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Abstract.  An/-ruler  is a chain of n links, each of length l. The links, which are allowed 
to cross, are modeled by line segments whose endpoints act as joints. A given configuration 
of an/- ruler  is said to fold if it can be moved to a configuration in which all its links 
coincide. We show that l-rulers confined inside an equilateral triangle of side 1 exhibit the 
following surprising alternation property: there are three values xl ~ 0.483, x2 = 0.5, and 
x3 ~ 0.866 such that all configurations of n-l ink/-rulers fold i f /  ~ [0, Xl] or I E (x2, x3], 
but, for any I e (Xl, x2] and any I ~ (x3, 1], there are configurations of l-rulers that cannot 
fold. In the folding cases, linear-time algorithms are given that achieve the folding. Also, a 
general proof technique is given that can show that certain configurations--in the nonfolding 
cases--cannot fold. 

1. Introduction 

A l inkage is a col lect ion of rigid rods or l inks  that are fas tened together  at their  endpoints ,  
about  which they may  rotate freely. L inks  ma y  cross over  one another. A ru ler  is a chain  
of  l inks,  that is, any endpoint  is fas tened to at mos t  one other endpoin t ,  and  two l inks 

have an endpoin t  that is not  fastened to any other  endpoint .  
Several papers have been writ ten on  reconf igura t ion  p rob lems  for l inkages  or rulers 

f rom a geometric point  of  view, inc lud ing  a survey [9]. Hopcrof t  et  al. [1] proved that 

reconfigurat ion of  a l inkage so that a des ignated  jo in t  reaches a given pos i t ion  is PSPACE- 

* Most of this research was done while the first author was at McGill University supported by an NSERC 
international fellowship. The second author was supported by NSERC. The third author was supported by 
NSERC and FCAR. 



266 M. van Kreveld, J. Snoeyink, and S. Whitesides 

hard. Joseph and Plantinga [3] proved a similar result for moving rulers amidst obstacles. 
Hopcroft et al. [2] proved that folding a ruler to a segment with at most a specified length 
is an NP-complete problem, but gave a polynomial-time algorithm for reconfiguring a 
ruler----of which one point is pinned down to the plane--inside a circle. The running time 
was improved to linear by Kantabutra and Kosaraju [5]. Kantabutra [4] studied rulers 
inside a square, with one end fixed and all links of length at most half the side length 
of the square. He gave a linear-time reconfiguration algorithm. Lenhart and Whitesides 
[6]-[8] studied the reconfiguration of simple closed chains of links in d dimensions and 
gave a linear-time reconfiguration algorithm. 

We consider a reconfiguration problem for rulers that have all links of equal length 
and that are confined to an equilateral triangle with unit edge length. The objective is 
to fold the ruler onto a single link so that all links coincide. This problem is of interest 
because a confining region having acute angles presents difficulties that have not been 
studied previously. Also, our results give an additional example of  a motion-planning 
problem that can be solved in linear time despite n + 2 degrees of freedom. 

We call a ruler whose links all have equal length I an/-ruler,  and we scale the side 
of the confining triangle to have length 1. Of course there are/-rulers  for l close to 1 
that cannot be folded onto a single link, and it is not surprising that, for sufficiently 
small values of l, all/-rulers fold. However, we have discovered the following surprising 
phenomenon. For any n and any link length I in the range [0, xl] with xl ~ 0.483, any 
configuration of an n-link/-ruler folds. For n > 3 and 1 in the range (Xl, x2], where 
x2 = 0.5, there are configurations of n-link/-rulers that do not fold. For any n and I in 
the range (x2, x3], where x3 = ~/3/2 ~ 0.866, any configuration of an n-l ink/-ruler 
folds. For n > 2 and l in the range (x3, 1], there are configurations of n-link/-rulers 
that do not fold. In the cases where the ruler can always be folded, we give linear-time 
algorithms that accomplish this. In the cases where not every ruler can be folded, we 
give a configuration that cannot be folded and prove this. 

The values Xl, x2, and x3 are illustrated in Fig. 1. In the left triangle the/-ruler has one 
joint at v, the next joint on the side ~-6, the third joint on the side ~'~, and the last joint 
on the side ~--~. Furthermore, the last link is normal to U-~. This configuration defines 

x 1 = �88 + 7~/3 - (6 + 3~/'3)~/4V~ - 3) ~ 0.483. In the middle triangle the first 
and last joints are at v and w, and the other two joints are on the sides ~ and ~-~. This 
configuration defines x2 = 0.5. In the right triangle there is one link with one joint at u, 
the other joint on the side ~'-~, and this link is normal to ~--~. This configuration defines 
x3 = ~/'3/2 ,~ 0.866. 

~t u 

Fig. 1. Illustrations of Xl, x2, and xa. 
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The remainder of this paper is organized as follows. In Section 2 some notation 
is introduced, and also simple motions of the ruler. In Section 3 we give a linear- 
time algorithm to fold /-rulers for l E (x2, x3]. Section 4 presents a linear-time al- 
gorithm to fold/-rulers for l E [0, �89 and a sketch of the algorithm for l ~ (�89 xl]. 
(The Appendix contains the long and highly technical linear-time algorithm for I E 
(�89 xl].) Nonfoldability of  rulers is studied in Section 5. The conclusions are given in 
Section 6. 

