Folding Rulers Inside Triangles*

M. van Kreveld, ${ }^{1}$ J. Snoeyink, ${ }^{2}$ and S. Whitesides ${ }^{3}$
${ }^{1}$ Department of Computer Science, Utrecht University, P.O. Box $80.089,3508$ TB Utrecht, The Netherlands
${ }^{2}$ Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
${ }^{3}$ School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2A7

Abstract

An l-ruler is a chain of n links, each of length l. The links, which are allowed to cross, are modeled by line segments whose endpoints act as joints. A given configuration of an l-ruler is said to fold if it can be moved to a configuration in which all its links coincide. We show that l-rulers confined inside an equilateral triangle of side 1 exhibit the following surprising alternation property: there are three values $x_{1} \approx 0.483, x_{2}=0.5$, and $x_{3} \approx 0.866$ such that all configurations of n-link l-rulers fold if $l \in\left[0, x_{1}\right]$ or $l \in\left(x_{2}, x_{3}\right]$, but, for any $l \in\left(x_{1}, x_{2}\right]$ and any $l \in\left(x_{3}, 1\right]$, there are configurations of l-rulers that cannot fold. In the folding cases, linear-time algorithms are given that achieve the folding. Also, a general proof technique is given that can show that certain configurations-in the nonfolding cases-cannot fold.

1. Introduction

A linkage is a collection of rigid rods or links that are fastened together at their endpoints, about which they may rotate freely. Links may cross over one another. A ruler is a chain of links, that is, any endpoint is fastened to at most one other endpoint, and two links have an endpoint that is not fastened to any other endpoint.

Several papers have been written on reconfiguration problems for linkages or rulers from a geometric point of view, including a survey [9]. Hopcroft et al. [1] proved that reconfiguration of a linkage so that a designated joint reaches a given position is PSPACE-

[^0]hard. Joseph and Plantinga [3] proved a similar result for moving rulers amidst obstacles. Hopcroft et al. [2] proved that folding a ruler to a segment with at most a specified length is an NP-complete problem, but gave a polynomial-time algorithm for reconfiguring a ruler-of which one point is pinned down to the plane-inside a circle. The running time was improved to linear by Kantabutra and Kosaraju [5]. Kantabutra [4] studied rulers inside a square, with one end fixed and all links of length at most half the side length of the square. He gave a linear-time reconfiguration algorithm. Lenhart and Whitesides [6]-[8] studied the reconfiguration of simple closed chains of links in d dimensions and gave a linear-time reconfiguration algorithm.

We consider a reconfiguration problem for rulers that have all links of equal length and that are confined to an equilateral triangle with unit edge length. The objective is to fold the ruler onto a single link so that all links coincide. This problem is of interest because a confining region having acute angles presents difficulties that have not been studied previously. Also, our results give an additional example of a motion-planning problem that can be solved in linear time despite $n+2$ degrees of freedom.

We call a ruler whose links all have equal length l an l-ruler, and we scale the side of the confining triangle to have length 1 . Of course there are l-rulers for l close to 1 that cannot be folded onto a single link, and it is not surprising that, for sufficiently small values of l, all l-rulers fold. However, we have discovered the following surprising phenomenon. For any n and any link length l in the range $\left[0, x_{1}\right]$ with $x_{1} \approx 0.483$, any configuration of an n-link l-ruler folds. For $n \geq 3$ and l in the range (x_{1}, x_{2}], where $x_{2}=0.5$, there are configurations of n-link l-rulers that do not fold. For any n and l in the range $\left(x_{2}, x_{3}\right]$, where $x_{3}=\sqrt{3} / 2 \approx 0.866$, any configuration of an n-link l-ruler folds. For $n \geq 2$ and l in the range ($x_{3}, 1$], there are configurations of n-link l-rulers that do not fold. In the cases where the ruler can always be folded, we give linear-time algorithms that accomplish this. In the cases where not every ruler can be folded, we give a configuration that cannot be folded and prove this.

The values x_{1}, x_{2}, and x_{3} are illustrated in Fig. 1. In the left triangle the l-ruler has one joint at v, the next joint on the side $\overline{u v}$, the third joint on the side $\overline{u w}$, and the last joint on the side $\overline{v w}$. Furthermore, the last link is normal to $\overline{v w}$. This configuration defines $x_{1}=\frac{1}{4}(12+7 \sqrt{3}-(6+3 \sqrt{3}) \sqrt{4 \sqrt{3}-3}) \approx 0.483$. In the middle triangle the first and last joints are at v and w, and the other two joints are on the sides $\overline{u v}$ and $\bar{u} \bar{w}$. This configuration defines $x_{2}=0.5$. In the right triangle there is one link with one joint at u, the other joint on the side $\overline{v w}$, and this link is normal to $\overline{v w}$. This configuration defines $x_{3}=\sqrt{3} / 2 \approx 0.866$.

Fig. 1. Illustrations of x_{1}, x_{2}, and x_{3}.

The remainder of this paper is organized as follows. In Section 2 some notation is introduced, and also simple motions of the ruler. In Section 3 we give a lineartime algorithm to fold l-rulers for $l \in\left(x_{2}, x_{3}\right]$. Section 4 presents a linear-time algorithm to fold l-rulers for $l \in\left[0, \frac{1}{3}\right]$, and a sketch of the algorithm for $l \in\left(\frac{1}{3}, x_{1}\right]$. (The Appendix contains the long and highly technical linear-time algorithm for $l \in$ $\left(\frac{1}{3}, x_{1}\right]$.) Nonfoldability of rulers is studied in Section 5 . The conclusions are given in Section 6.

2. Preliminaries

We denote the links of an n-link l-ruler by $\ell_{1}, \ldots, \ell_{n}$, where link ℓ_{i} has endpoints j_{i-1} and j_{i}. The angle at j_{i} is the angle between links ℓ_{i-1} and ℓ_{i}; the angle at j_{0} is the angle ℓ_{1} makes with the positive x-axis. A joint j_{i} is open if the angle is π radians; a joint is closed if the angle is 0 radians.

We denote the unit-side triangle in which l-rulers are confined by Δ, which we visualize as having a horizontal base $\overline{v w}$ and a top vertex u. Links and joints may lie on the boundary of Δ.

For a joint j_{i}, we denote with C_{i} the circle with radius l centered at j_{i}. This circle may have one, two, or three connected components inside Δ, depending on the position of j_{i} and the value of l.

Algorithms for the reconfiguration of a ruler usually break up the motions for the whole reconfiguration into simple motions, in which only a few joints are used simultaneously [2], [7]. We allow the following type of simple motions for rulers:

- Some joint j_{i} of the ruler does not change its position, and at most a constant number of angles at joints between a pair of adjacent links change simultaneously.
- No angles at joints change, but the ruler may translate and rotate as a rigid object.

Note that the joints at which the angles change can be far apart in the ruler. A dragging motion at joint j_{i} is a motion in which the positions of joints j_{i+2} through j_{n} remain fixed, links ℓ_{i+1} and ℓ_{i+2} act as an elbow to move j_{i} along some specified line, and j_{i} drags the first i links so that they translate in the same direction as j_{i}, see Fig. 2.

