t - 1)(t - 5)(t - 6)(t  2 - l i t  + 32) 

if  ul ,  u2, u3, u4 are projectively equivalent 

to (0, 1), (1, 1), (1, 0), (1, - 1 ) ,  

X(.Az~, t) = (t - 1)(t 4 - 22t 3 + 183t 2 - 686t + 992) otherwise, 

x( .Az3, t )  = (t - 1 )  (t - 3) (t 2 -  1 0 t + 2 6 ) ,  

X (-Az4, t) = (t - 1)(t - 5)(t  - 7)(t  4 - 23t 3 + 200t 2 - 784t - 1188). 

By Proposition 2.3(1), i f , 4z  is free, it cannot contain any of  these Zi's as a subzonotope. 
We use this to show that the only possibilities for Z with Mz free are the ones listed in 
the theorem. 

Z cannot have more than four distinct zonotope generators ui, or else it would contain 
Z1. I f  Z has exactly four distinct zonotope generators ul ,  � 9  u4, then at least two of  
them must have multiplicity ri = 1, or else it would contain a zonotope projectively 
equivalent to Z2. This implies Z must  either be projectively equivalent to a Z ( a ,  b, 1, 1) 
which is on our list, or a Z(a,  1, b, 1). In the latter case this Z(a,  1, b, 1) must  look like 
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case (4) of the theorem, or else it would contain a Z3. I f  Z has exactly three distinct 
zonotope generators, then one of them must have multiplicity at most 2, or else Z would 
contain a Z4. Hence Z is on the list. Lastly, if Z has exactly two distinct zonotope 
generators, then it is a Z(r, s), which is on the list. This shows that the only possibilities 
for .Az to be free are the ones listed in the theorem, proving the forward implication. 

To prove the reverse implication, namely that the arrangements .Az listed are free with 
the stated exponents, we proceed case by case. In each case, up to projective equivalence, 
.Az can be written in a convenient form, which is either readily identifiable as free, or 
can be proven free in Section 3 using the induction table technique (see p. 119 of [OT]). 

If Z is a Z(r, s) parallelogram, then .Az is the arrangement defined by linear forms 

{xi - x j l i  < j, {i, j} c_ [1, r] or [r -4- 1, r +s ]} ,  

which is the product [OT, Definition 2.131 Ar-i  x As-l ,  where Ar-I is the Coxeter 
arrangement of type A. Ar-1 is well known to be free with exponents { 1, 2 . . . . .  r - 1 }, 
and the product of two free arrangements is free, with exponents equal to the multiset 
union of exponents for the factors [OT, Proposition 4.28]. This agrees with the asserted 
exponents for .Az. 

If  Z is a Z(r, s, t) hexagon, then .,4z is easily seen (Lemma 2.2) to be projectively 
equivalent to the arrangement we call .Ar• defined by linear forms 

{xi - x j l i  < j ,  {i, j ]  ~ [1,r]  or [r + 1, r + s ]  or [r + s  + 1, r + s  + t]}, 

{xi +x j  + x k l ( i , j , k )  ~ [1, r] x J r +  1, r + s ] x  [ r + s +  1, r + s  + t ]} .  

I f t  = 1, then .Arxs• is projectively equivalent to the Coxeter arrangement A r + s ,  whose 
exponents were just discussed and agree with those asserted by the theorem in this case. 
If  t = 2, then .At•215 is proven free with the asserted exponents by an induction table in 
Section 3. 

If Z is a Z(r, s, 1, 1) or Z(r, 1, s, 1) octagon then, up to a projective equivalence in 
the plane R 2, it may be assumed its four distinct zonotope generators u / look  like 

(0, 1), (1, 1), (1, 0), (1, a),  

where a is some strictly negative real number, and in the special Z(r, 1, s, 1) case, (4) 
from the theorem, a cannot equal - 1. In both of these cases, it is not hard to check that 
.Az is projectively equivalent to the arrangement we call .A~,bs ) defined by the linear forms 

{Xi}iE[r+s ] U {X i - -  Xj] i<jE[r+s ] U {X i - -  bx j ] ie t l , r ) , j~[r+l , r+s  } 

for some value of the parameter b. In the Z (r, s, 1, 1) case, b is related to a by b = 1 - a, 
so that b is a real number strictly greater than 1. In the special Z(r, 1, s, 1) case, (4) 
from the theorem, b is equal to a, so that b is a strictly negative real number not equal 
to - 1. The arrangement .,4~. b) will be proven free with the asserted exponents whenever 
b is a real number not equal to 0, 1, or - 1  by an induction table in Section 3. This 
completes the proof that .Az is free with the asserted exponents in all of the cases of the 
theorem. [] 
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The other main result characterizes when Z has the property that all of its filings by 
unit rhombi are coherent. 

Theorem 2.6, Let Z be a two-dimensional zonotope as before. Then all filings of  Z 
by unit rhombi are coherent if and only if one of  the following four cases holds (see 
Theorem 2.5): 

(1) Z is a Z(r, s) parallelogram. 
(2) Z is a Z(r, s, t) hexagon in which at least one of  r, s, t is at most 2. 
(3) Z is projectively equivalent to a Z(r, s, 1, 1) octagon. 
(4) Z is a Z(1, 1, 1, 1, 1) decagon. 

Proof As in the proof of the previous theorem, we first narrow the possible zonotopes 
Z for which all filings can be coherent, by noting that certain previously studied "min- 
imal obstructions" have been found to have incoherent filings, and then apply Proposi- 
tion 2.3(2). Let Z1 be any Z(1, 1, 1, 1, 1, 1) dodecagon, Z2 any Z(2, 1, 1, 1, 1) decagon, 
Z3 any Z(2, 1, 2, 1) octagon, and Z4 any Z(3, 3, 3) hexagon. For Zl, it was observed 
by Sturmfels [Stu], [HG] that while Z1 has exactly 908 rhombic filings, the number of 
coherent filings depends upon the choice of zonotope generators Ul . . . . .  u6, and is either 
equal to 876, 880, 884, 888, or 892 depending upon five cases. (The existence of these 
908 different filings forms the basis of the puzzle Hexa-Grid [HG].) This analysis can 
be extended to Z2 and Z3. For Zz there are either 264 or 266 coherent filings (depending 
on the choice of generators) out of a total of 268 filings. For Z3 there are either 74 or 
75 coherent filings out of a total of 76. 

For any Z(3, 3, 3) hexagon Z4, it has been shown by Richter-Gebert [Ri] that of the 
980 filings, exactly four of them are incoherent, regardless of the choice of zonotope 
generators u~, u2, u3. Figure 9 shows the four filings which are incoherent for a particular 
Z(3, 3, 3). 

Richter-Gebert actually proves a much stronger result, characterizing exactly which 
filings of a Z(r, s, t) are coherent. 

By proposition 2.3(2), if Z has all of  its filings coherent, it cannot contain any of these 
Zi's as subzonotope. We use this to show that the only possibilities for Z with all filings 
coherent are the ones listed in the theorem. 

Z cannot have more than five distinct zonotope generators, or else it would contain 
Z1 as a subzonotope, if Z has exactly five distinct zonotope generators, then all of the 
multiplicities ri must equal 1, or else it would contain Z2. Hence Z is on the list in this 

Fig. 9. The four incoherent tilings of a regular Z(3, 3, 3) hexagon. 
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case. I f  Z has exactly four distinct zonotope generators, then it must be projectively 
equivalent to a Z(r, s, 1, 1) octagon, or else it would contain Z3. Hence Z is on the list in 
this case. I f  Z has exactly three distinct zonotope generators, then it must be a Z(r,  s, t) 
hexagon with at least one of  r, s, or t at most 2, or else it would contain Z4. Hence Z is on 
the list in this case. I f  Z has exactly two distinct zonotope generators, then it is a Z(r,  s) 
quadrilateral, and is on the list. This shows that the only possibilities for Z to have all 
filings coherent are the ones listed in the theorem, proving the forward implication. 