2. Preliminaries 

We denote the links of an n-link/-ruler by s . . . . .  s where link ~i has endpoints ji-1 
and Ji. The angle at ji is the angle between links s and s the angle at j0 is the angle 
s makes with the positive x-axis. A joint ji is open if the angle is rr radians; a joint is 
closed if the angle is 0 radians. 

We denote the unit-side triangle in which /-rulers are confined by A, which we 
visualize as having a horizontal base V'~ and a top vertex u. Links and joints may lie on 
the boundary of A. 

For a joint Ji, we denote with Ci the circle with radius l centered at ji. This circle 
may have one, two, or three connected components inside A, depending on the position 
of Ji and the value of l. 

Algorithms for the reconfiguration of a ruler usually break up the motion s for the whole 
reconfiguration into simple motions, in which only a few joints are used simultaneously 
[2], [7]. We allow the following type of simple motions for rulers: 

�9 Some joint Ji of the ruler does not change its position, and at most a constant 
number of  angles at joints between a pair of  adjacent links change simulta- 
neously. 

�9 No angles at joints change, but the ruler may translate and rotate as a rigid 
object. 

Note that the joints at which the angles change can be far apart in the ruler. A dragging 
motion at joint ji is a motion in which the positions of joints ji+2 through jn remain 
fixed, links ei+l and ei+2 act as an elbow to move ji along some specified line, and ji 
drags the first i links so that they translate in the same direction as ji, see Fig. 2. 

U ld 

V /V 

Fig. 2. Dragging motion at joint Ji. 
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Fig. 3. Labeling the joints of moderately long links. 

3. Folding Rulers With Moderately Long Links 

We show that any configuration of  an n-link l-ruler with 1 e (x2, x3] can be folded, 
where x2 = 0.5 and x3 = ~ / 2  ~ 0.866. The bounds are tight, that is, Section 5 shows 
that there are configurations of  a ruler with l ----- 0.5 that cannot be folded, and the same 
holds for any I > ~f3/2. 

The algorithm to fold an l-ruler with l E (x2, x3 ] has three phases. The first phase labels 
all joints in some appropriate way. The second phase brings an arbitrary configuration 
into one where the joints lie at the vertices of  an equilateral triangle inside A. The 
positions correspond to the labels given to the joints. The third phase turns the triangle 
into a segment. 

Divide A into four equal-sized equilateral triangles by connecting the midpoints o f  
the sides of  A (see Fig. 3). Let every joint in the triangle adjacent to u be labeled u, 
and similarly with v and w. It remains to label the joints in the middle triangle. For 
any such joint ji we choose a label that is different from the labels of  j i-1 and ji+l. I f  
j i-1 and ji+l have the same label, say u, then we assign ji a label depending on the 
direction of the link ei+l. I f  ji+l lies to the left of  ji, then ji is labeled w, otherwise ji 
is labeled v. 

Lennna  1. The labeling defined above has the property that joints incident to the same 
link have different labels. 

Proof  Since l > 0.5, no two joints incident to the same link can be in the same one 
of  the four smaller triangles. By choice, the joints in the middle triangle have a label 
different f rom the adjacent ones. [] 

Let A'  be a homothetic copy of  A with side length l and vertices u' ,  v', and w'. Vertex 
u'  is the top vertex of  A',  and v'w' is the horizontal bottom side. Triangle A '  will be free 
to translate inside A. A joint ji can support A'  at u' if the placement  of  A' such that u'  
and ji coincide is inside A. 

L e m m a  2. For any two joints ji ,  ji + l labeled u, v, either ji can support A '  (at u'),  or 
ji+l can support A'  (at v'), or both. 
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Fig. 4. The motion of A' stays inside the dashed triangle and thus inside A. 
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Proof Assume first that Ji lies closer to ~'6 than Ji+l does. Then ji+l lies more than 
l- ~r3/2 in vertical distance below ji. The base v'w' of A' lies exactly l- ~/-3/2 in vertical 
distance below ji. Since ji+l is inside A, the triangle A'  lies above b--~. Since u'v' and 
u--'6 are parallel and ji lies inside A, u'v' lies to the fight of  ~-6. Similarly, u'w' lies to the 
left of k--~. It follows that A'  is inside A so ji can support A'  at u'. The case where v' is 
closer to ~ is similar. [] 

Assume without loss of  generality that j0 is labeled u and jl  is labeled o. Rotate j0 
counterclockwise around jl  until it hits ~'~. From the proof of the lemma above, Jo can 
now support A' at u'. By translating A' inside A, we will wrap the ruler onto A', such 
that any joint with label u will be at u', any joint with label v will be at v', and any 
joint with label w will be at w'. Assume that we have placed all joints up to Ji-1 on the 
vertices of A'. Assume without loss of generality that j i - i  coincides with u' and ji has 
label v. We maintain the invariant that joints Ji . . . . .  Jn have not changed position yet. 

First, assume that ji can support A' (see Fig. 4(a)). Then, by changing the angles at 
joints Ji-1 and Ji, we let ji support A' at v'. Since the initial and final positions of A' lie 
inside A, the circular motions described by the vertices of A' are inside A. In the figure, 
A' stays inside the dashed triangle. 