Fig. 2. Dragging motion at joint j_{i}.

Fig. 3. Labeling the joints of moderately long links.

3. Folding Rulers With Moderately Long Links

We show that any configuration of an n-link l-ruler with $l \in\left(x_{2}, x_{3}\right]$ can be folded, where $x_{2}=0.5$ and $x_{3}=\sqrt{3} / 2 \approx 0.866$. The bounds are tight, that is, Section 5 shows that there are configurations of a ruler with $l=0.5$ that cannot be folded, and the same holds for any $l>\sqrt{3} / 2$.

The algorithm to fold an l-ruler with $l \in\left(x_{2}, x_{3}\right]$ has three phases. The first phase labels all joints in some appropriate way. The second phase brings an arbitrary configuration into one where the joints lie at the vertices of an equilateral triangle inside Δ. The positions correspond to the labels given to the joints. The third phase turns the triangle into a segment.

Divide Δ into four equal-sized equilateral triangles by connecting the midpoints of the sides of Δ (see Fig. 3). Let every joint in the triangle adjacent to u be labeled u, and similarly with v and w. It remains to label the joints in the middle triangle. For any such joint j_{i} we choose a label that is different from the labels of j_{i-1} and j_{i+1}. If j_{i-1} and j_{i+1} have the same label, say u, then we assign j_{i} a label depending on the direction of the link ℓ_{i+1}. If j_{i+1} lies to the left of j_{i}, then j_{i} is labeled w, otherwise j_{i} is labeled v.

Lemma 1. The labeling defined above has the property that joints incident to the same link have different labels.

Proof. Since $l>0.5$, no two joints incident to the same link can be in the same one of the four smaller triangles. By choice, the joints in the middle triangle have a label different from the adjacent ones.

Let Δ^{\prime} be a homothetic copy of Δ with side length l and vertices u^{\prime}, v^{\prime}, and w^{\prime}. Vertex u^{\prime} is the top vertex of Δ^{\prime}, and $\overline{v^{\prime} w^{\prime}}$ is the horizontal bottom side. Triangle Δ^{\prime} will be free to translate inside Δ. A joint j_{i} can support Δ^{\prime} at u^{\prime} if the placement of Δ^{\prime} such that u^{\prime} and j_{i} coincide is inside Δ.

Lemma 2. For any two joints j_{i}, j_{i+1} labeled u, v, either j_{i} can support $\Delta^{\prime}\left(\right.$ at $\left.u^{\prime}\right)$, or j_{i+1} can support $\Delta^{\prime}\left(a t v^{\prime}\right)$, or both.

Fig. 4. The motion of Δ^{\prime} stays inside the dashed triangle and thus inside Δ.

Proof. Assume first that j_{i} lies closer to $\overline{u v}$ than j_{i+1} does. Then j_{i+1} lies more than $l \cdot \sqrt{3} / 2$ in vertical distance below j_{i}. The base $\overline{v^{\prime} w^{\prime}}$ of Δ^{\prime} lies exactly $l \cdot \sqrt{3} / 2$ in vertical distance below j_{i}. Since j_{i+1} is inside Δ, the triangle Δ^{\prime} lies above $\overline{v w}$. Since $\overline{u^{\prime} v^{\prime}}$ and $\overline{u v}$ are parallel and \dot{j}_{i} lies inside $\Delta, \overline{u^{\prime} v^{\prime}}$ lies to the right of $\overline{u v}$. Similarly, $\overline{u^{\prime} w^{\prime}}$ lies to the left of $\overline{u w}$. It follows that Δ^{\prime} is inside Δ so j_{i} can support Δ^{\prime} at u^{\prime}. The case where v^{\prime} is closer to $\bar{u} \bar{v}$ is similar.

Assume without loss of generality that j_{0} is labeled u and j_{1} is labeled v. Rotate j_{0} counterclockwise around j_{1} until it hits $\overline{u v}$. From the proof of the lemma above, j_{0} can now support Δ^{\prime} at u^{\prime}. By translating Δ^{\prime} inside Δ, we will wrap the ruler onto Δ^{\prime}, such that any joint with label u will be at u^{\prime}, any joint with label v will be at v^{\prime}, and any joint with label w will be at w^{\prime}. Assume that we have placed all joints up to j_{i-1} on the vertices of Δ^{\prime}. Assume without loss of generality that j_{i-1} coincides with u^{\prime} and j_{i} has label v. We maintain the invariant that joints j_{i}, \ldots, j_{n} have not changed position yet.

First, assume that j_{i} can support Δ^{\prime} (see Fig. 4(a)). Then, by changing the angles at joints j_{i-1} and j_{i}, we let j_{i} support Δ^{\prime} at v^{\prime}. Since the initial and final positions of Δ^{\prime} lie inside Δ, the circular motions described by the vertices of Δ^{\prime} are inside Δ. In the figure, Δ^{\prime} stays inside the dashed triangle.

On the other hand, assume that j_{i} cannot support Δ^{\prime}. Then, by Lemma $2, j_{i+1}$ can support Δ^{\prime} (see Fig. 4(b)). If j_{i+1} has label w, then Δ^{\prime} can simply be dragged to its new position where j_{i+1} and w^{\prime} coincide. The motion causes j_{i} and v^{\prime} to coincide as well. Next, assume that j_{i+1} is labeled u. Recall that since j_{i} is labeled v, joint j_{i+1} is straight above or to the right of j_{i}. Rotate j_{i-1} around j_{i} until j_{i-1} and j_{i+1} coincide (so Δ^{\prime} translates along a circular arc). Then rotate j_{i} around $j_{i-1}=j_{i+1}$ until it coincides with v^{\prime}.

In the third phase the ruler on Δ^{\prime} is incrementally collapsed to a single segment. Consider the positions of j_{0}, j_{1}, j_{2} on Δ^{\prime}. If j_{0} and j_{2} have the same position, then the first two links are folded and the problem reduces to one for an ($n-1$)-link ruler. Otherwise, let u^{\prime} be the position of j_{1}, the other cases being symmetrical. Then j_{0} is at v^{\prime} and j_{2} is at w^{\prime} or vice versa. Translate Δ^{\prime} to make u^{\prime} coincide with vertex u of Δ, and rotate j_{0} around j_{1} to coincide with j_{2}. This is possible because $l \leq \sqrt{3} / 2$. Again this leaves a problem with an $(n-1)$-link ruler.

Theorem 3. Any configuration of an n-link l-ruler with $l \in\left(x_{2}, x_{3}\right]$ can be folded in linear time, changing at most three joints simultaneously.

4. Folding Rulers With Short Links

The folding of short n-link l-rulers is split into two algorithms-one deals with $l \in\left[0, \frac{1}{3}\right]$ and the other with $l \in\left(\frac{1}{3}, x_{1}\right]$. The latter algorithm is long and technical; its details can be found in the Appendix. We advise the reader not to start with the Appendix before finishing the rest of the paper. A brief sketch of the algorithm, however, is given at the end of this section.