To prove the reverse implication, our main tool is the result of  Zaslavsky [Za, Theo- 
rem A], [OT, Theorem 2.68] which states that the number  of  regions in an arrangement 
.A in ]l~ d is ( - -1 )dx  (A, --1), where X (,4, t) is the characteristic polynomial  o f ,4 .  When 
the arrangement is free this is particularly simple to compute since the Factorization 
Theorem tells us that 

d 

t) = f l ( t - - e i )  X (A ,  
i=1 

so that 

d 

( - 1 ) a X  (.A, - 1 )  --- f l ( 1  + ei). 
i=1 

By Theorem 1.3 and the Warning following it, i f  Z is a Z(r l ,  r2 . . . . .  rl), then each 
coherent tiling of Z gives rise to exactly Vii ri ! vertices in the fiber zonotope F ( Z ) ,  
which has as many vertices as there are regions of  the discriminantal arrangement .Az. 
Therefore if  we can calculate this characteristic polynomial,  we conclude that the number  
of  coherent tilings of  Z is 

( -  1)dx (Az ,  - 1 )  

]vii ri! 

and then compare this to the total number  of filings of  Z if it is available. Lucki ly (or is 
it just luck?), for all the zonotopes Z on the list, this number  of  filings is available. 

If  Z is a Z(r ,  s) quadrilateral, then .Az is free, so we can use the exponents from 
Theorem 2.5(1) to compute that there is exactly one coherent filing. However, it is also 
clear in this case that there is exactly one filing, so all filings are coherent. 

I f Z  is a Z(r,  s, t) hexagon with one of r,  s, t at most  2, then we may assume without 
loss of  generality that t _< 2. In this case .Az is free, so we can use the exponents f rom 
Theorem 2.5(2) to compute the number  of  coherent filings. We can also set q = 1 in 
MacMahon's  result (Theorem 1.1) to compute the number  of  all tilings, and it is easy to 
check that the answers agree. Hence all filings are coherent. 

If  Z is a Z(r,  s, 1, 1) octagon, then .Az is free, so we can use the exponents f rom 
Theorem 2.5(3) to compute the number  of  coherent filings. We can also set q = 1 in 
Elnitsky's result (Theorem 1.2) to compute the number  of  all filings, and it is easy to 
check that the answers agree, so that all filings are coherent. 

If  Z is a Z(1,  1, 1, 1, 1) decagon, then .Az is not free, but X (.Az, t) was computed 
as part of  the proof of  Theorem 2.5, so we can plug in t = - 1  to get that there are 
exactly 62 coherent filings. By brute-force enumeration, it can be shown that there are 
exactly 62 filings of  Z in this case (see Fig. 3 of  [Zil ]), so all filings are coherent. This 
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completes the proof that all filings are coherent for each of the zonotopes Z listed in the 
theorem. [] 

Remark  1. Theorems 2.5 and 2.6 show that although the notions of Z having .4z free, 
and Z having all filings coherent are related, neither implies the other. For example, if  Z 
is a Z(1, 1, 1, 1, 1) decagon, then it has all filings coherent but does not have .4z free, 
while if Z is a Z(2, 1, 2, 1) octagon with zonotope generators not projectively equivalent 
to (0, 1), (1, 1), (1, 0), (1, - 1 ) ,  then .4z is free, but not all filings of Z are coherent. 

Remark  2. The reader should not be surprised to learn that much of what we have 
discussed in this section can be generalized to higher dimensions. For an excellent 
introduction to this see Section 2.2 of  [BLS+]. Given an arbitrary zonotope Z C IR a 
we define a cubical subdivision of Z to be a polytopal subdivision of Z whose cells are 
affine images of cubes. Certain of these subdivisions, called the coherent ones, can be 
obtained by the natural extension of lifting described in Section 1. These subdivisions are 
in natural correspondence with the vertices of the fiber zonotope F(Z )  defined in general 
in Theorem 4.1 of [BS], and this fiber zonotope F(Z )  is still dual to the discriminantal 
arrangement .4z. Thus we can still use the chamber-counting machinery of Zaslavsky 
[Za] to count the coherent subdivisions. 

The collection ofaU cubical subdivisions is in one-to-one correspondence with certain 
one-element liftings of  the related oriented matroid (this follows from the theorem of 
Dress [Bo], [?], [BLS +, Theorem 2.2.13]). As discussed above, in the example of the 
dodecagon, which subdivisions are coherent may depend on exactly which generators 
are chosen and not just on the oriented matroid that they generate. On the other hand, 
some subdivisions may not be coherent for any choice of  generators, as in the case of  
Z(3, 3, 3). So it is possible for a zonotope to have all of its liftings coordinatizable (in 
the oriented matroid sense) without having all of its filings coherent, but not vice versa. 

The advantages to us of working only on two-dimensional zonotopes is that there are 
formulas (Theorems 1.1 and 1.2) which allow us to compute the total number ofrhombic 
filings for the cases that turn out to be of interest. We know of no higher-dimensional 
analogues to those formulas. 

3. Induction Tables 

This section completes the unfinished business of proving that the two families of ar- 
rangements -4r•215 and -4r(bs ) which appear in the proof of Theorem 2.5 are free with 
exponents as asserted earlier. The reader who does not wish to be bored by details may 
find it convenient to skip this section. 

Our strategy for showing that arrangements are free is to show that they are inductively 
free, using an induction table and the Addition Theorem of Terao [OT, Theorem 4.50], 
which we now explain. Given an arrangement .At in IRd and a hyperplane H in .At, there 
are two associated arrangements, the deletion .4 - H and the restriction 

A n = {,% n i l :  Hi c A } ,  
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where the restriction .A n is thought of as an arrangement of hyperplanes inside H 
Rd-1 .  

Theorem 3.1 (Addition Theorem lOT, Theorem 4.50]). Assume the deletion ,4 - H 
and restriction .An are both free,  and exp(.A n) c e x p ( . A -  H )  so that we can index in 

such a way that 

exp(.A n) = {el . . . . .  ed-1}, 

exp(.A-- H)  = {el . . . . .  ea-1, ea}. 

Then ,4 is also free, and 

exp(.A) = {el . . . . .  ea- l ,  ed + 1}. 

An induction table for ,4 is simply a sequence of applications of the Addition Theorem 
that begins with the empty arrangement and shows that .,4 is free..,4 is called inductively 
free  if it has such an induction table. 

Theorem 3.2. The arrangement ~4r• &free  with exponents 

exp(.Ar•215 = {1 , r  + l , r  + 2 . . . . .  r + s -  1 , s + l , s + 2  . . . . .  r + s}. 

Proof. We prove the freeness of this arrangement by constructing an induction table. 
Our strategy for building such a table is to embed these arrangements in a larger family, 
in such a way that this larger family contains all the restriction arrangements needed to 
prove that they are all inductively free. To this end, we give below the defining forms for 
the hyperplanes of three families of arrangements which will be shown to be free, and 
list their purported exponents: 

For l < r and 1 any interval in Z, let 

�9 Arxsx2.1 -~- .Ar• U {x i - x j  -I- Xr+s+l - -  Xr+s+2}i~[l] , j~[r] , i# j  

{1, r + l , r + 2  . . . . .  r + s + l -  l , s  + l  + l , s  + l + 2 . . . . .  s -F  r}, 

~4r• -~- {Xr+l --  Xr+2} 1.3 {X i - -  X j } i < j ~ [ r  ] U {Xi - -  X j  -~  Xr+ ! - -  Xr+2}i~[l] , j~[r] , i# j  

{1, l + 1 , l + 2  . . . . .  l + r - -  1}, 

~4(1) -r lJi  j [ , ],ZE[--I,I] - -  "~- ZXr+I}j~[2,r] ,z~I  r,l = {Xr+l} U {X i - - X j  "~-ZXr- , " t  < ~ 2 r  U {Xl Xj  

{ O , l , l ( r - 2 ) + # I , l ( r - 2 ) + # 1 + l  l ( r - 2 ) + # 1 + r - 2 }  if  # 1 > l ,  

{0,1, (r - 1 ) # 1 ,  l ( r - - 1 ) + l , l ( r - 1 ) + 2  . . . . .  l ( r - - 1 ) + r - - 2 }  if  # I  < l .  