On the other hand, assume that Ji cannot support A'. Then, by Lemma 2, ji+l can 
support A' (see Fig. 4(b)). I f  ji+l has label w, then A' can simply be dragged to its 
new position where ji+l and w' coincide. The motion causes ji and v' to coincide as 
well. Next, assume that ji+l is labeled u. Recall that since ji is labeled v, joint ji+J is 
straight above or to the fight of  Ji. Rotate ji-1 around Ji until j i-1 and ji+l coincide (so 
A' translates along a circular arc). Then rotate Ji around Ji-i = ji+l until it coincides 
with v'. 

In the third phase the ruler on A' is incrementally collapsed to a single segment. 
Consider the positions of J0, j l ,  j2 on A'. I f  j0 and J2 have the same position, then 
the first two links are folded and the problem reduces to one for an (n - 1)-link ruler. 
Otherwise, let u' be the position of j l ,  the other cases being symmetrical. Then j0 is at 
o' and j2 is at w' or vice versa. Translate A' to make u' coincide with vertex u of A, and 
rotate j0 around jl  to coincide with j2. This is possible because l < V~/2.  Again this 
leaves a problem with an (n - 1)-link ruler. 
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Theorem 3. Any configuration of an n-link l-ruler with l E (x2, x3] can be folded in 
linear time, changing at most three joints simultaneously. 

4. Folding Rulers With Short  Links 

The folding of short n-link l-rulers is split into two algorithms---one deals with I ~ [0, �89 
l and the other with I e (3, Xl]. The latter algorithm is long and technical; its details can 

be found in the Appendix. We advise the reader not to start with the Appendix before 
finishing the rest of the paper. A brief sketch of the algorithm, however, is given at the 
end of this section. 

We continue by proving that l-rulers with l e [0, �89 can be folded using a linear 
number of simple motions. The algorithm attempts to fold the first two links, and then 
solve the remaining problem on an (n - 1)-link ruler inductively. Alternatively, it can try 
to fold links s s and s which leaves a folding problem for an (n - 2)-link ruler. We 
show that one of these attempts succeeds without moving J5 . . . . .  jn from their positions. 

We begin with a simple observation, and then put j2 on the boundary of A. Recall that 
Ci is the circle with radius l centered at joint Ji, and that Ci has one or more components 
inside A. 

L e m m a  4. If  Cl has jo and J2 on the same component inside A, then s and e2 can be 
folded without changing the position of j l .  

Proof. Simply rotate j0 around Jl onto j2. [] 

Lemma 5. Without changing the position of j3, links ~1 and ~ 2 can be folded, or joints 
jl and j2 can be put against sides of  A. 

Proof Translate jo toward j2. I f  Jo reaches j2, then s and g2 are folded, otherwise, 
j l  has hit a side of A. Assume without loss of generality that jl  has hit F'~, and that j l  
is closer to v. Drag jl rightward along ~ toward the middle, with j3j2jl acting as an 
elbow; note that J0 cannot hit any side of A during this motion. If  j l  reaches the middle, 
then j0 can be rotated onto j2 because C1 has only one component inside A. Otherwise, 
j2 has hit the side of A, or j2 is open and the angle v jl J3 is at most rr/2 radians. However, 
then j~ is at least at distance 21/~/'3 from o, and C1 has only one component inside A. [] 

Define the u-triangle as the equilateral triangle inside A with a vertex at u and with 
side length l / - f3.  Define the v-triangle and the w-triangle similarly. We continue in one 
of two ways, depending on whether j2 is in a u-, v-, or w-triangle, or outside all of them. 

L e m m a  6. / f j l  and j2 are on sides of A, and j2 is outside the u-, v-, and w-triangle, 
then s and g2 can be folded without changing the position of j2. 

Proof Assume without loss of generality that j2 is on the side ~--~, and closer to v than 
to w (see Fig. 5). If  j l  is on ~--~, then either jo can be rotated onto j2 directly, or j0 can 
be rotated against b-~ and then dragged toward j2. 
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Fig. 5. Three cases of folding s and s when Jz is on ~'-~, closer to v, and outside the v-triangle. In the 
leftmost case, Jo is rotated clockwise onto ~ and then dragged to j2. 

If  j l  is against ~-6 and below the perpendicular to ~-6 through j2, then Jo can be rotated 
around jl  onto j2 because C1 has only one component inside A. I f  Jl is against ~-~ and 
above the perpendicular to ~-~, then the link Jl J2 divides A into two parts. I f  Jo is in the 
triangle jl j2 v, then Jo can be translated onto j2. I f  Jo is in the quadrilateral part, then jo 
can be rotated onto j2. []  

I f  the above method falls to fold s l and s then we will drag j2 and possibly also j3 
and j4. First, we wish not to worry about the first two links hitting sides as long as J2 
is in the v-triangle. To this end, we make the links s and s parallel to ~ with joint 
jl open, and we keep these links this way until specified otherwise. Note that j l  and jo 
cannot hit any side (in particular, ~ unless j2 leaves the v-triangle. 

Lenuna  7. I f  j2 is in the v-triangle and on b'-~, then j2 can be put outside the v-triangle, 
or j2 and j3 can be put on the same side of A, without changing the position of  j4. 

