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Let P be a polytope in R n and define P(8), the 8-parallel body of P, by 

P(8) ----- {x E Rn: dist(x, P) <_ 8}. 

It is a classical result that the volume of P(8) is an nth degree polynomial in 8 whose 
coefficients (when properly normalized) are the elementary mixed volumes of the poly- 
tope P. 

At the beginning of this century Blaschke and his school of differential geometry 
began the investigation of affine parallel bodies. These so called 8-floating bodies arose 
in connection with notions of affine differential geometry, for example, affine surface 
area. This affine surface area was originally only defined for convex bodies in R" with 
a sufficiently smooth boundary. However, it was desired to extend this definition to 
arbitrary convex bodies as affine surface area occurs naturally in important questions, 
for instance, in the approximation of convex bodies by polytopes (see the survey of 
Gruber [G]). 

Various such extensions have been given within the last few years, for example, by 
Leichtweiss [Le], Lutwak [Lu], SchiJtt and Werner [SW], and Werner [W]. In most of 
these extensions one considers volume differences 

voln (K) - voln (K~) (resp. voln (K 8) - voln (K)),  

where K8 (resp. K ~) are convex bodies related to K, namely the floating body (see 
[Le] or [SW] for the definition) (resp. the illumination body). It is known that, for 
sufficiently smooth bodies, the above volume differences behave like 8 2/~'+1) (see [Le], 
[SW], and [W]). 
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In [S] Schtitt studied such volume differences for polytopes P in R n and their floating 
bodies. He obtained--among other things--the following result: 

voln (P)  - voln (P~) {flags of P} 
lira = # , 
~--,o 8 ln(1/~) nl n n 

where a flag is an n-tuple (f0, fl  . . . . .  f , -1)  such that each f i  is an/-dimensional face 
of P and such that f/ C f,'+l for all i, 0 < i < n - 2. Here and elsewhere throughout 
the paper the symbol # stands for the number of objects under consideration. 

In this paper we study volume differences for polytopes and their illumination bodies. 
It is known that this volume difference is also a polynomial in 8 of degree n (see below) 
but--in contrast to the classical g-parallel body--not  much is known about the coefficents 
of this polynomial. We give those in the case of a simplex in R ~. 

For a convex body K in R ~ and 8 > 0, the illumination body K ~ is the convex body 

K '~ = {x E Rn: voln(co[x, K]) -- voln(K)  < 6}, 

where co[x, K] denotes the convex hull o fx  and K. 
We first mention some known results. For completeness we include outlines of the 

proofs. 

Theorem. For every polytope P c_ R n, voln(P ~) - VOln(P) is a polynomial in 8 o f  
degree n. 

Proposition. For every polytope P C_ R ~, 

VOln ( P~) -- voln ( P)  
lim 
&-+O 

= n#{(n - 1)-dimensional faces of P}. 

Proposition. For a cube C in R n, we have 

s  (2n)k 8 k 
voln(C ~) -- voln(C) = k! (voln(C)) k- l"  

k=l 

Outline o f  the Proofs. Let P be a polytope in R n and let 8 > 0, 8 small, be given. We first 
give a description of pS. To do so associate, for all m, 1 < m < n, the "visibility cone" 
Cn-m to each (n - m)-dimensional face F~_m of P. F~-m is the intersection of a certain 
number of adjacent (n - 1)-dimensional faces. Then C~-m is the intersection of all those 
half-spaces determined by the adjacent (n - D-dimensional faces of Fn-m that do not 
contain P. Hence C~-m is the cone from where the face Fn-m and all (n - 1)-dimensional 
faces adjacent to Fn-m can be seen. 

We now give an inductive procedure of how to obtain P~. "Above" an (n - 1)- 
dimensional face Fn-1 the boundary of P~ consists of a hyperplane parallel to this face 
at distance nS/voln_ 1 (Fn-1). Consequently, for 8 small enough, the contribution of each 
(n - 1)-dimensional face to voln(P 8) -- VOln(P) is 8. 