The induction table is built up by showing these arrangements are free in the following 
order: 

A(I) 
r,l ~ .Arx2,r :=~ "Arx2, l  =:~ "Ar•215 / ~ r215215 ~ .mr•215 
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noting that the first and last links in this chain are trivial because 

.A,.xs• = .Arxsx2,0. 

We begin by showing that a ( l )  is free by  induction on r + # I  where # I  is the cardin-  r I 
ality of  the set I .  There are three cases depending on the cardinali ty of  I = [a, b]. In 
the first case, # I  > l + 1. Beginning with M~lla.b_l], which is free with exponents 

{ 0 , 1 , 1 ( r - 2 ) + # 1 - 1 , l ( r - 2 ) + # I  . . . . .  l ( r -  2)  + # I  + r -  3} 

by induction on r + # I ,  we add in the hyperplanes  

X1 --  Xm + bXr+l  

for m = 2 . . . . .  r in any order. Each time, the restriction arrangement is project ively 
equivalent to .A~l~_kt_l,b_a] which has exponents  

{0, 1, i ( r  - -  2) + # 1 ,  l ( r  - -  2) + # I  + 1 . . . . .  l ( r - -  2) + # I  + r --  3} 

by induction on r + # I ,  and hence the effect is to raise the exponent  l (r - 2) + # I  - 1 
up to l ( r  - 2) + #1 + r - 2, giving us 

{0, 1,1(r - 2) + # I  - 1, l ( r  - 2) + # I  . . . . .  l ( r  - 2) + # I  + r  - 2}, 

which are the exponents claimed ior  " ./-tr.--e)t. 

In the second case, 1 < # l  <_ I. Beginning with.A~t.)[a.b_l], which is free with exponents  

{ 0 , 1 , ( r - 1 ) ( # I - 1 ) , l ( r - - 1 ) + l , l ( r - 1 ) + 2  . . . . .  l ( r - 1 ) + r - 2 }  

by induction on r + # I ,  we add in the hyperplanes  

Xl --  Xm + bXr+l  

for m = 2 . . . . .  r in any order. Each time, the restr ict ion arrangement is project ively 
--~t) which has exponents  equivalent to ./% _ 1,[-l,tl 

{ 0 , 1 , l ( r - 1 ) + l , l ( r - 1 ) + 2  . . . . .  l ( r - 1 ) + r - 2 }  

by induction on r + # I ,  and hence the effect is to raise the exponent  (r  - 1) (#I  - 1) up 
to (r - 1)#I ,  giving us 

{ 0 , 1 , ( r - 1 ) # / , l ( r - 1 ) + l , l ( r - 1 ) + 2  . . . . .  l ( r - 1 ) + r - 2 } ,  

which are the exponents claimed for a ( l )  "~r ,  1" 
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In the third case, I is the empty interval 0 ,  and we have 

Act) ,.~ A~I) r,O ~" (0) X r--l,[--l,l]' 

where (0) denotes the empty arrangement in R 1 and x denotes the product of  arrange- 
ments [OT, Definition 2.13]. By induction on r + # I  we know that .A].) 1.t_tjl is free with 
exponents 

{0, 1 , 1 ( r -  1) + 1,1(r - 1) + 2 . . . . .  l ( r -  1) + r - 2} 

and taking its product with (0) preserves freeness and adds on the exponent {0}, which 
gives the asserted exponents for h(l) This completes the three cases, and hence the 

proof  that .A<r,tl is free with the asserted exponents is complete.  
We next proceed to prove that .Arx2J is free by induction on r. We recall our earlier 

d ( 1 )  observation that .Ar• ~ ~ r , t - l . q  so the case 1 = r is already proven and we may 
assume I < r .  We begin with the arrangement 

(0) x .ACr_l)x2,/, 

which is free by induction on r with exponents 

{ 0 , 1 , 1 + 1 , l + 2  . . . . .  l + r - 2 } .  

Adding in the hyperplanes {xj - xr}j~tr-13 one at a time in any order, and then adding in 
the hyperplanes {xr - xj +Xr+l - X r + 2 } j ~ [ I ]  in any order, the restriction arrangements are 
all projectively equivalent to r 1)• which by induction on r is free with exponents 

{1, l + 1, l  + 2  . . . . .  l + r  - 2 } .  

After adding all these hyperplanes in we have the arrangement .,4rx2,/. This raises the 
exponent 0 up to I + r - 1, so that .Ar• is free with the desired exponents 

{ 1 , r , l + 1 , 1 + 2  . . . . .  l + r - 2 ,  l + r - 1 } .  

We next proceed to prove that .Ar•215 is free by induction on r, by working our way 
up from (0) x (0) x .Ar• through several intermediate arrangements defined below: 

.40 

A1 

.42 = AI U 

(O) x A~ l) = A2U 

.214 = A 3 U  

,45 = A4 U 

.,46 = A s U  

�9 ,47 = A6 U 

: (0) X (0) X Ar• 

: A 0 U {xj --~ Xr+l "[- Xr+3}j~[r], 

{xj + Xr+l + X~+4}j~IZl, 

{Xj -~- Xr+l -~- Xr+4}jE[l+l,r], 

{Xr+ 1 - -  Xr+2} , 

{Xj -Jr Xr+2 -a t- Xr+3}j~[r], 

{xj Jr Xr+2 -t- Xr+4}j~[l], 

{Xj -t- Xr+2 -t- Xr+4}j~[l+l.r]. 
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To abbreviate the proof, we only say for each i what the restrictions look like (up to 
projective equivalence) as one adds in each of  the hyperplanes H in .4i -- .4i-1 in any 

i Restriction Exponents of  restriction 

1 (0) x Ar• 
2 (0) x Ar• 
3 (0) 2< `4rx2 , /+ l  
4 `4~t) 
5 `4~t) 
6 .4~t) 
7 .4~1+1) 

order: 

{0, 1 , 1 +  1 , l + 2  . . . . .  l + r  - 1} 
{0, 1, I + 1 , I  + 2  . . . . .  I + r - -  1} 
{0, 1 , 1 + 2 ,  l + 3  . . . . .  l + r }  
{1, l + 2 , 1 + 3  . . . . .  l + r , r +  1} 

{1, l + 2 ,  l + 3  . . . . .  l + r , r +  1} 

{1, l + 2 ,  l + 3  . . . . .  l + r , r +  1} 

{1, l + 3 ,  l + 4  . . . . .  l + r  + 1, r +  1} 

To summarize  the effect this has on the exponents,  we start with `40 = (0) x (0) x .Arx2J 
having exponents 

{ 0 , 0 , 1 , / + 1 , / + 2  . . . . .  l + r - 1 } .  

Passing f rom `40 to `42 raises one of  the 0 exponents to 1 + r,  yielding 

{0, 1 , 1 + 1 , 1 + 2  . . . . .  l + r } .  

Passing f rom `42 to `43 raises the l + 1 exponent  to r + 1, yielding 

{0, 1 , / + 2 , / + 3  . . . . .  l + r , r +  1}. 