Proof Drag Ja along ~ toward w, keeping j4's position fixed (see Fig. 6). I f  J2 does 
not get out of  the v-triangle, then J3 has hit u v or v w. If  J3 is on ~'-~, then rotate j2 around 
j3 to that side as well. I-1 

U U 

32 32 33 

(a) (b) 

Fig. 6. (a) Putting j3 on a side, or getting j2 outside the v-triangle. (b) Getting J2 outside the v-triangle by 
dragging J3. 
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I f  j2 is put outside the v-triangle, then s and s can be folded according to Lemma 6. 
Otherwise, assume without loss of  generality that j2 and J3 are both on v-'w. 

Lemma 8. I f  j2 is in the v-triangle on side ~ and j3 is on side ~-~, then j2 can 
be moved outside the v-triangle, or s e3, and s can be folded, without changing the 
position of  is. 

Proof. Drag j3 along ~ toward w, with j5j4j3 acting as an elbow (see Fig. 6). I f  j2 
does not leave the v-triangle, then j4 must have hit a side of A. This side cannot be/ tw,  
since the distance from the v-triangle to the side ~ is greater than 21. I f  the side is 
and joint J3 is open, then j2 can be dragged toward j4 (and w), with j3 leaving b--~. This 
will bring J2 outside the v-triangle. I f  the side is v-'-~ and joint J3 is closed, then s and 
s coincide, and we can make g2 coincide with these links as well by rotating j3 around 
j2 = j4. I f  the side hit by j4 is ~'-6, then drag j2 toward w with J3 leaving the side ~--~, 
and J2 will leave the v-triangle. This is possible since the angle Zj2j3J4 is between Jr/6 
and Jr/3 radians in this case. [] 

Theorem 9. Any configuration of  an n-link l-ruler with l E [0, �89 can be folded in 
linear time, changing at most three joints simultaneously. 

Proof. The lemmas above show that with only a constant number of simple motions, 
either s and s can be folded, or s s and s can be folded. Thus the problem reduces 
to an (n - 1)-link or (n - 2)-link l-ruler. The theorem follows by induction. The base 
cases are easy (observe for instance that imaginary links can be added to one end to 
reduce the number of cases). [] 

The remainder of this section contains a brief sketch of the algorithm of which the 
details are given in the Appendix. The algorithm to fold l-rulers with I ~ (�89 xl ] has some 
resemblance with the algorithm for folding rulers with moderately long links. From the 
initial configuration of the ruler, we attempt to reach a situation where all links coincide 
with the edges of  a trellis with edge length l, see Fig. 7. The trellis is translated inside A 
to reach this situation. So the trellis plays the same role as A' in the algorithm for folding 
moderately long link rulers. After all links are on the trellis, the ruler is first collapsed 
to a triangle and then to a single segment. These steps are relatively simple. 

U 

Fig. 7. A trellis with side length I onto which the ruler is put. Then the ruler is collapsed to a triangle and 
finally to a segment. 
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To get all joints on the vertices of the trellis, an extensive analysis of 2-1ink rulers 
jojlj2 is made where joint jo is kept fixed and joint j2 drags along a side of A. The 
analysis contains a study of the cases where this dragging motion is stopped. For rulers 
with more links, the first joint jo is put on a vertex of the trellis and we try to continue to 
put the next joints onto the vertices. The analysis of two 2-1ink rulers is used on jojt j2 
and j2j3j4, so we know what can happen when j2 is dragged along a side. This leads 
to the result that either the next joint Jl can be put on a vertex of the trellis, or three 
consecutive links can be folded onto one. 

5. Nonfoldable Rulers 

It will be shown that not every configuration of an l-ruler is foldable if I e (x3, 1] where 
x3 = ~/~/2 ~, 0.866, or if l ~ (xl, x2] where Xl ~ 0.483 and x2 = 0.5. A distinction 
can be made between two types of nonfoldability. It may be that the ruler is rigidly 
stuck, or it may be that small motions are possible, but not enough to fold it. Besides 
giving examples of stuck rulers, we also provide a proof technique to show that a ruler 
is stuck. 

The first example of a rigidly stuck ruler (see Fig. 8) consists of two links of length 1, 
one coinciding with the side ~ of A, and the other coinciding with V'~. It is easy to see 
that this configuration cannot be folded, and that it is rigidly stuck. Next, assume that the 
link length is less than 1, joint jl coincides with v, link s lies on the side ~6 and link s 
lies on the side V'~. This configuration is not rigidly stuck. However, if l > x3 = ~ / 2 ,  
then joint j0 cannot rotate past the bisector of v to reach joint j2. Nor can j2 reach j0. 
So the given configuration is nonfoldable. 

The second example of a rigidly stuck ruler consists of three links of length 0.5. 
Joint j0 coincides with v, joint jl coincides with the midpoint of ~-'~, joint j2 coincides 
with the midpoint of k-~, and J3 coincides with w. As in the previous example, one 
can decrease the link length slightly and start with roughly the same configuration, and 
obtain a nonfoldable ruler that is not rigidly stuck. We prove that this example provides 
a nonfoldable ruler when l e (Xl, x2] where xl ~ 0.483 and x2 = 0.5, by using a proof 
technique which we explain after the third example. 