Thus we have shown the first proposition above if we show that the other (n - re)- 
dimensional faces, m > 1, contribute only higher-order terms in 8. Consider next, 
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therefore, an (n - 2)-dimensional face Fn-2 with its visibility cone Cn-2. Fn-2 is con- 
tained in two (n - 1)-dimensional faces F/_1, i = 1, 2. The boundary of  p8 above these 
(n - 1)-dimensional faces is already determined by the hyperplanes H i parallel to F/_l  
at distance h i = nS/vol~_l(Fi_l),  i = 1,2.  Then the part of  P~ in Cn_2 is obtained 
as follows. The intersection o f  the H i ' s  with the prolongated (n - 1)-dimensional faces 
F / l ,  i = 1, 2, is taken and then the convex hull o f  this set with F~-2 is also taken. Thus 
the contribution of  an (n - 2)-dimensional face to vol~ P~ - voln P is proportional to 
h 1 �9 h2, hence to 82, modulo a factor that depends, e.g., on the volumes of the involved 
faces and on the angle of  intersection of  FI_I and F2_l at F~_2. 

We proceed in this way to obtain the statement of  the theorem. 
In the case of  a cube C it is easy to compute the exact coefficients of  the powers o f  8, 

as the angles of  intersection of  all the respective faces are zr/2. Therefore the contribution 
of  an ( n -  m)-dimensional faceto voln(C~)-voln(C) is (1/m!)((n m "Sm)/(voln(C)) 'n-l) 
and there are (~-"m) 2m faces of  dimension (n - m). I-1 

We now consider the case o f  a simplex Sn in R n. As vol~ (S~) - voln (S~) is invariant 
under affine transformations T with det T = 1, it is sufficient to consider the case o f  a 
regular simplex, i.e., a simplex with congruent (n -- 1)-dimensional faces. We define for 
all i, 1 < i < n, the numbers Li ~ R and the points l i ~  R n recursively as follows: 

j=, \ : + l j  ] ' 

ll = (L1,0, . . . , 0 ) ,  l i = ( L l  , L23, . . . ,  __Li-li , Li,O" �9 . 0 ) .  

We also write l0 = (0 . . . . .  0) for the 0-vector. 
Notice that for all i, i > 1, [lli 112 = 1 and [lli+l - -  li 112 = 1, where II �9 112 is the usual 

Euclidean norm in R n. I f s  > 0, then the convex hull co{sli: 0 < i < n} of the points 
sli ,  0 < i < n, is a regular simplex Sn in R" with sidelength s and we have 

sn  tl 

voln(Sn) = -~. inl 

Theorem 1. Let Sn be a simplex in R n. Then we have, for  all 8 > 0, 

v o l n ( S S n ) _ v o l n ( S n ) = ~ - ~ ( ~ ) ( n - l - k )  8k 
k = l  n (voln(Sn)) k-l" 

To prove Theorem 1 we need to describe Sn ~. As already mentioned it is sufficient to 
consider a regular simplex. 

Proposition 2. Let Sn be a regular simplex in R n with sidelength s. Let 8 > 0 be given 
and let h = nS / voln-t ( Sn-1) where Sn-t is an (n - 1)-dimensional face of Sn. Then 

{ h ] 
5~n=CO Slk+-~n( lk- - l j ) :  O < k  < n , O <  j < n ,  j s ~ k  . 
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Proo f  Define M by 

M = c o { s l k + ~ ( l k - - l j ) :  O < k < n , O < j < n , j r  

For  all m, 1 < m < n, we associate the "vis ibi l i ty  cone" Cn-m to each (n - m)-  
dimensional  face Sn-m of Sn. Observe that because of  symmet ry  it is enough to consider  
the faces 

Sn-m = co{slk: 0 < k < n - m}. 

S , -m is the intersection of  its m adjacent  (n - 1)-dimensional  faces i S n _ l , O < i  < m - 1 .  
We obtain Cn-m by prolongat ing each of  these adjacent  m faces and by taking S, -m as 
a base for the cone. 

More precisely, 

Cn_ m = co[an_ m U {slk + t ( I k  - - I n - j ) :  0 < k < n -- m,  0 < j < m -- 1, t E R,  t > 0}]. 