We continue by proving that l-rulers with $l \in\left[0, \frac{1}{3}\right]$ can be folded using a linear number of simple motions. The algorithm attempts to fold the first two links, and then solve the remaining problem on an ($n-1$)-link ruler inductively. Alternatively, it can try to fold links ℓ_{2}, ℓ_{3}, and ℓ_{4}, which leaves a folding problem for an ($n-2$)-link ruler. We show that one of these attempts succeeds without moving j_{5}, \ldots, j_{n} from their positions.

We begin with a simple observation, and then put j_{2} on the boundary of Δ. Recall that C_{i} is the circle with radius l centered at joint j_{i}, and that C_{i} has one or more components inside Δ.

Lemma 4. If C_{1} has j_{0} and j_{2} on the same component inside Δ, then ℓ_{1} and ℓ_{2} can be folded without changing the position of j_{1}.

Proof. Simply rotate j_{0} around j_{1} onto j_{2}.
Lemma 5. Without changing the position of j_{3}, links ℓ_{1} and ℓ_{2} can be folded, or joints j_{1} and j_{2} can be put against sides of Δ.

Proof. Translate j_{0} toward j_{2}. If j_{0} reaches j_{2}, then ℓ_{1} and ℓ_{2} are folded, otherwise, j_{1} has hit a side of Δ. Assume without loss of generality that j_{1} has hit $\overline{v w}$, and that j_{1} is closer to v. Drag j_{1} rightward along $\overline{v w}$ toward the middle, with $j_{3} j_{2} j_{1}$ acting as an elbow; note that j_{0} cannot hit any side of Δ during this motion. If j_{1} reaches the middle, then j_{0} can be rotated onto j_{2} because C_{1} has only one component inside Δ. Otherwise, j_{2} has hit the side of Δ, or j_{2} is open and the angle $v j_{1} j_{3}$ is at most $\pi / 2$ radians. However, then j_{1} is at least at distance $2 l / \sqrt{3}$ from v, and C_{1} has only one component inside Δ.

Define the u-triangle as the equilateral triangle inside Δ with a vertex at u and with side length $l / \sqrt{3}$. Define the v-triangle and the w-triangle similarly. We continue in one of two ways, depending on whether j_{2} is in a u-, v-, or w-triangle, or outside all of them.

Lemma 6. If j_{1} and j_{2} are on sides of Δ, and j_{2} is outside the u-, v-, and w-triangle, then ℓ_{1} and ℓ_{2} can be folded without changing the position of j_{2}.

Proof. Assume without loss of generality that j_{2} is on the side $\overline{v w}$, and closer to v than to w (see Fig. 5). If j_{1} is on $\overline{v w}$, then either j_{0} can be rotated onto j_{2} directly, or j_{0} can be rotated against $\overline{v w}$ and then dragged toward j_{2}.

Fig. 5. Three cases of folding ℓ_{1} and ℓ_{2} when j_{2} is on $\overline{v w}$, closer to v, and outside the v-triangle. In the leftmost case, j_{0} is sotated clockwise onto $\overline{v w}$ and then dragged to j_{2}.

If j_{1} is against $\overline{u v}$ and below the perpendicular to $\overline{u v}$ through j_{2}, then j_{0} can be rotated around j_{1} onto j_{2} because C_{1} has only one component inside Δ. If j_{1} is against $\overline{u v}$ and above the perpendicular to $\overline{u v}$, then the link $j_{1} j_{2}$ divides Δ into two parts. If j_{0} is in the triangle $j_{1} j_{2} v$, then j_{0} can be translated onto j_{2}. If j_{0} is in the quadrilateral part, then j_{0} can be rotated onto j_{2}.

If the above method fails to fold ℓ_{1} and ℓ_{2}, then we will drag j_{2} and possibly also j_{3} and j_{4}. First, we wish not to worry about the first two links hitting sides as long as j_{2} is in the v-triangle. To this end, we make the links ℓ_{1} and ℓ_{2} parallel to $\overline{v w}$ with joint j_{1} open, and we keep these links this way until specified otherwise. Note that j_{1} and j_{0} cannot hit any side (in particular, $\overline{u w}$) unless j_{2} leaves the v-triangle.

Lemma 7. If j_{2} is in the v-triangle and on $\overline{v w}$, then j_{2} can be put outside the v-triangle, or j_{2} and j_{3} can be put on the same side of Δ, without changing the position of j_{4}.

Proof. Drag j_{2} along $\overline{v w}$ toward w, keeping j_{4} 's position fixed (see Fig. 6). If j_{2} does not get out of the v-triangle, then j_{3} has hit $\overline{u v}$ or $\overline{v w}$. If j_{3} is on $\overline{u v}$, then rotate j_{2} around j_{3} to that side as well.

(a)

(b)

Fig. 6. (a) Putting j_{3} on a side, or getting j_{2} outside the v-triangle. (b) Getting j_{2} outside the v-triangle by dragging j_{3}.

If j_{2} is put outside the v-triangle, then ℓ_{1} and ℓ_{2} can be folded according to Lemma 6. Otherwise, assume without loss of generality that j_{2} and j_{3} are both on $\overline{\nu w}$.

Lemma 8. If j_{2} is in the v-triangle on side $\overline{v w}$ and j_{3} is on side $\bar{v} \bar{w}$, then j_{2} can be moved outside the v-triangle, or ℓ_{2}, ℓ_{3}, and ℓ_{4} can be folded, without changing the position of j_{5}.

Proof. Drag j_{3} along $\overline{v w}$ toward w, with $j_{5} j_{4} j_{3}$ acting as an elbow (see Fig. 6). If j_{2} does not leave the v-triangle, then j_{4} must have hit a side of Δ. This side cannot be $\overline{u w}$, since the distance from the v-triangle to the side $\overline{u w}$ is greater than $2 l$. If the side is $\overline{v w}$ and joint j_{3} is open, then j_{2} can be dragged toward j_{4} (and w), with j_{3} leaving $\overline{v w}$. This will bring j_{2} outside the v-triangle. If the side is $\overline{v w}$ and joint j_{3} is closed, then ℓ_{3} and ℓ_{4} coincide, and we can make ℓ_{2} coincide with these links as well by rotating j_{3} around $j_{2}=j_{4}$. If the side hit by j_{4} is \bar{u}, then drag j_{2} toward w with j_{3} leaving the side $\overline{v w}$, and j_{2} will leave the v-triangle. This is possible since the angle $\angle j_{2} j_{3} j_{4}$ is between $\pi / 6$ and $\pi / 3$ radians in this case.

Theorem 9. Any configuration of an n-link l-ruler with $l \in\left[0, \frac{1}{3}\right]$ can be folded in linear time, changing at most three joints simultaneously.

Proof. The lemmas above show that with only a constant number of simple motions, either ℓ_{1} and ℓ_{2} can be folded, or ℓ_{2}, ℓ_{3}, and ℓ_{4} can be folded. Thus the problem reduces to an ($n-1$)-link or ($n-2$)-link l-ruler. The theorem follows by induction. The base cases are easy (observe for instance that imaginary links can be added to one end to reduce the number of cases).