The third example of a rigidly stuck ruler has nine links of length ~ 0.483576. This 
value is slightly larger than xl ~ 0.483481. Joint j0 coincides with w, joint Jl lies on 

U U 

F 1 

w v Jo w v . 

31 3o 
W 

Fig. 8. Three rulers that are rigidly stuck. 
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U U 

W 

(a) (b) 

Fig. 9. (a) s is in the w-sector of  j .  (b) J i -  I Ji j i+ 1 make a right turn. 

the side b--~, joint J2 lies on ~-'6, joint j3 also lies on ~"~, joint j4 lies on ~ and, of  the 
two possibilities, closest to v. Joints j9 . . . . .  j5 are the mirror images of  Jo . . . . .  j4 when 
reflected in the bisector at u. 

To prove that a configuration of  a ruler is stuck, we define the state of  a configuration, 
which is a discretization o f  it. We use the states to show that a given configuration cannot 
change to a different state. We study the possible state transitions for any configuration, 
and show that none can take place first. A state of  a configuration consists of  the following 
items (see Fig. 9): 

1. For any joint j and incident link s draw from the joint j the perpendiculars to 
the three edges of  the triangle A. The link g can be in any of  the three sectors 
centered at j ,  which define one item of  the state of  the ruler. We denote the sectors 
as the u-sector, v-sector, and w-sector. The boundaries of  the sectors are assigned 
arbitrarily to one of  the incident sectors. 

2. For three consecutive joints ji-1, ji, and ji+l, the sidedness of  the triangle ji-I jiji+l 
(a left turn or a right turn) is an item of  the state. I f  joint j i  is open or closed, then 
one of  the possible item instances is assigned arbitrarily. 

It follows that any configuration of  an n-link ruler with at least two links has 3n -- 1 
items in its state. There are two possible state transitions for a configuration of  a ruler, 
for which the following states are critical (in other words, when an item is about to 
change): 

1. A link e makes an angle o f  zr/2 radians with one of  the edges of  A. 
2. Three consecutive joints are collinear (the middle joint is open or closed). 

I f  two consecutive links, both incident to some joint j ,  are in the same sector, then one 
need not test whether the three joints incident to these links are collinear with j open. For 
this to happen, one of  the links must leave the sector first. Similarly, if two consecutive 
links, both incident to some joint j ,  are in different sectors, then one need not test whether 
the three joints incident to these links are collinear with j closed. 

For a proof  that a configuration o f  a ruler is nonfoldable, the following ideas can be 
used. It is necessary that the initial and final configurations be in separate connected 
components. It is sufficient that the initial configuration be in an isolated vertex of  the 
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state graph that is different f rom the final configuration. Following this approach, we 
show that the configurations of  the rulers o f  the first and second examples are nonfoldable 
for the appropriate link lengths. 

I_emma 10. For each I ~ (x3, 1], there is a configuration o f  an l-ruler that cannot be 
folded (where x3 = Vc3/2). 

Proof. Consider the configuration of  example 1. In a folded configuration of  this ruler, 
links s and s are in the same state with respect to joint j l -  For the initial configuration 
of example 1, this is not the case. We consider which critical state can occur as the first 
one (possibly, simultaneously with others). Consider the state of  joint j l  and link s 
The link el is in the u-sector with respect to j l .  I f  s were to change its state to be in 
the w-sector, then s must make an angle of  zr/2 radians with the side uw,  but this is 
impossible, because A cannot contain a link with the given link length perpendicular to 
any of its sides. The other transitions of  the first type cannot occur for the same reasons. 
A transition of the second type can occur in one of two forms. Joint j l  can be open, i.e., 
j0 and j2 are distance 21 apart, or joint j2 can be closed, i.e., j0 and j2 coincide. Clearly, 
A cannot contain a configuration of  this ruler with jl  open. Also, j l  cannot close unless 
another state transition occurs before or simultaneously, because when Jl closes the links 
e I and s are in the same state with respect to Jl. I~ 

L e m m a  11. For each I E (Xl, X2], there is a configuration o f  an l-ruler that cannot be 

folded (where xl = �88 (12 + 7~/3 - (6 + 3~/~)x/4x/~ - 3) ~-, 0.483 and x2 = 0.5). 

Proof. Consider the configuration of  example 2 in the middle of  Fig. 8. In a folded 
configuration of this ruler, links s and s are in the same state with respect to joint j l .  
For the initial configuration this is not the case. We consider which critical state can 
occur as the first one (possibly, simultaneously with others), and for what values of  l. 
Consider link s which is in the w-sector with respect to joint j2. Assume that the first 
state transition brings s in the v-sector. Then j2 must lie at least a distance l above the 
side ~ in the critical state. Since link s is in the v-sector with respect to J2, link s is 
in the v-sector with respect to j l ,  and j0, j l ,  j2 make a right turn, the ruler in this critical 
configuration only fits inside A if  l < Xl (from straightforward calculations using the 
left configuration in Fig. 1 the value xl is obtained). 

Assume that the first state transition brings s in the u-sector with respect to j l .  It can 
be calculated that in this case l < 2-v/3 - 3 ~ 0.464. 