Cn-m is the cone from where the m (n 1)-dimensional  faces i - S,~_ 1 adjacent  to Sn-m 
can be seen but no other (n - 1)-dimensional  face of  S, .  Cn-a is the cone from where 
jus t  S#-1 is seen. Notice also that taking t = h /L~  fixed in the definition o f  Cn-m, M is 
the union of  Sn and all the visibil i ty cones C ~ - m ,  1 < m < n, with this fixed t. 

We show first that M C 5n 8. To do so we show: 

L e n u n a  3. Let  x E M such that x is in an (n -- 1)-dimensional f ace  o f  M.  Then 

voln(co[x, Sn]) - voln(Sn) = 6. 

Proo f  o f  the Lemma. Let  x ~ M such that x is in an (n --  1)-dimensional  face of  M. 
Then x ~ Cn-r,  for some m. Consequently,  x is a convex combinat ion of  the points 
slk + (h /Ln)( lk  - ln- j ) ,  0 < k < n - m, 0 < j < m - 1, i.e., 

- ' . - (  ) 
x = E E zl, st, + 

j=0  k=0 

with 

AS X ~. Cn_m, 

m--1 n--ra 

y ~  ~ - - ~  = 1. 
j = 0  k=0 

1 m--I 
voln(co[x, Sn]) -- voln(Sn) = - VOln-l(Sn-l)  Z dist(x,  S,n_l) �9 

n i=o 

where dist(x,  s i_x)  is the distance of  x to the (n - 1)-dimensional  face i S,_li S',_ r is the 
i th (n - 1)-dimensional face that can be seen from x, i.e., for 0 < i < m - 1, 

Sin_l = CO[{Slk: 0 < k < n -- m} U {sin-k: 0 < k < m - 1, k ~ i}]. 
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A s  0 S~_ 1 sits in the hyperplane with the Xn-COOrdinate equal to 0, 

n~m 

dist(x, so_,) = Ix~-coordinate of x[ = h .  E x~ 
k=0  

F o r l < i < m - l , m > 2 ,  

dist(x, sin 1) = ](Ni'x}[ 
- U N i l h  ' 

i i where N i = (Yl, Y2 . . . . .  Yn) is a normal t o  S ~ _  1 . As 0 E S~_ l, we can choose N i such 
that 

Yn-i ~ H Ln- i+k,  

Yn--i+l 

Yn--i+2 

k----o 

H~=o Ln-i+k 
tr#l 

n - - i + l  

Hi~o Ln-i+k 
k~2 

n- - i+2  ' 

and so forth up to 

Hik=o Ln-i+k 

Yn = 

and all the other coordinates of N i equal to 0. Hence 

{x ,  N i) = - -  I ' I  
k~O 
kg-O 

( ~  n-m j h Ln - i  

Ln-i+k E Xk Ln (n --i~- 1) 
\ j = 0  k=O 

n--m i h 

-I- E kk-~n Ln-i ] k=O 

i 

+1-I 
k=O 
k~l 

( ~  n-m h Ln-i+l 
_ _  x~ L .  ( .  - i + 2) 

L,,-i+k 
\ j = 0  k=0  

~-~ xi_ 1 h ) 
+/_...,i, -~n L n - i  + 1 

k=O 

... 

k=0 
k#i-] 

( ~  O h L n - I  n--m h ) 
\k=0 n 

i n--m oh 
-F H Ln-i+~ E Xk-~n Ln 

~=o k=0  kv6i 
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" [1 
=h.HL._i+ k Zo + _ _  

k=O ( k=o 

1 1 
+ 

n(n -- 1) (n --  1)(n --  2) 
. . .  

+ 
( n - - i + 2 ) ( n - - i + l )  

1 ]  
n - - i + l  

. - m  [ 1 
+ ~ 2 ~  1 ;=-r_ 1 + 

k=O 

1 

(n - 1) (n - 2)  
. . .  