The remainder of this section contains a brief sketch of the algorithm of which the details are given in the Appendix. The algorithm to fold l-rulers with $l \in\left(\frac{1}{3}, x_{1}\right]$ has some resemblance with the algorithm for folding rulers with moderately long links. From the initial configuration of the ruler, we attempt to reach a situation where all links coincide with the edges of a trellis with edge length l, see Fig. 7. The trellis is translated inside Δ to reach this situation. So the trellis plays the same role as Δ^{\prime} in the algorithm for folding moderately long link rulers. After all links are on the trellis, the ruler is first collapsed to a triangle and then to a single segment. These steps are relatively simple.

Fig. 7. A trellis with side length l onto which the ruler is put. Then the ruler is collapsed to a triangle and finally to a segment.

To get all joints on the vertices of the trellis, an extensive analysis of 2 -link rulers $j_{0} j_{1} j_{2}$ is made where joint j_{0} is kept fixed and joint j_{2} drags along a side of Δ. The analysis contains a study of the cases where this dragging motion is stopped. For rulers with more links, the first joint j_{0} is put on a vertex of the trellis and we try to continue to put the next joints onto the vertices. The analysis of two 2-link rulers is used on $j_{0} j_{1} j_{2}$ and $j_{2} j_{3} j_{4}$, so we know what can happen when j_{2} is dragged along a side. This leads to the result that either the next joint j_{1} can be put on a vertex of the trellis, or three consecutive links can be folded onto one.

5. Nonfoldable Rulers

It will be shown that not every configuration of an l-ruler is foldable if $l \in\left(x_{3}, 1\right]$ where $x_{3}=\sqrt{3} / 2 \approx 0.866$, or if $l \in\left(x_{1}, x_{2}\right]$ where $x_{1} \approx 0.483$ and $x_{2}=0.5$. A distinction can be made between two types of nonfoldability. It may be that the ruler is rigidly stuck, or it may be that small motions are possible, but not enough to fold it. Besides giving examples of stuck rulers, we also provide a proof technique to show that a ruler is stuck.

The first example of a rigidly stuck ruler (see Fig. 8) consists of two links of length 1, one coinciding with the side $\overline{u v}$ of Δ, and the other coinciding with \bar{v}. It is easy to see that this configuration cannot be folded, and that it is rigidly stuck. Next, assume that the link length is less than 1 , joint j_{1} coincides with v, link ℓ_{1} lies on the side $\overline{u v}$ and link ℓ_{2} lies on the side $\overline{v w}$. This configuration is not rigidly stuck. However, if $l>x_{3}=\sqrt{3} / 2$, then joint j_{0} cannot rotate past the bisector of v to reach joint j_{2}. Nor can j_{2} reach j_{0}. So the given configuration is nonfoldable.

The second example of a rigidly stuck ruler consists of three links of length 0.5 . Joint j_{0} coincides with v, joint j_{1} coincides with the midpoint of $\overline{u v}$, joint j_{2} coincides with the midpoint of $\overline{u w}$, and j_{3} coincides with w. As in the previous example, one can decrease the link length slightly and start with roughly the same configuration, and obtain a nonfoldable ruler that is not rigidly stuck. We prove that this example provides a nonfoldable ruler when $l \in\left(x_{1}, x_{2}\right]$ where $x_{1} \approx 0.483$ and $x_{2}=0.5$, by using a proof technique which we explain after the third example.

The third example of a rigidly stuck ruler has nine links of length ≈ 0.483576. This value is slightly larger than $x_{1} \approx 0.483481$. Joint j_{0} coincides with w, joint j_{1} lies on

Fig. 8. Three rulers that are rigidly stuck.

Fig. 9. (a) ℓ is in the w-sector of j. (b) $j_{i-1} j_{i} j_{i+1}$ make a right turn
the side $\overline{v w}$, joint j_{2} lies on $\overline{u v}$, joint j_{3} also lies on $\overline{u v}$, joint j_{4} lies on $\overline{v w}$ and, of the two possibilities, closest to v. Joints j_{9}, \ldots, j_{5} are the mirror images of j_{0}, \ldots, j_{4} when reflected in the bisector at u.

To prove that a configuration of a ruler is stuck, we define the state of a configuration, which is a discretization of it. We use the states to show that a given configuration cannot change to a different state. We study the possible state transitions for any configuration, and show that none can take place first. A state of a configuration consists of the following items (see Fig. 9):

1. For any joint j and incident link ℓ, draw from the joint j the perpendiculars to the three edges of the triangle Δ. The link ℓ can be in any of the three sectors centered at j, which define one item of the state of the ruler. We denote the sectors as the u-sector, v-sector, and w-sector. The boundaries of the sectors are assigned arbitrarily to one of the incident sectors.
2. For three consecutive joints j_{i-1}, j_{i}, and j_{i+1}, the sidedness of the triangle $j_{i-1} j_{i} j_{i+1}$ (a left turn or a right turn) is an item of the state. If joint j_{i} is open or closed, then one of the possible item instances is assigned arbitrarily.

It follows that any configuration of an n-link ruler with at least two links has $3 n-1$ items in its state. There are two possible state transitions for a configuration of a ruler, for which the following states are critical (in other words, when an item is about to change):

1. A link ℓ makes an angle of $\pi / 2$ radians with one of the edges of Δ.
2. Three consecutive joints are collinear (the middle joint is open or closed).

If two consecutive links, both incident to some joint j, are in the same sector, then one need not test whether the three joints incident to these links are collinear with j open. For this to happen, one of the links must leave the sector first. Similarly, if two consecutive links, both incident to some joint j, are in different sectors, then one need not test whether the three joints incident to these links are collinear with j closed.

For a proof that a configuration of a ruler is nonfoldable, the following ideas can be used. It is necessary that the initial and final configurations be in separate connected components. It is sufficient that the initial configuration be in an isolated vertex of the
state graph that is different from the final configuration. Following this approach, we show that the configurations of the rulers of the first and second examples are nonfoldable for the appropriate link lengths.

Lemma 10. For each $l \in\left(x_{3}, 1\right]$, there is a configuration of an l-ruler that cannot be folded (where $x_{3}=\sqrt{3} / 2$).

Proof. Consider the configuration of example 1. In a folded configuration of this ruler, links ℓ_{1} and ℓ_{2} are in the same state with respect to joint j_{1}. For the initial configuration of example 1 , this is not the case. We consider which critical state can occur as the first one (possibly, simultaneously with others). Consider the state of joint j_{1} and link ℓ_{1}. The link ℓ_{1} is in the u-sector with respect to j_{1}. If ℓ_{1} were to change its state to be in the w-sector, then ℓ_{1} must make an angle of $\pi / 2$ radians with the side $u w$, but this is impossible, because Δ cannot contain a link with the given link length perpendicular to any of its sides. The other transitions of the first type cannot occur for the same reasons. A transition of the second type can occur in one of two forms. Joint j_{1} can be open, i.e., j_{0} and j_{2} are distance $2 l$ apart, or joint j_{2} can be closed, i.e., j_{0} and j_{2} coincide. Clearly, Δ cannot contain a configuration of this ruler with j_{1} open. Also, j_{1} cannot close unless another state transition occurs before or simultaneously, because when j_{1} closes the links ℓ_{1} and ℓ_{2} are in the same state with respect to j_{1}.