Passing from .,4 3 to -~6 raises the remaining 0 exponent to I + r + 1, yielding 

{ 1 , / + 2 ,  1 + 3 . . . . .  l + r +  1, r +  1}. 

Passing from `46 to .47 raises the I + 2 exponent  to r + 2, yielding 

{ 1 , / + 3 ,  l + 4  . . . . .  l + r + l ,  r W l , r + 2 } ,  

which one can check agrees with the asserted exponents for . 4 rx2x2 , /  ----" .47.  

Finally we prove that .4r•215 is free by induction on s, using the just-proven base 
case s = 2. Define the intermediate arrangements 

v~r -~- (0) >( .4r• x2.l, 

.41 = .40 tJ {x~+m - x~+A.,eO.s-ll. 

.42 --~" A1 0 {Xj + Xr+ s + Xr+s+l}je[1,r], 

`43 = `4212 {xj + Xr+s + Xr+s+2}j~[1,ll, 

.,44 --~" ̀ 43 ['3 {Xj + Xr+ s + Xr+s+2}jE[l+l,r 1. 
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As before we only say for each i what the restrictions look like (up to projective equiv- 
alence) as one adds in each of  the hyperplanes H in .Ai - .Ai-1 in any order: 

i Restriction Exponents of  restriction 

1 .Arxs_lx2,  I 
2 .Ar• l 
3 .Ar•215 
4 .Arxs_lx2,1+ 1 

{1, r + l ,  r + 2  . . . . .  r + s + l - 2 ,  l+s,  l + s + l  . . . . .  r - t - s -1}  
{1, r + l , r + 2  . . . . .  r + s + l - 2 , 1 + s ,  l + s + l  . . . . .  r + s - 1 }  
{ 1 , r + l , r + 2  . . . . .  r + s + l - 2 , 1 + s , / + s + l  . . . . .  r + s - 1 }  
{1, r + l , r + 2  . . . . .  r + s + l - l , l + s + l ,  l + s + 2  . . . . .  r + s - 1 }  

To summarize the effect this has on the exponents, we start with .40 = (0) x .Ar• x2./, 

which is free by induction on s with exponents 

{0, 1 , r +  1, r + 2  . . . . .  r + s + l - 2 ,  s + l , s + l +  1 . . . . .  s + r -  1}. 

Passing f rom .A0 and .43 raises the 0 exponent to r + s + l - 1, yielding 

{1, r +  1, r + 2  . . . . .  r + s + l - 2 ,  r + s + l -  1, s + l , s  + l +  1 . . . . .  s + r -  1}. 

Passing from .43 to .44 raises the s + l exponent to s + r, yielding 

{ 1 , r +  1, r + 2  . . . . .  r + s + l - 2 ,  r + s + l -  1, s + / +  1 . . . . .  s + r -  1, s + r } .  

which agrees with the asserted exponents for .Ar•215 I = .~s 
This completes the proof  that .Ar• is inductively free, and has the exponents 

asserted earlier. [] 

Before proceeding to prove that .A fb) is free, we stop to take a closer look at the r,$ 
class of  arrangements a e )  which were 'proven free along the way, in the special case 
when I = I - l ,  l]. These arrangements may be viewed as a special case of a certain 
"symmetrical  lifting" construction which we now describe. Let .A be an arrangement 
of  n hyperplanes in •a with defining linear forms {In} for the hyperplanes {H}. Let 
/~e)(.A) (resp. s be the arrangement of  (2l + 1)n + 1 hyperplanes in R a+l with 
hyperplanes defined by the forms 

{ln + zxa+l }ftE.A,ZE[--l,l] ~-J {Xd+l } 

(resp. 

{ln + ZXd+l}nE~t,z~t-l,t+l] U {Xd+l}). 

It  Can be checked that the arrangement a ~t) is the same as s ( A t - l )  where A~_I is "~r,[--t,l] 
the Coxeter arrangement {xi - xj }i<jEt~l. The exponents which were computed for this 
case are consistent with the following conjecture: 

Conjec tu re  3.3. Let .Aw be the hyperplane arrangement associated to an irreducible 
Weyl group W, with exponents {el . . . . .  ed} and Coxeter number h (see Definition 6.99 
of [OT]). Then Eft ) (,4w ) is free, with exponents 

{1,el + l . h ,  e 2 + l . h  . . . . .  e a + l . h } ,  



326 E H. Edelman and V. Reiner 

and L~ ~ (,Aw) is free, with exponents 

{1, (l + 1)h, (l + 1)h . . . . .  (l -t- 1)h}. 

As pointed out above, the conjecture for •(l) (jd[W) is true for all I when W = A., and 
both assertions of the conjecture have been checked for many small values of I when 
W = Bn, Cn, Dn, E6, F4, and G2. Also, the characteristic polynomial o f / ~ ) ( . A w )  
has been shown to factor over the integers with the conjectured exponents when W = 
An, Bn, Cn, and Dn by Headley [H]. Here Headley considers these arrangements a s  

subarrangements of the cone [OT, p. 14] over the affine Weyl arrangements .Aft. 
The connection to affine Weyl arrangements is also suggested by the fact that the 

conjecture does not hold in general when W is an irreducible Coxeter group. For 
example, if W is the dihedral group of order 10 acting in its defining representation 
as the symmetries of a regular pentagon, it can be checked that the characteristic 
polynomial X (/:(1)(.Aw, t) does not factor completely over Z. 

We now return to the discussion of the arrangements ~4~.% ). 

Theorem 3.4. The arrangement ,A~rb)~, for b ~ 0, 1, - 1, is free with exponents 

exp(.A~b)) = {1, r + 2, r + 3 . . . . .  r + s , s + 2 ,  s + 2  . . . . .  r + s + l ] .  

Proof Similarly to the proof of the previous theorem, our strategy in building an 
induction table for .,4~% ), where b r 0, 1, - 1, is to embed these arrangements in a larger 
family, in such a way that this larger family contains all the restriction arrangements 
needed to prove that they are all inductively free. To this end, we give below the defining 
forms for the hyperplanes of two families of arrangements which will be shown to be 
free, and list their purported exponents: 

For r, s, k nonnegative integers, let 

,,4 (b) ~- {Xi}i~[r+s+l ] U {x  i - -  X j } i< j~[r+s+l]  U {x  i - -  bx j } i~[ l , r ] , j~ [ r+l , r+s  ] =,r,s,k 

U {Xi - -  b m x r + s + l  }i~[l.r+s],m ~[0,k] 

{1,r + 2 + k , r  + 3 + k  . . . . .  r + s  + k  + l , s  + 2 + k , s  + 3 + k  . . . . .  

r + s + k + l } ,  

•4 (b) = {Xi}iE[r+s+l ] +,r,s,k U {xi - xj}i<jetr+s+l] U {xi - bxj}i~II,r],je[r+l,r+s] 

U {xi - bmxr+s+l}i~[1,r+s].m~[O.k] 

U {xi -- bmXr+s+l}i~[r+~,r+sl,metO,k-~] 

{ 1 , r + 2 + k , r + 3 + k  . . . . .  r + s + k + l , s + 3 + k , s + 4 + k  . . . . .  

r + s + k + 2 } .  
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The induction table is built up in the following order: we show first that.,4~)r,s, k , , . 4  (b) + . r . s , k  

are free by an intertwining induction on the minimum of  {r, s, k}, and then show 
(b) ,q(b) how the freeness of  A=r.s, o, imply the freeness of  A~ b) by induction on s. "/ ' t=,r ,s ,1 

To begin the intertwining induction for a(b) a(b) ~=,r,s,i '  "-'+,r,s,k' we note that if either r = 0 
or s = O, then both of these families of  arrangements degenerate into an arrangement of 
the form 

{Xi}iE[r+l] U {X i -- bmXr+l}iEtl,rl.m~[O,kl . 