Next, assume that the first state transition brings s in the u-sector with respect to 
j2. This state transition can never occur as the first, since the state of  s with respect 
to J3 will always change before. The other possible state transitions of  this type can be 
handled similarly. 

Consider joints jo, j l ,  j2, which make a right turn, and assume that the first state 
transition brings this into a left turn. Since s t and s are in different sectors with respect to 
j l ,  joint j l  cannot close without having another state transition before or simultaneously. 
Furthermore, s is in the u-sector of  jo and s is in the w-sector of  j l .  I f  joint  j l  is open, 
these sectors must be the same. Therefore, another state transition must occur before or 
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simultaneously. Hence, we need not consider state changes for three consecutive joints 
as the first state change. [] 

6. Conclusions 

We have studied folding an n-link ruler with equal length links inside an equilateral 
triangle. This paper gives one of the first results on the reconfiguration of rulers when 
there are acute angles that constrain the motion of the ruler. Even in the simple setting 
of this paper, a surprising result shows up: rulers with short links can always be folded, 
rulers with midsize links cannot always be folded, rulers with fairly long links can always 
be folded, and rulers with long links cannot always be folded. We showed these results 
using techniques that can be used in other ruler-folding situations as well. 

We have not considered the question whether a given configuration can be folded in 
the ranges of the link length where folding is not necessarily possible. In the case of  
long links the question is easy to answer, but for midsize links the problem is open. We 
also do not know whether there are more rigidly stuck configurations than the three we 
found. 

When considering other confining regions than equilateral triangles, the situation may 
be quite different. We do not know whether the alternation property on link lengths with 
respect to foldability also shows up for regular k-gons with k > 4. When an arbitrary 
triangle is the confining region, or when different link lengths are allowed, a brief study 
showed that the situation is exceedingly difficult. 
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1 Appendix. Folding/-Rulers for ~ < I < xl ~ 0.483 

In Section 3 we folded moderately long l-rulers onto an equilateral triangle with side 
length l and then folded this triangle. In this appendix we fold l-rulers for 0 < l < xl 
0.483 onto a trellis. Then we fold the trellis to a triangle and fold the triangle. We prove 
in the reverse order that these three foldings are possible. 

A trellis is composed of four equilateral triangles of side length l - - three  corner 
triangles homothetic to A and one upside-down center triangle, as in Fig. 10. I f  we 
translate a trellis in A, keeping sides parallel, then the six vertices of the trellis sweep 
out six equilateral f rame triangles, also shown in Fig. 10. These are called the u, v, 
and w frame triangles for the comers, and the uv,  uw,  and vw  frame triangles for the 
others. 

Recall that Ci denotes the circle with radius I that is centered at joint ji,  and A i denotes 
the set of circular arcs that are the connected components of Ci n A.  The vw- fence  is 
the line segment that is the intersection of A with a line parallel to ~ at distance l from 
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Fig. 10. The a'ellis and frame. 

v--'~. We say that a joint Ji is above the vto-fence if  the disk bounded by circle Ci does 
not intersect the line b-'~. Define the uv-fence and uto-fence similarly. 

There are critical values for I that determine the relationship between middle frame 
a triangles and fences. We assume throughout this appendix that ~ < l __< xl,  which is the 

larger critical value. 

L e m m a  12. f f  1 < 2~/3 - 3 ~ 0.464, then any point o f  ~ is above the uv- or 
u to-fence or is in the v to f rame triangle. Let  a be the comer  o f  the u to f rame triangle 
nearest to. I f  I < Xl ~ 0.483, then the circle Ca o f  radius l intersects "fig above the 
v to -fence. 

Proof. Figure 1 l(a) illustrates the first part of the lemma: the fences touch the middle 
frame triangles when I < 1 - 2l/~/3.  Figure 1 l(b) illustrates the second part: the lemma 
is satisfied if l is at most the distance between the lower right comer of  the u to frame 
triangle and the left end of the vw-fence. That is, if  

( ( ~ _ ) ) 2  ( 1 ~ ) 2 .  
12< 1-- l + 1 [] 

/ vw-fence \ 

vA  w' ..... . . . . . . .  

(a) (b) 

Fig. 11. The relationship between fences and flame depends on l. 
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A. 1. Folding a Triangle onto a Link, Folding a Trellis onto a Triangle 

To begin, we prove that any prefix of  l inks that l ie  on edges of  the center tr iangle in a 
trellis can be folded without moving the trellis to a single link. 

L e m m a  13. Let el, e2 . . . . .  ek be a ruler on the center triangle r o f  a trellis. Then the 
ruler can be fo lded onto ek inside the trellis. 

Proof. The circular sector formed by pivoting l ink e] about jo in t  j ]  onto l ink e2 is 
entirely within the trellis. By induction, we can therefore fold all l inks onto ek. [ ]  

L e m m a  14. A ruler on a trellis can be fo lded  to a single segment i f l  < Xl ~ 0.483. 

Proof. As an induction hypothesis,  suppose that all l inks from el tO ei, f o r s o m e i  > 1, 
lie on r ,  which is a corner triangle of  the trellis.  This is easy to obtain in the base  case: 
link e l ,  being on the trellis, is an edge of  a unique corner  triangle that can be chosen as r .  