Lemma 11. For each $l \in\left(x_{1}, x_{2}\right]$, there is a configuration of an l-ruler that cannot be folded (where $x_{1}=\frac{1}{4}(12+7 \sqrt{3}-(6+3 \sqrt{3}) \sqrt{4 \sqrt{3}-3}) \approx 0.483$ and $\left.x_{2}=0.5\right)$.

Proof. Consider the configuration of example 2 in the middle of Fig. 8. In a folded configuration of this ruler, links ℓ_{1} and ℓ_{2} are in the same state with respect to joint j_{1}. For the initial configuration this is not the case. We consider which critical state can occur as the first one (possibly, simultaneously with others), and for what values of l. Consider link ℓ_{3}, which is in the w-sector with respect to joint j_{2}. Assume that the first state transition brings ℓ_{3} in the v-sector. Then j_{2} must lie at least a distance l above the side $\overline{v w}$ in the critical state. Since link ℓ_{2} is in the v-sector with respect to j_{2}, link ℓ_{1} is in the v-sector with respect to j_{1}, and j_{0}, j_{1}, j_{2} make a right turn, the ruler in this critical configuration only fits inside Δ if $l \leq x_{1}$ (from straightforward calculations using the left configuration in Fig. 1 the value x_{1} is obtained).

Assume that the first state transition brings ℓ_{2} in the u-sector with respect to j_{1}. It can be calculated that in this case $l \leq 2 \sqrt{3}-3 \approx 0.464$.

Next, assume that the first state transition brings ℓ_{3} in the u-sector with respect to j_{2}. This state transition can never occur as the first, since the state of ℓ_{3} with respect to j_{3} will always change before. The other possible state transitions of this type can be handled similarly.

Consider joints j_{0}, j_{1}, j_{2}, which make a right turn, and assume that the first state transition brings this into a left turn. Since ℓ_{1} and ℓ_{2} are in different sectors with respect to j_{1}, joint j_{1} cannot close without having another state transition before or simultaneously. Furthermore, ℓ_{1} is in the u-sector of j_{0} and ℓ_{1} is in the w-sector of j_{1}. If joint j_{1} is open, these sectors must be the same. Therefore, another state transition must occur before or
simultaneously. Hence, we need not consider state changes for three consecutive joints as the first state change.

6. Conclusions

We have studied folding an n-link ruler with equal length links inside an equilateral triangle. This paper gives one of the first results on the reconfiguration of rulers when there are acute angles that constrain the motion of the ruler. Even in the simple setting of this paper, a surprising result shows up: rulers with short links can always be folded, rulers with midsize links cannot always be folded, rulers with fairly long links can always be folded, and rulers with long links cannot always be folded. We showed these results using techniques that can be used in other ruler-folding situations as well.

We have not considered the question whether a given configuration can be folded in the ranges of the link length where folding is not necessarily possible. In the case of long links the question is easy to answer, but for midsize links the problem is open. We also do not know whether there are more rigidly stuck configurations than the three we found.

When considering other confining regions than equilateral triangles, the situation may be quite different. We do not know whether the alternation property on link lengths with respect to foldability also shows up for regular k-gons with $k \geq 4$. When an arbitrary triangle is the confining region, or when different link lengths are allowed, a brief study showed that the situation is exceedingly difficult.

Acknowledgments

The authors thank Bill Lenhart for interesting discussions on the reconfiguration of rulers, and the referees for their excellent comments and careful refereeing.

Appendix. Folding \boldsymbol{l}-Rulers for $\frac{1}{3}<\boldsymbol{l} \leq \boldsymbol{x}_{\mathbf{1}} \approx \mathbf{0 . 4 8 3}$
In Section 3 we folded moderately long l-rulers onto an equilateral triangle with side length l and then folded this triangle. In this appendix we fold l-rulers for $0<l \leq x_{1} \approx$ 0.483 onto a trellis. Then we fold the trellis to a triangle and fold the triangle. We prove in the reverse order that these three foldings are possible.

A trellis is composed of four equilateral triangles of side length l-three corner triangles homothetic to Δ and one upside-down center triangle, as in Fig. 10. If we translate a trellis in Δ, keeping sides parallel, then the six vertices of the trellis sweep out six equilateral frame triangles, also shown in Fig. 10. These are called the u, v, and w frame triangles for the corners, and the $u v, u w$, and $v w$ frame triangles for the others.

Recall that C_{i} denotes the circle with radius l that is centered at joint j_{i}, and A_{i} denotes the set of circular arcs that are the connected components of $C_{i} \cap \Delta$. The $v w$-fence is the line segment that is the intersection of Δ with a line parallel to $\overline{v w}$ at distance l from

Fig. 10. The trellis and frame.
$\overline{v w}$. We say that a joint j_{i} is above the $v w$-fence if the disk bounded by circle C_{i} does not intersect the line $\overline{v w}$. Define the $u v$-fence and $u w$-fence similarly.

There are critical values for l that determine the relationship between middle frame triangles and fences. We assume throughout this appendix that $\frac{1}{3}<l \leq x_{1}$, which is the larger critical value.

Lemma 12. If $l \leq 2 \sqrt{3}-3 \approx 0.464$, then any point of $\overline{v w}$ is above the $u v$-or $u w$-fence or is in the $v w$ frame triangle. Let a be the corner of the $u w$ frame triangle nearest w. If $l \leq x_{1} \approx 0.483$, then the circle C_{a} of radius l intersects $\overline{u v}$ above the $v w$-fence.

Proof. Figure 11(a) illustrates the first part of the lemma: the fences touch the middle frame triangles when $l \leq 1-2 l / \sqrt{3}$. Figure 11(b) illustrates the second part: the lemma is satisfied if l is at most the distance between the lower right corner of the $u w$ frame triangle and the left end of the $v w$-fence. That is, if

$$
l^{2} \leq\left(l-\left(\frac{\sqrt{3}}{2}\right) l\right)^{2}+\left(1-\frac{l}{\sqrt{3}}-\frac{l}{2}\right)^{2}
$$

Fig. 11. The relationship between fences and frame depends on l.

A.1. Folding a Triangle onto a Link, Folding a Trellis onto a Triangle

To begin, we prove that any prefix of links that lie on edges of the center triangle in a trellis can be folded without moving the trellis to a single link.

Lemma 13. Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be a ruler on the center triangle τ of a trellis. Then the ruler can be folded onto ℓ_{k} inside the trellis.

Proof. The circular sector formed by pivoting link ℓ_{1} about joint j_{1} onto link ℓ_{2} is entirely within the trellis. By induction, we can therefore fold all links onto ℓ_{k}.