This arrangement is easily seen to be supersolvable with M-chain given by 

.s~lO ~___. A1  CA2__C- . - ,  

where .,4k is the subarrangement consisting of  all hyperplanes whose linear forms only 
involve the coordinates Xr+~+l and xi where i ~ [1, k]. We refer the reader to Sections 2.1 
and 4.3 of  [OT] for a definition of  supersolvability, M-chains, and why this implies the 
arrangement is inductively free. 

In the first of  the two intertwining inductive steps, we assume that .,4~!r,s_l,k, "~(b+?r.s.k-1 
are free with the correct exponents, and show that a(b) is free. Beginning with r  

,4 (b) which is free with exponents +, r , s ,k - l '  

{ 1 , r + l + k , r + 2 + k  . . . . .  r + s + k , s + 2 + k , s + 3 + k  . . . . .  r + s + k + l }  

by induction, we add in the hyperplanes 

X m  - -  b k X r + s + l  

for m = r + 1 . . . . .  r+s in any order. Each time, the restriction arrangement is projectively 
--(b) , , which has exponents equivalent to ./-t+.r,s_ .,k 

{1, r + 2 + k , r + 3 + k  . . . . .  r + s + k , s + 2 + k , s + 3 + k  . . . . .  r + s + k + l } ,  

and hence the effect is to raise the exponent r + 1 + k up to r + s + 1 + k, giving us 

{1,r  + 2 + k  . . . . .  r + s + k , r + s +  1 + k , s + 2 + k , s + 3 + k  . . . . .  

r + s + k + l } ,  

which are the exponents claimed for a(b) In the second of  the intertwining inductive �9 .,"L=,r.$. k �9 

steps, we assume that .A(b=!r_l.s.k+ 1, "A(b!r,s.k are free with the correct exponents, and show 

that .A~! r ~ k is free. Beginning with A(b) which is free with exponents . �9 . r  

{1, r + 2 + k , r + 3 + k  . . . . .  r + s + k + l , s + 2 + k , s + 3 + k  . . . . .  

r + s + k + l }  

by induction, we add in the hyperplanes 

X m - -  b k + l X r + s + l  
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for m = 1 . . . . .  r in any order�9 Each time, the restriction arrangement is projectively 
equivalent" --r which has exponents [O . . /4= r _ l , s , k + l  , 

{1, r + 2 + k , r + 3 + k  . . . . .  r + s + k + l , s + 3 + k , s + 4 - I - k  . . . . .  

r + s + k + l } ,  

and hence the effect is to raise the exponent s + 2 + k up to r + s + k + 2, giving us 

{1, r + 2 + k , r + 3 + k  . . . . .  r + s + k +  1, s + 3 + k  . . . . .  

r + s + k +  1, r + s + k + 2 } ,  

which are the exponents claimed for .A (b) + , r . s , k  " 

This proves that .A(=b~r,s,k, .,4~r.s,k are both free with the correct exponents�9 We now use 
�9 ( b )  "-~=,r,s,0'A(b) ~4(--b!r--, ,s, 1, to prove that .At (b)r,s is free by induction on s. Beginning with .A=,r,s_ 1,0, 

which is free with exponents 

{ 1 , r + 2 ,  r + 3  . . . . .  r + s , s +  1 , s + 2  . . . . .  r + s }  

by induction, we add in the hyperplanes 

xm - bxr+s+l 

for m = 1 . . . . .  r in any order. Each time, the restriction arrangement is projectively 
equivalent to a(b) which has exponents " ~ = , r - - l , s - - l , l '  

{ 1 , r + 2 ,  r + 3  . . . . .  r + s , s  + 2, s + 3 . . . . .  r + s},  

and hence the effect is to raise the exponent s + 1 up to r + s + 1, giving us 

{ 1 , r + 2 ,  r + 3  . . . . .  r + s , s  + 2 . . . . .  r + s , r  + s  + l} ,  

which are the exponents claimed for .Ar(bs ). This completes the proof. []  

Remark .  The induction table used to prove .A (b) is free suggests that the following r.$ 

might be an interesting problem: characterize all free arrangements of  hyperplanes in 
which the linear forms defining the hyperplanes are all of  the form 

xi - bm xj  

for some fixed real number b and rn is allowed to vary through the integers�9 Undoubtedly 
this is an interesting family, since it contains all of  the classical Coxeter arrangements 
(when b = - 1 ) ,  the minimal-dimensional counterexample to Orlik's conjecture found 
in [ER1], and the counterexample to Saito's conjecture discussed in the next section�9 
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4. Saito's Conjecture 

In this section we discuss two very interesting, closely related one-parameter families 
of arrangements arising from the induction tables of the previous section. The first is 
a one-parameter family of free arrangements for which most parameter values yield a 
free arrangement, but one value yields a nonfree arrangement. The second is a previ- 
ously announced [ER2] one-parameter family of counterexamples to Saito's conjecture 
that the complexified complement of a free arrangement is a K(zr, 1) space (see [OT, 
Conjecture 5.18] and [Sa]). 

The first family is ~ ~b) where b is any real number, i.e., the discriminantal arrange- r 
ment for a Z(2, 2, 1, 1) or Z(2, 1, 2, 1) octagon, depending upon the value ofb .  It has 
hyperplanes defined by the linear forms 

{ X i } i e [ 4  ] [.J {X  i - -  Xj}l<__i<j<_4 1,3 {X  i - -  b x j } i e [ 1 , 2 ] , j ~ [ 3 , 4 ] .  

As b varies over all real numbers, we have that ,4~b~ is 

free with exponents {1, 4, 4, 5} i fb  ~ 0, 1, - 1 ,  

free with exponents { 1, 2, 3, 4} if b = 0, 1, 

not free if b = - 1 .  

These assertions follow from the induction tables in the previous section for b # 0, 1, - 1, 
from the fact that the arrangement degenerates to something projectively equivalent 
to the Coxeter arrangement A4 if b = 0, 1, and by computing that the characteristic 
polynomial is 

(t -- 1)(t -- 3)(t 2 -- lOt + 26) 

i fb  = - 1 .  

Theorem 4.1. The set of free arrangements is a constructible subset which is neither 
Zariski-closed nor Zariski-open. 

Proof. The example .A~b)2 just discussed shows that the set of free arrangements is not 
Zariski-closed in the set of all arrangements. It follows from Corollary 7.6 of [Zi2] that 
there is a Zariski-open set of arrangements which are not free (the general position 
arrangements), and hence the set of free arrangements is not Zariski-open in all arrange- 
ments. On the other hand, a result of Yuzvinsky [Y] shows that among all arrangements 
with a fixed intersection lattice, the subset of free arrangements is Zariski-open. Since 
the set of arrangements with a fixed intersection lattice is easily seen to be a constructible 
set, we conclude that the set of all free arrangement is constructible. [] 

Restricting this arrangement ,zt~b.) 2 tO any one of the hyperplanes 

{X  i - -  X j ,  X i - -  b x j  } i~[1,2] , j~[3,4 ] 
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yields an arrangement projectively equivalent to .A(=b!l. 1.2, whose hyperplanes are defined 
by the forms 

{Xi]i~[3 ] I.J {X i - -  X j ] i < j a [ 3  ] U {X 1 - -  b x 2 ,  X l  - b x 3 ,  x 2  - -  b x 3 } .  

As b varies over all real numbers, we have that A(__b~l,l,1 is 

free with exponents { 1, 4, 4} if b # 0, 1, - 1, 

free with exponents {1, 2, 3} i fb  = 0, 1, 

free with exponents {1, 3, 5} i fb  = - 1 .  