+ 

- ~ . ~  

n-m . ] 

k=0 

Now observe that, for all 0 < k < i - 2, 

1 1 ~ +  + . . . +  
n - k ( n  - k ) ( n  - k - 1) 

hence 

1 1 ]  
(n - -  i + 2 ) ( n  --  i + 1) n - -  i + 1 

1 1 

( n - - i + 2 ) ( n - - i + l )  n - - i + l  
= 0 ,  

i--1 n--m 

(x, u'> = - h  FI  L._;+, 
k=0 k=0 

As, for all j ,  

i 

1-I 2 L n - i + k  
i k--o i 

H '~'J+" H 2 L2n_i+k "l'- (n -- i + j + 1) 2 = Ln-i+k, 
k ~O k -----O 
k#j k#(j+l) 

i -1  
we get  that IIN i 112 : I-Ik=0 Ln-i+k, hence 

m--I n--m 

vol , (co[x,  Sn]) - v o l n ( S n ) =  -1 voln- , (Sn-1)h  " ~ - ~ - ~ Z ~ = 6 .  
n i=0 k=0 

This finishes the proof  of  Lemma 3, which shows that M C 5~. []  

We continue with the proof  of  Proposi t ion 2 and for the converse suppose S~ ~ M. 
Then there is an x ~ S~ such that x ~ M. However, x e C,_m for some m. As  x g( M,  x 
has a strictly posit ive distance to the (n - 1)-dimensional  face F o f  M which sits in Cn-m, 
i.e., the face which is spanned by the vectors sl~ + (h/Ln)( lk  - ln- j ) ,  0 < k < n - m, 
0 < j < m - 1. This implies that 

co[x,  S . ] D c o [ y , S . ]  



The Illumination Bodies of a Simplex 303 

for a suitable y ~ F and consequently, by Lemma 3, 

voln(co[x, Sn]) - voln(Sn) > 8, 

a contradiction to the definition of  Sn ~. [] 

Lernma 4. Let 1 < m < n. The contribution of  an (n - m)-dimensional face to 
voln (S~n) - voln (Sn) is 

k=rn (v~ ( - 1 ) ( r e + i ) "  

Proof An (n - m)-dimensional face of  Sn is a simplex Sn-m in R n-re. Because of  
symmetry we can assume that Sn-m is the convex hull of  the points slk, 0 < k < n -- m. 
From the description of  S~ given in Proposition 2 we see that the contribution of  the 
face Sn-m to voln(S~) - voln(Sn) is the volume of  the n-dimensional convex polytope 
pn-m that has Sn-m as an (n - m)-dimensional face and, at each extreme point of  
Sn-m, "stick out the missing directions" -In,  - In - !  . . . . .  --ln-m+l (resp. combinations 
of  those). More precisely, 

pn-m = CO [{slk: 0 < k < n -- m} 
i ra .  

To compute voln (pn-m) we fix successively the x~--, xn- i - - ,  - . -  coordinates. 
I f  m = 1, we are already in the situation discussed below and nothing is to be done. 

Otherwise consider the xn-coordinate. Observe that - h  _< xn _< O. Fix the xn-coordinate. 
Then an (n - 1)-dimensional section P,~-zn -, ,  o f  pn -m with a fixed xn-coordinate is 

P~-I = co slk -- (lk -- ln): O < k < n - m 

U l slk q- ~n (Ik -- ln-i) + X'-~'-n (ln -- 

0 < k < n - m , l < i < m - 1 } ] .  

voln_l (P~-~)  does not change if we shift P~n__lm by the fixed vector (x~/Ln)l ,  and 
instead of P~-ln-m we consider the shifted polytope S~-~ with 

} S~_ 1 = co lk s - -  : O < k < n - m  

tO { l ' ( s - f ~ n ) q - ( ~ n  + f ~ n )  ( l k - l n - i ) :  

O < k < n - m ,  l < i < m - 1 } ] .  
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I f  m = 2, we are done. Otherwise we next consider the Xn-l-coordinate. Observe that 

_(~+ x~),. 1 _~x.1 _~0 

We keep the xn_l-coordinate fixed. Then an (n - 2)-dimensional section P[,n__-2m of  
t / - - m  Sn_ l is 

-" [I(x~.) X._l.. I P~-2 = co lk s - -  - Ln_l (lk - ln_l): O < k < n - m 

{ ( ~ )  (~ x~) x.~ 
U I k S - -  q- -I- (lk - -  l n - i )  -]- ( ln-1 - -  I n - i ) :  

Ln-1 

O < k  < n - m ,  2 < i < m - - 1 } ] .  