Lemma 14. A ruler on a trellis can be folded to a single segment ifl $\leq x_{1} \approx 0.483$.

Proof. As an induction hypothesis, suppose that all links from ℓ_{1} to ℓ_{i}, for some $i \geq 1$, lie on τ, which is a corner triangle of the trellis. This is easy to obtain in the base case: link ℓ_{1}, being on the trellis, is an edge of a unique corner triangle that can be chosen as τ.

To reduce the number of cases in the induction step, we always fold the ruler onto a triangle τ that has one vertex in the corner of the trellis-if we ever put τ in the center of the trellis, then Lemma 13 says that we can fold the links on τ to a single link and take a new triangle τ that is incident to this link and a corner of the trellis.

If the next link ℓ_{i+1} is already on τ, then nothing needs to be done. Otherwise, we have three cases depicted in Fig. 12 for folding ℓ_{i+1} onto τ, which depend on the locations of joints j_{i+1} and j_{i-1}.

Case 1. Joints j_{i+1} and j_{i-1} are in the corners of the trellis. Then j_{i} is at the side between j_{i-1} and j_{i+1}. Translate τ, moving j_{i-1} toward j_{i+1} and j_{i} away from the side of the trellis until τ is again a corner triangle of the trellis and has vertices j_{i-1}, j_{i}, and j_{i+1}.
Case 2. Joints j_{i} and j_{i-1} lie at the sides of the trellis; joint j_{i+1} lies at the side or corner. Rotate j_{i} to bring j_{i-1} to the side near j_{i+1} while rotating j_{i-1} to keep τ homothetic to the corner triangles. This also makes τ a corner triangle of the trellis having vertices j_{i-1}, j_{i}, and j_{i+1}.

Case 3. Joint j_{i+1} is on a side. The triangle τ must touch the opposite corner of the trellis or else joint j_{i+1} and link ℓ_{i+1} are already on τ. This is the most complicated case-it

Fig. 12. Cases for folding the trellis.
cannot be folded inside the trellis, but can be folded inside a unit equilateral triangle if $l \leq x_{1}$. To prove this, let us be more specific about the locations of the trellis and the joints.

Let joint j_{i+1} be at the side $\overline{u v}$ of the triangle Δ, let j_{i} be at the side $\overline{v w}$, and let τ be near w. We translate the trellis so that one of its vertices coincides with u. Next, we pivot j_{i} about j_{i+1}, keeping τ homothetic to Δ, until j_{i} moves above the $u w$-fence. By Lemma 12 the triangle τ can then swing freely on C_{i} to hit $\overline{u v}$ at j_{i+1}. Next, rotate about j_{i+1} to bring \dot{j}_{i} back onto the trellis, making τ the center triangle. Finally, fold τ to a segment according to Lemma 13 and choose a new τ incident to this segment and a corner of the trellis. This completes Case 3.

At the completion of these cases, we have all the links folded onto a corner triangle. We can move this triangle to the center and fold it according to Lemma 13.

A.2. An Analysis of Two-Link Rulers

In this section we study the motion of a two link ruler when one end is dragged along the side of the triangle Δ. This dragging motion is the primary tool in the next and final section, which folds a ruler onto the trellis. We look at configurations where joints are on the sides of Δ. With a two link ruler $a b c$, for example, we place c on a side and drag it, pivotting on a, until b hits a side (or joints go onto a trellis). This reduces the problem to three and then to two degrees of freedom-the placement of a (which we draw in Fig. 14). Thus, by proving lemmas about these contact configurations, we avoid having to look at the entire configuration space.

Consider a ruler consisting of two segments $\overline{a b}$ and $\overline{b c}$, where c is along the $\overline{v w}$ side of Δ. Let $\overline{v w}$ be horizontal with w on the right. We say that a wall is any portion of an edge of Δ that is not contained in a frame triangle. In the next lemmas we investigate how b can hit a wall when we drag c along $\overline{v w}$. Figure 13 illustrates these different cases.

Lemma 15. Given a ruler $a b c$ with c on $\overline{v w}$. If we fix the location of a and drag c toward w, then one of the following occurs:

1. Joint c or b reaches a frame triangle.

Fig. 13. Illustrations of the cases of Lemma 15, in which b hits a wall as c is dragged along $\overline{v w}$ toward w.
2. Joints a, b, and c become collinear.
3. Joint b hits a wall on $\bar{v} \bar{w}$
(i) between the v and $v w$ frame triangles, or
(ii) between the $v w$ frame triangle and the vertical line through the right endpoint of the $v w$-fence.
4. With $l>2 \sqrt{3}-3 \approx 0.464$, joint b hits a wall on $\overline{u w}$
(i) inside the circle C centered at the left corner of the $v w$ frame triangle, or
(ii) between the $v w$-fence and the uw frame triangle.
5. With $l>2 \sqrt{3}-3 \approx 0.464$, joint b hits a wall on $\overline{u v}$
(i) inside the circle C centered at the right corner of the $v w$ frame triangle, or
(ii) between the $v w$-fence and the uv frame triangle.

Proof. The only events that can prevent c from reaching the frame triangle at w are joint b hitting a side of Δ or the ruler $a b c$ straightening. We can look at the cases in which b hits sides of Δ without b or c being in a frame triangle. Note that b is below the $v w$-fence since c is on $\overline{v w}$.

In case 3(ii) joint a must be right of the vertical line through b, or else dragging c right would move b away from the wall. However, b must then be to the left of the vertical line through the right endpoint of the $v w$-fence.

In 4(ii) there is room for b between the $v w$-fence and the $u w$ frame triangle only if link length $l>2 \sqrt{3}-3 \approx 0.464$, by Lemma 12 . In 4(i), c must be between the $u w$-fence and the $v w$ frame triangle for b to hit the wall between the $u w$ and w frame triangles. The fact that c is to the left of the $v w$ frame triangle means that b hits inside the circle centered at the left corner of the $v w$ frame triangle. This case occurs only if $l>2 \sqrt{3}-3 \approx 0.464$. Furthermore, b is above the $u v$-fence if $l \leq x_{1} \approx 0.483$ by Lemma 12.

The cases for 5(i) and (ii) are similar to those for 4(i) and (ii).

We can characterize the locations for a (and c) in terms of the location that b hits the wall. For example, a lies on C_{b} when b is on the wall-additional conditions may restrict which portion of C_{b}. One can determine all locations for a that cause b to hit a certain wall segment by taking the union of the appropriate portions of C_{b} for all positions where b hits that segment. Figure 14 illustrates the regions for a that are described in the next lemma.

Lemma 16. When b is on a wall, we have additional restrictions in the following cases of Lemma 15:
3. Joint a is below the $v w$-fence and to the right of the vertical line through b.
4. (i) Joint a is above the 30° line through b.
(ii) Joint c is either (A) left or (B) right of the vertical line through b. Joint a is either (A) right of the vertical or else (B) left of the vertical through b and below the 30° line through b. (Actually, a can be coincident with c in (B), but then the three joints are collinear.)
5. (i) Joint a is below the -30° line through b or coincident with c.
(ii) Joint c is either (A) left or (B) right of the vertical line through b. Joint a is

Fig. 14. Locations for a that make b hit a wall in the cases of Lemma 15 as c is dragged along $\overline{v w}$ toward w. (Small circles mark the centers of reievant arcs.)
either (A) left of the vertical or above the -30° line or else (B) right of the vertical and below the -30° line through b.