These assertions follow from the induction tables in the previous section for b # 0, 1, - 1, 
and for the cases b = 0, 1 or b = - 1 from the fact that the arrangement degenerates to 
something projectively equivalent to the Coxeter arrangements A3 or B3, respectively. 
Figure 10 depicts these arrangements .A(=b~l. 2.1 in the real projective plane RP 2 for various 

values of b. Here RP 2 has been identified with the top hemisphere of the unit circle 

b ~ - 2  b =  _ l  2 

b = !  2 b = 2  

Fig. 1 0 . . - 4  tb) forb  -- - 2 ,  - 1 ,  1, and2. =,1,1,1 
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x 2 + x22 -t- x 2 = 1, in which we have identified opposite points on the equator (the line 
at infinity) x3 = 0. 

T h e o r e m  4 . 2 .  . --~b) The arrangement "~=,1,1,1 is free for all values of b but its complexified 
complement is not a K(rr, 1)for b ~ 0, 1, - 1 .  

A~b) is free for all values of b. To show that, for Proof. We have already seen that ..~= 1. l. 1 
b ~ 0, 1, - 1 ,  the complexified complement is not a K(zr, 1) space we begin with the 
case that b < 0. When b < 0, the triangular region bounded by the hyperplanes 

{ X l - b X 2 ,  Xl - x3, x2 - bx3} 

touches no other hyperplanes in the arrangement, even at its vertices. We should note 
that the existence of such a region is dependent on the oriented matroid structure of 
the arrangement not just on the matroid structure specified by the intersection lattice. 
Thus two arrangements can have the same intersection lattice but one may have such a 
triangular region and the other may not. It is known that the existence of such a region 
implies that the complexified complement of the arrangement is not a K(zr, 1) space 
[FR, Corollary 3.3], and we thank R. Randell for the following argument: Let t be the 
inclusion map of the complexified complement of this arrangement into the complement 
of the arrangement which only has the hyperplane x 3 = 0 at infinity and the three which 
bound this triangular region. Then it can easily be shown that t induces a surjection on 
all homotopy groups, and, in particular, on the second homotopy group zr2. However, the 
complexified complement of the arrangement with four hyperplanes is well known (see 
Corollary 5.23 of lOT]) to be homotopy equivalent to the Cartesian product of a circle 
and the 2-skeleton of a 3-torus. This space has a nontrivial second homotopy group, and 

~-~(b) therefore the complexified complement o i l = ,  1,1.1 also has a nontrivial second homotopy 
group, so it is not a K(rr, 1) space. 

Furthermore, by results of Randell [Ra], this also implies that, for any b r 0, 1, - 1, 
the complexified complement o f  .A(=b!1.1.1 is not K(rr, 1). The reason is that if we allow 
b to be a complex parameter, then it is easy to see that the intersection lattice of the 
arrangement is isomorphic for all values b ~ 0, 1, - 1. Since the complex plane with 0, 
1, - 1  deleted is path-connected, a lattice isotopy can be constructed between any two 
such arrangements, and it can be concluded that their complements are all diffeomorphic 
(see IRa] or [OT, Theorem 5.28]). [] 

--(b) We remark on one last interesting feature of the arrangement .A= 1.1.1: it is the dis- 
criminantal arrangement for the three-dimensional zonotope Z~b~ with six zonotopal 
generators 

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (b, 1, 1), (b, b, 1)}. 

The matroid dual (see Section 3.4 of [BLS+]) of this zonotope is another three-dimensional 
zonotope Z with six generators, which, somewhat surprisingly, turns out to be projec- 
tively equivalent to Z~b) itself! 
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5. Higher Bruhat Order and q-Counting 

In this section we connect the theorems of MacMahon and Elnitsky which q-count tilings 
to the higher Bruhat orders of Manin and Schechtmann, and to the weak order on the 
regions of the discriminantal arrangements Az. A very pleasant consequence of this 
connection is a factorization for the rank-generating function of these weak orders in 
some of the cases where ,Az is free, which relates to a question of Bjtrner, Terao, and 
Wagreich [W] (see the Remark after Theorem 5.4). In this section we also resolve a 
question posed by Ziegler concerning higher Bruhat orders (see Digression below). 

In order to define the higher Bruhat order, it is convenient to replace a tiling of a 
Z(r l  . . . . .  rt) polygon with an equivalent object which we call the braid picture of the 
tiling. Informally, a braid picture consists of n = Y]4 ri strands which begin on the left 
side of the page and move across to the right side of  the page, and each pair of strands 
cross each other zero or one times as they move across, with at most two strands crossing 
at a single point. Our notion of a braid picture is closely related to Goodman and Pollack's 
wiring diagram, see p. 260 of [BLS+]. If  we order the strands sl . . . . .  s~ from bottom to 
top on the left side of the page, then two strands si, sj will cross if and only if the indices i, 
j do not lie in a common interval of  the form [rl, r2 + .  -- +rm + 1, rl +r2 + - - .  +rm +rm+l ]. 
The correspondence between such braid pictures and tilings of  a Z(r l  . . . . .  rt) polygon 
Z with unit rhombi is hard to explain in words, but easy in pictures; see Fig. 11 and [HG, 
Instructions, Figures 3 and 4]. Roughly speaking, if  the (distinct) zonotope generators for 
Z are numbered {ul . . . . .  ut} in order of weakly decreasing slopes, then, after rotating 
Z counterclockwise 90 ~ the strands 

{ Si  } i E[r l +rz+...+rn, + 1 ,rl "}-r2"k-..'d-rm +rrn+ ] ] 

correspond to those rhombus edges in the tiling which have slopes the same as urn. The 
tiling may be considered the dual planar graph of the planar graph which has vertices 
at all the crossing points of the strands, and edges along strand segments between the 
crossing points. 

Given such a braid picture for a tiling T of Z, we define the inversion set Inv(T) to 
be the set of triples (i, j ,  k) with 1 < i < j < k < n for which the three strands si, s j ,  Sk 
all do cross each other, and for which the order of crossing is first sj, Sk, then si, Sk, and 
then sj, si. Figure 12 shows the two different ways the three strands si, sj, st can cross, 
one of which is an inversion, the other not. 

We then define the higherBruhat  order H B ( r l  . . . . .  rt) on the set of  all tilings T of a 
Z(rl  . . . . .  rt) polygon to be the order induced by inclusion of the inversion sets Inv(T).  

Y Ul 
. ~ \ u 3  S 4 . ~ - - - - / ~ / ~  " U 1 ' S 2 

$3 

82 . \ ~ 1 ~ ~ . ~  - - - $ 3  
s l "  s4 

Fig. 11. A tiling and its braid picture. 
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s~ ~ ~  si Sk ~ si 

sj sj sj sj 

Si Sk $i Sk 

Noninversion Inversion 

Fig. 12. The two orders in which three strands can cross. 

In the special case where rt . . . . .  rt = 1, so l = n and Z is a (2n)-gon, this order is 
the same as the order B(n, 2) in the family B(n, k) of higher Bruhat orders defined by 
Manin and Schechtmann [MS]. 

Digression. In fact, what we have just said is not quite true, since, in [MS], the orders 
B(n, k) were defined by single-step inclusion of inversion sets, not inclusion. More 
precisely, they defined a covering relation in B(n, k) to be a pair of  inversion sets (see 
[MS] for the definition of  inversion sets in B(n, k)), I '  c I with # I '  = # I  + 1, and 
then B(n, k) is the transitive closure of  this relation. It was pointed out by Ziegler [Zil]  
that for k = 1 single-step inclusion is the same as inclusion on inversion sets, but for 
k ----- 3 these two concepts give rise to distinct partial orders. Ziegler also asked whether 
for k ----- 2 single-step inclusion was the same as inclusion. We sketch here a proof  that 
this is true, so that our definition of  higher Bruhat order will indeed coincide with that 
of  [MS]. 