After shifting by the vector (Xn-1/Ln-1)ln-I  we get 

an_  2 = CO lk $ Ln  L n - I  - - 

{ ( xn Xn-l~ (h xn Xn-l)(l.__ln_i) : 
u l, s Ln Ln-~I + ~ + ~ + L , , - 1 1  

0 < k < n - m ,  2 < i < m - 1 } ] .  

We continue this procedure and get for all p ,  0 < p < m - 2: fixing the x~_p-coordinate 
where 

- h  L n - p  _ L n _ p  < 
Ln  L n - l  l - -  X n - p  <-~ 0 

n - - m  i1 ~ m  in 3nn_-p we ob ta in  Pn-p-1 and after shifting we get S n _ p _  1 w i t h  

(h 
,.o,..-,: ~'-'.-,~ ~.+~-~):,.o 

O < k < n - - m , p + l  < i < m - - 1 } ] .  

Especially for p = m -- 2 we get the (n - m -t- 1)-dimensional polytope 
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['J Ik S -- ~ ~n-l ] "]- (Ik - ln-m§ -'~n "]'- E t" - l  

Observe that the points Ik (s -- Y~'s 2 (xn -t  / L .  - t)  ), 0 < k < n -- m, span a regular (n - m )- 

dimensional simplex with side length (s - Y ' ~ _ ~ 2 ( x . _ t / L n _ t ) )  in R n-m+l sitting in the 
hyperplane which has the Xn-m+l-coordinate equal to O. Likewise the points 

Ik S -- l~=O ~ n _ l  "l'- (Ik -- ln-m+l)  Xn-l  O < k < n --  m ,  
= L n - t /  ' 

span a regular (n -- m)-dimensional simplex in R "-m+l sitting in the hyperplane which 
m - 2  L has the Xn_m+l-coordinate equal to - ( h / L n  + ~-~a=0 ( x n - J  n - t ) ) .  

The sidelength of  this simplex is 

t=o L n-t ] t=o L._t ] 

+ (lk+t- l.-m+l) ~ J=0 L.- t ]  2 

= s + IIlk - -  l k + l  112 = s + - - .  
Ln 

Hence 5,"_-m+1 is the convex combination of  two regular (n - m)-dimensional simplices 
sitting in parallel hyperplanes and, consequently, 

Nnm+' (I n'+l l Xntl n-m+1) 
. - .  , , i = ,  L, h "] - s +  

v~ -- (n -- m + 1)! s -'1- ~n, ]  1=0 

]--[n--m+l n--ra+l ( ) 
_ I l i = l  Li ~ n -- m + 1 (__l)r+ 1 

(n - m + 1)! = r 

(h r §  yjX~ l~ s+ 
X 1=0 L n-I ] ~n J 

Now we integrate successively with respect to the Xn-m+2-, Xn-m+a-, . . . .  xn -coord ina te s  
and get 

) ( /~i=1 Li  r E  1 n -- m -{- 1 ( _ l ) r +  1 s -~- ~ n J  v o l . ( P " - " )  - -  (n - m + 1)! = r 

(h,~r+m-~ 1 
x \ L n }  ( r + l ) ( r + 2 ) . . . ( r + m - - 1 ) "  
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Recall that h = n6/vol,_l(S~_l) and collect terms in powers of ~ to obtain 

~ (k) t~k k-m i( k ) 
v ~  = (voln(Sn))  k-1 E ( - 1 )  m + i  " 

k=m i=0 

[] 

[ n+l ~ faces of dimension Proof of Theorem 1. Taking into account that there are ~ n - m + l ]  

(n - m) of Sn, the proof of Theorem 1 follows immediately from Lemma 4 and 

voln(S~)-vol(Sn)=~"~(m=l n-mn-I-l-t-1)~"~{n~k=m ~k k-m~ ./ k ). \k] (voln(Sn)) k-1 (-1)~ ~m -t- i 

We then collect terms in powers of 8 and obtain the expression of the theorem. [] 
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