Proof. Since a is fixed, joint b moves along C_{a} in a direction determined by the motion of c. The conditions on a (and c) ensure that this motion is into the wall.

Next we look at what can happen when we try to drag c either right or left. The cases are illustrated in Fig. 15.

Fig. 15. Locations for a and b that prevent motion of c both left and right.

Corollary 17. Given a ruler abc with c on $\overline{v w}$, by dragging c toward v and w we get b or c into a frame triangle unless
(1) joints a, b, and c become collinear,
(2) case 3(i) of Lemma 15 applies in one direction and 4(i) in the other,
(3) cases 3(ii) and 5(iiA) of Lemma 15 apply, or
(4) cases 4(iiB) and 5(iiB) of Lemma 15 apply.

Proof. If we take the union of the a regions described in Lemma 16 and intersect them with the reflection about a vertical line, then we find the positions in which a can prevent motion in both directions. Figure 15 illustrates the combinations for which the regions for a intersect and the resulting sliding ranges for c on $\overline{v w}$ remain between the $v w$ and w frame triangles. The motions of b are also shown. (Other potential combinations in which regions for a intersect are 3(i) and $\operatorname{refl}(3(\mathrm{ii})$), 3(i) and refl(5(iiB)), and 4(iiA) and $\operatorname{ref}(5(\mathrm{iiA}))$. These do not appear because the conditions regarding vertical lines cannot be met by sliding c.)

By way of a remark, if $l \leq 2 \sqrt{3}-3$, then cases 2-4 of Corollary 17 cannot apply.

A.3. Folding a Ruler onto the Trellis

We are finally ready to fold a ruler with length $l \leq x_{1} \approx 0.483$ onto the trellis. We first put joint j_{0} into a frame triangle (and thus onto the trellis), then we look at how the two-link rulers $j_{0} j_{1} j_{2}$ and $j_{4} j_{3} j_{2}$ work together and show that by dragging j_{2} either j_{1} can be moved onto the trellis or three links can be folded to one. Once we have the first joint on the trellis, frame triangles can be a big help.

Lemma 18. Suppose that j_{0} is on the trellis. If one of the joints j_{1}, j_{2}, j_{3}, or j_{4} ever gets into a frame triangle, then we can put j_{1} onto the trellis.

Proof. If j_{1} is in a frame triangle, then we can drag the trellis by moving j_{0} on C_{1} until j_{1} is on the trellis. If joint j_{2}, j_{3}, or j_{4} is in a frame triangle, then we can drag the trellis toward that joint until a lower-numbered joint enters a frame triangle.

Now, consider the ruler $j_{0}, j_{1}, \ldots, j_{n}$.
Lemma 19. Given a ruler j_{0}, j_{1}, \ldots, one can move j_{0} into a frame triangle or fold the first two links.

Proof. Consider the ruler $j_{2} j_{1} j_{0}$ with the position of j_{2} fixed. If j_{1} or j_{2} are in frame triangles, then we can put j_{0} into a frame triangle. Otherwise, rotate j_{0} to a wall and apply Corollary 17. The only way for $j_{2} j_{1} j_{0}$ to be collinear in Δ minus the frame triangles is to fold j_{0} onto j_{2}. If, on the other hand, one of cases (2)-(4) holds, then dragging j_{0} along the wall moves j_{1} above some fence so that j_{0} can rotate on C_{1} to j_{2}.

We make one more useful observation. If we can put two joints together above a fence, then we can fold three links to one.

Lemma 20. Given a ruler with joints $a b c d$, if a and c are positioned at a common point above some fence, then we can fold all three links onto $\overline{c d}$ without moving d.

Proof. Joints b and d lie on the single arc $A_{c}=A_{a}$.

Lemma 21. If j_{0} is on the trellis, we can put j_{1} onto the trellis or fold three links to one by rotating at most seven joints.

Proof. We apply our analysis of two-link rulers to $j_{0} j_{1} j_{2}$ and $j_{4} j_{3} j_{2}$. First, we make sure that collinearity can never prevent joint j_{2} from reaching a frame triangle. Then we rotate j_{2} to a wall and drag it until $j_{0} j_{1} j_{2}$ or $j_{4} j_{3} j_{2}$ stop the motion according to Corollary 17. We handle mixed cases-where $j_{4} j_{3} j_{2}$ prevents motion of j_{2} in one direction and $j_{0} j_{1} j_{2}$ prevents motion in the other-by reducing them to cases where the ruler $j_{0} j_{1} j_{2}$ does not restrict the motion of j_{2}. Finally, we show how to solve these cases by folding three links to one or moving a joint into a frame triangle and applying Lemma 18.

If j_{0} is in a corner frame triangle, then we move the trellis away from this corner, pivoting on j_{2}, until j_{0} is at the edge of the frame triangle strictly inside Δ. (Notice that if joint j_{1} hits an edge of Δ during this process, then j_{1} is in a frame triangle.) Now, since Δ minus the corner frame triangles has diameter at most $2 l$ and j_{0} is in the frame inside this region, any future collinearity of $j_{0} j_{1} j_{2}$ will imply that j_{2} has entered a frame triangle.

Since j_{0} is in a frame triangle, j_{1} is on an arc of A_{1} that intersects a frame triangle. We can move j_{1} into that frame triangle, pivoting on j_{3}, unless j_{2} hits a wall. By rotating and reflecting Δ, we can assume that this wall is $\overline{v w}$.

Suppose, without loss of generality, that the ruler $j_{0} j_{1} j_{2}$ does not allow j_{2} to slide freely to the right. We will show either how to satisfy the theorem or else arrange that one joint (j_{2} or j_{3}) can slide without restriction from preceding links. Since j_{0} is in a frame triangle, j_{2} can be restricted only by cases 3(i), 3(ii), or 5(iiA) of Lemma 15-only these cases have a region for a that intersects a frame triangle. (See Figs. 14 and 16.)

Case 5(iiA). This case is the easiest-we move the trellis to have a vertex at w and j_{0} moves out of the critical region and no longer restricts the motion of j_{2}. (This is because the arc A_{0} goes above the $v w$-fence after the move.)

Fig. 16. Dealing with cases in which $j_{0} \dot{j}_{1} \dot{j}_{2}$ restricts \dot{j}_{2}.

Fig. 17. Only the ruler $j_{4} j_{3} j_{2}$ restricts j_{2}.

Case 3(ii). Joint j_{1} is between the $v w$ frame triangle and the $u w$-fence, which means that j_{2} is near v. If we drag j_{2} toward v, Lemma 15 implies that only the ruler $j_{4} j_{3} j_{2}$ can prevent j_{2} 's entry into the v frame triangle.