To reduce the number  o f  cases in the induction step, we always fold the ruler  onto a 
triangle r that has one vertex in the corner  of  the t r e l l i s - - i f  we ever put  r in the center 
of  the trellis, then Lemma 13 says that we can fold the links on r to a single l ink and 
take a new triangle r that is incident  to this l ink and a comer  of  the trellis. 

I f  the next l ink e.i+l is already on r ,  then nothing needs to be done. Otherwise,  we have 
three cases depicted in Fig. 12 for folding ei+l onto r ,  which depend on the locations o f  
joints  Ji+l and j i - l .  

Case 1. Joints ji+l and j i - i  are in the corners of  the trellis. Then ji is at the side between 
j i -]  and ji+l. Translate z,  moving Ji-] toward Ji+] and Ji away from the side of  the 
trellis until r is again a comer  tr iangle of  the trellis and has vertices j i - ] ,  j i ,  and Ji+l. 

Case 2. Joints ji and ji-1 lie at the sides of  the trellis; joint  ji+! lies at the side or corner. 
Rotate Ji to bring Ji-i  to the side near  Ji+l while  rotating j i - I  to keep r homothet ic  
to the comer  triangles. This also makes  z a corner  triangle of  the trellis having vertices 

Ji-l, ji, and Ji+l. 

Case 3. Joint ji+l is on a side. The triangle r must  touch the opposi te  comer  o f  the trellis 
or else joint  ji+l and link ei+! are already on r .  This is the most compl ica ted  case it 

1. 2. 

ffi4-1 , :  

V .7.+1 3 1 tU V 31 W 

Fig. 12. Cases for folding the trellis. 
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cannot be folded inside the trellis, but can be folded inside a unit equilateral triangle if 
l < x~. To prove this, let us be more specific about the locations of  the trellis and the 
joints. 

Let joint Ji+] be at the side ~ of  the triangle A, let ji be at the side F-~, and let 
r be near w. We translate the trellis so that one of  its vertices coincides with u. Next, 
we pivot j i  about j i+b keeping r homothetic to A, until j i  moves above the uw-fence. 
By Lemma 12 the triangle r can then swing freely on Ci to hit ~ at ji+]. Next, rotate 
about ji+l to bring ji back onto the trellis, making r the center triangle. Finally, fold 
to a segment according to Lemma 13 and choose a new r incident to this segment and a 
comer  of  the trellis. This completes Case 3. 

At the completion of  these cases, we have all the links folded onto a comer  triangle. 
We can move this triangle to the center and fold it according to Lemma 13. []  

A.2. An Analysis o f  Two-Link Rulers 

In this section we study the motion of  a two link ruler when one end is dragged along 
the side of  the triangle A. This dragging motion is the primary tool in the next and final 
section, which folds a ruler onto the trellis. We look at configurations where joints are 
on the sides of  A. With a two link ruler abc, for example, we place c on a side and drag 
it, pivotting on a, until b hits a side (or joints go onto a trellis). This reduces the problem 
to three and then to two degrees of  f reedom-- the  placement of  a (which we draw in 
Fig. 14). Thus, by proving lemmas about these contact configurations, we avoid having 
to look at the entire configuration space. 

Consider a ruler consisting of  two segments ab and bc, where c is along the ~ side 
of  A. Let ~-~ be horizontal with w on the right. We say that a wall is any portion o f  an 
edge of  A that is not contained in a frame triangle. In the next lemmas we investigate 
how b can hit a wall when we drag c along b--~. Figure 13 illustrates these different cases. 

L e m m a  15. Given a ruler abc with c on v---~. I f  we f ix  the location o f  a and drag c 
toward w, then one o f  the following occurs: 

1. Joint c or b reaches a f rame triangle. 

t~  

u 

4: b h i t s ~  

u 4 0 )  c ~(] ) w 

~ 5 :  b hits 

Fig. 13. Illustrations of the cases of Lemma 15, in which b hits a wall as c is dragged along ~ toward w. 



280 M. van .Kreveld, J. Snoeyink, and S. Whitesides 

2. Joints a, b, and c become collinear. 
3. Joint b hits a wall on 

(i) between the v and vw  f rame  triangles, or 
(ii) between the vw  f rame triangle and the vertical line through the right endpoint 

o f  the vw-fence. 
4. With I > 2dr3 - 3 ~ 0.464, joint  b hits a wall on fi-~ 

(i) inside the circle C centered at the left comer  o f  the vw  f rame triangle, or 
(ii) between the vw-fence and the u w  f rame triangle. 

5. With l > 2q/'3 - 3 ~ 0.464, jo int  b hits a wall on "ff~ 
(i) inside the circle C centered at the right comer  o f  the vw  f rame  triangle, or 

(ii) between the vw-fence and the uv f rame  triangle. 

Proof  The only events that can prevent c f rom reaching the frame triangle at w are 
joint b hitting a side of  A or the ruler abc straightening. We can look at the cases in 
which b hits sides of A without b or c being in a frame triangle. Note that b is below the 
vw-fence since c is on ~--~. 

In case 3(ii) joint a must be right of  the vertical line through b, or else dragging c right 
would move b away from the wall. However, b must then be to the left o f  the vertical 
line through the right endpoint of  the vw-fence. 