Theorem 5.1. The partial order of B(n, 2) by single-step inclusion is the same as the 
partial order of B(n, 2) by inclusion. 

Proof. In order to show that single-step inclusion is the same as inclusion, we assume 
that we have two tilings T and T '  with Inv(T')  _c Inv(T).  If  we can show that there is 
always a triple (i, j ,  k) in the set difference Inv(T) - Inv(T' )  for which Inv(T) - (i, j ,  k) 
is still an inversion set, then we willbe done by induction on #(Inv(T)  - hav(T')).  Notice 
that the triples (i, j ,  k) which can be removed from Inv(T) and still leave an inversion set 
are exactly the triples corresponding to three strands si, s j, sk which bound a connected, 
triangular region of  the plane in the braid picture of  T, and such triples are usually called 
mutations [BLS +, p. 267]). To rephrase then, we need to show that there is always a 
mutation t of  the braid picture o f  T which lies in Inv(T) - Inv(T') .  

We call a set of  triples I biconvex if, for all quadruples 1 < i < j < k < l < n, the 
intersection of  I with the following four triples 

(i,j,k) < (i,j,l) < (i,k,l) < (j,k,l) 

is either an initial or final segment in the linear ordering indicated. A set of  triples I 
is Inv(T) for some tiling T if and only if it is biconvex [Zi l, Lemma 2.4]. We would 
therefore be done if we could prove the following lemma: 
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l 

J 

t ( j ,  k, 1) > t' --. (i, j ,  1) 

Fig. 13. The covering relation that generates the partial order on triples. 

L e m m a  5.2. I f  I is a b iconvex  inversion set  o f  a til ing T ,  then no o ther  b iconvex  se t  
conta ined  in I which  conta ins  al l  o f  the muta t ion  tr iples  t o f T  can be proper ly  con ta ined  
in I .  

Sketch o f  Proof.  Having fixed the filing T and the biconvex set 1 of its inversions, 
partially order all triples t = (t, j ,  k) in I by taking the transitive closure of the following 
relation: t > t '  if the triangles A and A' bounded by t and t '  in the braid pictures share 
exactly two bounding strands, and the third bounding strand of A' cuts through the 
interior of A. An example is shown in Fig. 13. 

It is not obvious that the transitive closure of the above relation is a partial order, i.e., 
that taking the transitive closure creates no cycles. However, it can be checked that this 
follows from the fact that the southernmost corner of A (i.e., the intersection point of  
strands si, sk) is always weakly south of the southernmost corner of A', in the sense that 
A'  lies in the most northern quadrant above both strands si, Sk. 

Given this partial order, it is then shown that any biconvex subset I '  _c I which 
contains all mutations of 1 has to contain each triple t ~ 1, using induction on this 
partial order on the triples t. Since the mutations of I are exactly the minimal elements 
in this partial order, the base of the induction is clear. For the inductive step, it is shown 
that given any nonminimal triple t in a biconvex set 1', knowing which triples below it 
in the partial order are in I '  and which ones are not will exactly determine whether or 
not t ~ I '  by biconvexity. Hence if I '  is contained in I and shares all of I ' s  mutations, 
it must actually contain every triple of I .  [] 

Now that we have removed any ambiguity about how the higher Bruhat order is defined 
we can continue to explore the enumerative consequences of our results. Before going any 
further, we should point out that the higher Bruhat order on filings of Z ( r l  . . . . .  rt) does  

depend on the ordering of (rl . . . . .  rt) more closely than the number of tilings does. It is 
clear that the number of  tilings only depends on (rl  . . . . .  rt) up to cyclic permutations, 
since the whole polygon can be rotated to get a bijection between filings. It is even true 
that the graph underlying the Hasse diagrams for the corresponding higher Bruhat orders 
will be isomorphic. However, the notion of which triples (i, j ,  k) are inversions is not  
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invariant under such a cyclic permutation of (rl . . . . .  rt) and the choice of the bottom 
tiling To in the higher Bruhat order will be different for different cyclic permutations of 
(rl . . . . .  rl). 

We now explain why MacMahon and Elnitsky's q-counting results are special cases 
of the rank-generating function 

R(rl . . . . .  rl) = E qrank(r), 
T~HB(r~ ,...,rt) 

where rank(T) = #Inv(T)  is the rank function for the higher Bruhat order on filings of 
a Z(rl . . . . .  rt) .  

MacMahon q-counts plane partitions zr sitting inside an r x s x t box with weight 
qr~,.j~,.j. When viewing the plane partition as a set of unit cubes stacked into the corner 
of an r x s x t box, ~,i.j ~ri.j is the same as the number of cubes. When viewing this set 
of cubes as a rhombic tiling T of a Z(r, s, t) hexagon, the set of  triples (i, j ,  k) giving 
the coordinates of each cube is exactly the inversion set Inv(T) of the tiling. Hence the 
weight q~:,.j~r,.j is the same as qrank<r~ in the order HB(r, s, t). Note that in this case the 
higher Bruhat order HB(r, s, t) has a simpler description as the distributive lattice of 
order ideals in the product of three chains r x s x t (see [Sta]), and it is well known that 
MacMahon's result gives the rank-generating function for this lattice. 

Elnitsky q-counts filings T of a Z(r, s, 1, 1) octagon by qCUSt~T.ro), where dist(T, To) 
is the distance of the tiling T from some canonical filing To in a certain connected 
graph of tilings. If  we reinterpret this as a Z(s, 1, 1, r) octagon (by cyclically permuting 
(r, s, 1, 1) and rotating the octagon and its filings), then it can easily be checked that his 
graph coincides with the Hasse diagram of the higher Bruhat order HB(s, 1, 1, r), and 
that To is the bottom element in this order, i.e., it is the filing with Inv(T) = ~.  Hence 
dist(T, To) ----- rank(T). 

We now explore the relation between this higher Bruhat order and the weak order on 
the regions of a hyperplane arrangement. A region of a hyperplane arrangement .4 in IR a 
is a connected component of the complement IRa _ .4. Pick a base region Co, and define 
a function S from regions C of .4 to subsets of ,4 by 

S(C0, C) = {H ~ `4: H separates Co from C}. 

Partially ordering the set of regions C of`4  by inclusion of S(C0, C) gives a poset P(`4) 
defined in [Ed] and usually called the weak order on regions of`4  with respect to the base 
chamber Co. Clearly, the rank function on P (.,4) corresponds to the cardinality #S (C0, C). 
The weak order derives its name from the special case where`4 is the Coxeter arrangement 
An-1 with defining hyperplanes {xi - x j } i < j ~ [ n ] .  In this case, regions correspond to 
permutations Jr in the symmetric group Sn, the chamber Co is chosen to correspond to 
the identity permutation, and the poset P(`4~) is usually referred to as the weak order 
(see lEd]). 