If joints j_{4}, j_{3}, and j_{2} become collinear by folding, then $j_{2}=j_{4}$ and Lemma 20 implies that we can fold three links. With any other collinearity, j_{4} is in the frame. The only case of Lemma 15 that applies to the ruler $j_{4} j_{3} j_{2}$ is 3 (i). (Joint j_{2} is too close to v for 4(iiB).) In that case, drag j_{2} and j_{1} along $\overline{w v}$, pivoting on j_{4} and moving the trellis as necessary. Joint j_{3} hits the wall at j_{1}. Next, move j_{2} on $C_{3}=C_{1}$ to $\bar{u} \bar{v}$ and move the trellis to u. Then the ruler $j_{0} j_{1} j_{2}$ does not restrict the motion of j_{2} on $\overline{u v}$.
Case 3(i). Joint j_{2} is below the $u v$-fence and can move to the $v w$ frame triangle unless j_{3} hits $\overline{u v}$ according to case $4(\mathrm{i})$. However, then the trellis can be moved to u so that j_{2} can slide freely between the $u v$-fence and the $v w$ frame triangle. Thus, j_{3} can slide on $\overline{u v}$ without constraint from $j_{0} j_{1} j_{2} j_{3}$.

We can now slide a joint freely along a wall, with respect to preceding links. We call the joint j_{2} and assume that the wall is between the $v w$ and v frame triangles on $\overline{v w}$. According to Corollary 17, we can put j_{2} or j_{3} onto the frame unless $j_{4} j_{3} j_{2}$ become collinear or $l>2 \sqrt{3}-3 \approx 0.464$ and one of cases (2)-(4) depicted in Fig. 15 (and Fig. 17) occurs.

Case 3. This is the easiest case. Joint j_{2} (as c) is always above the $u w$-fence, so A_{2} has one connected component. Joint j_{3} sweeps this component, so must hit j_{1}. Then the positions of j_{2} and j_{4} place them on the same connected component of $A_{3}=A_{1}$; we can move j_{2} to fold $j_{1} j_{2} j_{3} j_{4}$ to a single link.
Case (4). In this case, joint j_{3} stops j_{2} from reaching the $v w$ frame triangle by hitting $\overline{u w}$ according to 5 (iiB). Move j_{2} as close to the $v w$ frame triangle as possible. Apply Lemma 15 to ruler $j_{5} j_{4} j_{3}$ in an attempt to drag j_{3} into the $u w$ frame triangle. (Notice that we can slide j_{2} toward the $v w$ frame triangle so that j_{2} never prevents this motion of j_{3}.) One of four outcomes occurs. First, if j_{3} reaches the frame, then we are done by Lemma 18. Second, if j_{4} exits the case (4) region of Fig. 15, then we are done because j_{2} is no longer restricted in both directions by $j_{4} j_{3} j_{2}$. Third, if j_{4} hits a wall in the case (4) region, then it does so at j_{2} and above the $u v$-fence; Lemma 20 says we can fold three links to one. Finally, if j_{5}, j_{4}, and j_{3} become collinear, then $j_{5}=j_{3}$. Joints j_{2} and j_{4} are on the same connected component of $A_{5}=A_{3}$, so moving j_{3} folds $j_{2} j_{3} j_{4} j_{5}$ to a single link.

Case (2). In this case, joint j_{3} stops j_{2} from reaching the $v w$ frame triangle by hitting
$\overline{u v}$ above the $u w$-fence. Attempt to drag j_{3} on $\overline{u v}$; notice that we can slide j_{2} so that it never prevents the motion of j_{3}.

Either j_{3} reaches the frame triangle at v, and we are done by Lemma 18, or j_{3} goes below the $u w$-fence and j_{2} enters the $v w$ frame triangle, or one of the cases of Corollary 17 occur for $j_{5} j_{4} j_{3}$. In case (1), joint j_{3} becomes coincident with j_{5} above the $u w$-fence and Lemma 20 says that we can fold $j_{2} j_{3} j_{4} j_{5}$ to a single link. We need not consider case (2), because there j_{3} goes below the $u w$-fence. In cases (3) and (4) we slide j_{3} as far toward the $u v$ frame triangle as possible and j_{4} hits $\overline{v w}$ at j_{2}. Now, j_{3} and j_{5} are on the same connected component of $A_{3}=A_{5}$ and we can again fold $j_{2} j_{3} j_{4} j_{5}$.
Case (1). In the last case, j_{4}, j_{3}, and j_{2} become collinear. If one of these joints is in a frame triangle, then Lemma 18 applies-this must occur if the ruler $j_{4} j_{3} j_{2}$ straightens. Otherwise, $j_{4} j_{3} j_{2}$ folds so that $j_{2}=j_{4}$.

If $j_{2}=j_{4}$ is above a fence, then Lemma 20 applies. Otherwise, we have two components of $A_{2}=A_{4}$. If joint j_{3} is on a component that intersects a frame triangle or one of joints j_{1} or j_{5}, then we are done by Lemma 18 or by folding three links to one. In the remaining case, which is illustrated in Fig. 17(1), joint j_{3} can be moved to $\bar{u} \bar{v}$ and dragged into the $u v$ frame triangle without interference from the rulers $j_{1} j_{2} j_{3}$ or $j_{5} j_{4} j_{3}$.

This completes the proof that joints can be moved onto the trellis or links folded. Since our motions affect at most three links before and three links after the freely sliding vertex, we move at most seven joints.

References

1. Hopcroft, J., D. Joseph, and S. Whitesides, Movement problems for two-dimensional linkages, SIAM J. Comput. 13 (1984), 610-629.
2. Hopcroft, J., D. Joseph, and S. Whitesides, On the movement of robot arms in two-dimensional bounded regions, SIAM J. Comput. 14 (1985), 315-333.
3. Joseph, D., and W. H. Plantinga, On the complexity of reachability and motion planning questions, Proc. 1 st ACM Symp. on Computational Geometry, 1985, pp. 62-66.
4. Kantabutra, V., Motions of a short-linked robot arm in a square, Discrete Comput. Geom. 7 (1992), 69-76.
5. Kantabutra, V., and S. R. Kosaraju, New algorithms for multilink robot arms, J. Comput. System Sci. 32 (1986), 136-153.
6. Lenhart, W., and S. Whitesides, Turning a polygon inside out, Proc. 3 rd Canadian Conf. on Computational Geometry, 1991, pp. 66-69.
7. Lenhart, W., and S. Whitesides, Reconfiguration using line tracking motions, Proc. 4th Canadian Conf. on Computational Geometry, 1992, pp. 198-203.
8. Lenhart, W., and S. Whitesides, Reconfiguring closed polygonal chains in euclidean d-space, Discrete Comput. Geom., 13 (1995), 123-140.
9. Whitesides, S., Algorithmic issues in the geometry of planar linkage movement, Austral. Comput. J. 24 (1992), 42-50.

[^0]: * Most of this research was done while the first author was at McGill University supported by an NSERC international fellowship. The second author was supported by NSERC. The third author was supported by NSERC and FCAR.