In the case `4 = `4z where Z is some Z(rl . . . . .  rl) polygon, there are two kinds of 
hyperplanes: those of the form xi - xj = 0, where i < j lie in some interval 

[rl d-r2 + - - . - t -  r,n -I- 1,rl  +r2-t -"-- l -rm -t-rm+l], 
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and those of  the form axi  + bx  i + CXk = 0, where no two of  1 < i < j < k < n lie 
in any such interval and aul, + bu  b + CUl~ = 0 is the unique linear dependence (up to 
scaling) among their corresponding zonotope generators. Recalling our convention that 
the ui ' s  all point into the right half-plane, and are numbered going clockwise from the 
positive y-axis, we can normalize the scaling of  a, b, c so that b is always negative, and 
hence a, c are always positive. We choose the base chamber Co in .Az to be defined by 
x j  - x i  > 0 for hyperplanes of  the first type (and i < j ) ,  and axi  + b x  i + CXk > 0 
for hyperplanes of  the second type. Given a region C in .Az, its location relative to the 
hyperplanes of  the first type uniquely defines l permutations (tr (1) . . . . .  cre)) where tr (i) 

is a permutation of  the set [rl + -- �9 + ri-1 + 1, rl + . . .  + ri] and 

Xtr(m~ ~ Xtrtrm) ~ �9 . .  ~ Xa(m~ 
r I +..-+rm _ 1 +1 1 + ' " + r m -  1 +2 r I +"-+rm _ 1 +rra 

for points x in C and each m and where trt ~m) means the image of  t under tr Cm). Likewise, 
the location of  the chamber C relative to hyperplanes of  the second type uniquely defines 
a subset I (C) of the triples 1 < i < j < k < n corresponding to braid strands si, s j ,  sk 
which all palrwise intersect, according to the following rule: let 

~ri~ra') = n , ,  tr; " ' )  = n2, tr~ ra3) = n3 

and then say that (i, j ,  k) is in I if  and only if 

aXn3 + b x n  2 + c x n  3 < 0 

is satisfied for points x in the chamber C. Roughly speaking, what the previous convention 
is saying is that if  the chamber C corresponds to the permutations (tr 0) . . . . .  cr ft)), then 
to make it correspond to a tiling we must reorder the strands within each interval 

[rl + r2 + " - + rra + l ,  rl + r2 + - " + rm + rra+l] 

in the braid picture. This allows us to define a set map 

~0: P ( . A z )  ~ H B ( r l  . . . . .  rl) X Srl X " ' "  X ar t  

by 

~ ( C )  ~--  ( / ( C ) ,  o " ( 1 )  . . . . .  o ' ( l ) ) ,  

where we have identified Sr, with the set of  permutations of  the set [rl + -- �9 + rm-1 + 
1, rl + . "  + rm]. It only needs to be checked that the set of  triples {(i, j ,  k)} on the 
right-hand side really do form the inversion set Inv(T) for some tiling, but this is simply 
a tedious unravelling o f  two bijections: the one between regions C in , 4 z  and coherent 
filings of Z, and the one between filings of  Z and inversion sets. We omit this verification. 

Proposition 5.3. Le t  Z be a Z (rl . . . . .  rl) po lygon .  Then the map  ~o def ined above  is a 
rank- and order-preserv ing  inject ion 

99: P( . ,4z )  ~ H B ( r l  . . . . .  rl) • St1 • "'" • St1. 

Here  the r ight -hand side is ordered componen twi se ,  using the weak  order in each o f  the 

f ac to r s  Sr, .  
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Proof. The statement is nearly a tautology once the definitions are unravelled. The 
relevant point is that any chamber C is completely specified by S(Co, C), and if we have 
~o(C) = (I (C), (a (x) . . . . .  or(l))), then I (C) specifies the intersection 

S(C0, C) N {axi + bxj + CXk}, 

w h i l e  o -(1) . . . . .  o "(/) specify the intersections 

S(Co,  c )  n {xi - x j } ,  

respectively. All other assertions follow trivially from this observation. [] 

Remark.  It is not true that the map ~0 above embeds P (ritz) as an induced subposet of 
HB(rl . . . . .  rt) • S~ • . . .  • St1. This can be seen in the case of Z(1, 2, 1). See Fig. 5. 

Theorem 5.4. In the following instances: 

(1) Z is a Z(r,  s) parallelogram, 
(2) Z is a Z(r,  s, t) hexagon in which one o f  r, s, t is at most 2, 
(3) Z is a Z(r,  s, 1, 1), Z(s ,  1, 1, r), Z(1, 1, r, s), or Z(1, r, s, 1) octagon, and 
(4) Z is a Z(1, 1, 1, 1, 1) decagon, 

the map ~o induces an equality of  the rank-generating functions of  P (ritz) and HB(r~ . . . . .  rt ) x 
Sr~ x . . .  x Srl. Furthermore, in cases (1), (2) and the Z(s ,  1, 1, r) case of(3) we have 
that 

~_, qrank(C) = I-I[ei + 1]q, 
C~P(~z)  i 

where [n]q = 1 + q + qZ + . . .  + qn-1 and exp(.Az) = {el} are the exponents given in 
Theorem 2.5. 

Proof. Since St, • "-- x St, has cardinality l"Im rm !, we have already seen in the proof 
of Theorem 2.6 that in all the cases lisled above, the domain and range of ~0 have the 
same cardinality. Hence ~o induces the equality of generating functions, since it preserves 
rank. Furthermore, we have that 

E qrank(C) = ( Z qrank(r')" m~I Eqrank(~) 
C e P ( , , 4 z )  tilings T e H B ( r  3 ,... ,rt) aeSrm 

tilings reHB(rl , . . . ,rl) qrar~(r)) 

where we have used the well-known fact (see, e.g., Theorem 2.4(3) of [BEZ]) that the 
weak Bruhat order on S~ has rank-generating function [n] !q. 

To prove the second assertion, in each case we can plug in a known expression for 

qrank(r). 

tilings T eHB(r j  ,.,.,rl ) 
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For case (1), this known expression is trivially 1, since there is only one tiling of 
a Z(r, s). For case (2) this expression is MacMahon's theorem (Theorem 1.1), and for 
case (3) with Z = Z(s, 1, 1, r) this expression is Elnitsky's theorem (Theorem 1.2). 

It is now a simple matter left to the reader to show that, in each case, multiplication 
of this expression by I-]m [rm ] !q agrees with 

I-I[ei + 1]q, 
i 

where e x p ( . ~ r • 2 1 5  = {ei} are the exponents given in Theorem 2.5. [] 

Remarks .  (1) The last theorem is related to a question of Bjtrner, and of Terao and 
Wagreich [W]: Assuming .A is free with exponents {ei}, is it always possible to choose 
a base chamber Co so that 

qr~k(C) = I--I[ei + 1]q? 
C~P(~) i 

The answer was long known to be "yes" for Coxeter arrangements and supersolvable 
arrangements [BEZ, Theorem 4.4], and more recently for the inductively factored ar- 
rangements introduced by Jambu and Pads [JP], but an example for which the answer 
is "no" was found by Terao [BEZ, p, 2771. 

The previous theorem shows that the answer is "yes" for the arrangements listed, 
which would suggest that perhaps these arrangements are inductively factored. This is 
true and well known for case (1) and the t = 1 subcase of (2), but it can be checked by 
brute force that.Az(2,2.2) and.Az(2.2.1.1) do not even satisfy the weaker hypothesis of being 
factored (see Definition 2.66 of [OT]). Therefore the arrangements .Az(r,s.2) for t < 2 
and .Az(r,s.~,l) form a new class of examples where this question can be affirmatively 
answered. 

However, even in the cases where .Az(2A.2.1) is free it will not have such a base 
chamber. This was checked using a program written in MATHEMATICA available from 
the second author. What this shows is that the existence of such a base chamber for a 
free arrangement .,4 is not solely dependent on the intersection lattice L (.A) (see p. 4 of 
lOT]) since L(.Az~2A,2A)) (when Az(zA.2,1) is free) is isomorphic to L(.Az(2.z, L1)). 

(2) It is worth noting that if we multiply the polynomial in MacMahon's q-count of 
filings of a Z(r, s, t) by [r] [q �9 [S] !q �9 [ t ]  [q, the result 

H ( r + s + t ) H ( r ) H ( s ) H ( t )  
H ( r + 2 ) H ( r + t ) H ( s + t )  " [r]!q �9 [S]!q �9 [t][q 

does not even factor into a product of terms of the form [n]q if r, s, t >_ 3. For example, 
i f r  = s = t = 3 one gets 

[2]q[5]q[6]q[6]q[6]q[7]q[7]q[8]q 
[41q 

which one can check has no such factorization. 
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