In 4(ii) there is room for b between the vw-fence and the u w  frame triangle only 
if link length l > 2q/3 - 3 ~ 0.464, by Lemma 12. In 4(i), c must be between the 
uw-fence and the vw frame triangle for b to hit the wall between the u w  and w frame 
triangles. The fact that c is to the left of  the v w  frame triangle means that b hits inside 
the circle centered at the left corner of  the v w  frame triangle. This case occurs only if  
l > 2 ~ / ' 3 -  3 ~ 0.464. Furthermore, b is above the uv-fence if  l < Xl ~ 0.483 by 
Lemma 12. 

The cases for 5(i) and (ii) are similar to those for 4(i) and (ii). []  

We can characterize the locations for a (and c) in terms of  the location that b hits the 
wall. For example, a lies on Cb when b is on the wall---additional conditions may restrict 
which portion of  Cb. One can determine all locations for a that cause b to hit a certain 
wall segment by taking the union of  the appropriate portions o f  Cb for all positions where 
b hits that segment. Figure 14 illustrates the regions for a that are described in the next 
lemma. 

L e m m a  16. When b is on a wall, we have additional restrictions in the fol lowing cases 
o f  Lemma 15: 

3. Joint a is below the vw-fence and to the right o f  the vertical line through b. 
4. (i) Joint a is above the 30 ~ line through b. 

(ii) Joint c is either (A) left or (B) right o f  the vertical line through b. Joint a is 
either (A) right o f  the vertical or else (B) left o f  the vertical through b and 
below the 30 ~ line through b. (Actually, a can be coincident with c in (B), but 
then the three joints are collinear.) 

5. (i) Joint a is below the - 3 0  ~ line through b or coincident with c. 
(ii) Joint c is either (A) left or (B) right o f  the vertical line through b. Joint a is 
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Fig. 14. Locations for a that make b hit a wall in the cases of Lemma 15 as c is dragged along ~ toward w. 
(Small circles mark the centers of retevant arcs.) 

either (A)  left of the vertical or above the - 3 0  ~ line or else (B)  right of the 
vertical and below the - 3 0  ~ line through b. 

Proof. Since  a is fixed, j o i n t  b m o v e s  a l o n g  Ca in  a d i r ec t i on  d e t e r m i n e d  b y  the  m o t i o n  

o f  c. T h e  c o n d i t i o n s  on  a ( and  c) e n s u r e  t ha t  th is  m o t i o n  is in to  the  wall .  [ ]  

N e x t  we l ook  at  w h a t  c an  h a p p e n  w h e n  we  try to  d r a g  c e i t he r  r i gh t  or  left.  T h e  cases  

are  i l lus t ra ted  in Fig.  15. 

Fig. 15. Locations for a and b that prevent motion of c both left and right. 
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Coro l l a ry  17. Given a ruler abc with c on ~-~, by dragging c toward v and w we get  
b or c into a f rame triangle unless 

(1) joints a, b, and c become collinear, 
(2) case 3(i) of  Lemma 15 applies in one direction and 4(i) in the other, 
(3) cases 3(ii) and 5(iiA) of  Lemma 15 apply, or 
(4) cases 4(iiB) and 5(iiB) of  Lemma 15 apply. 

Proof. I f  we take the union of  the a regions described in L e m m a  16 and intersect them 
with the reflection about a vertical line, then we find the positions in which a can prevent 
motion in both directions. Figure 15 illustrates the combinations for which the regions 
for a intersect and the resulting sliding ranges for c on b '~  remain between the vw  and 
w frame triangles. The motions of  b are also shown. (Other potential combinations in 
which regions for a intersect are 3(i) and refl(3(ii)), 3(i) and refl(5(iiB)), and 4(iiA) and 
refl(5(iiA)). These do not appear because the conditions regarding vertical lines cannot 
be met  by sliding c.) [] 

By way of a remark, i f / <  2~/~ - 3, then cases 2 -4  of  Corollary 17 cannot apply. 

Ao3. Folding a Ruler onto the Trellis 

We are finally ready to fold a ruler with length l < Xl ~ 0.483 onto the trellis. We first 
put joint j0 into a frame triangle (and thus onto the trellis), then we look at how the 
two-link rulers joj l  j2 and jaj3j2 work together and show that by dragging j2 either j l  
can be moved onto the trellis or three links can be folded to one. Once we have the first 
joint on the trellis, frame triangles can be a big help. 

L e m m a  18. Suppose that Jo is on the trellis. I f  one o f  the joints j l ,  j2, J3, or j4 ever 
gets into a f rame triangle, then we can put j l  onto the trellis. 

Proof. I f  j~ is in a frame triangle, then we can drag the trellis by moving Jo on C1 until 
j l  is on the trellis. I f  joint j2, J3, or j4 is in a frame triangle, then we can drag the trellis 
toward that joint  until a lower-numbered joint enters a frame triangle. [] 

Now, consider the ruler j0, j l  . . . . .  jn. 

L e m m a  19. Given a ruler j0, j~ . . . . .  one can move jo into a f rame triangle or f o ld  the 
first two links. 

Proof. Consider the ruler j2jl jo with the position of  j2 fixed. I f  j l  or j2 are in f rame 
triangles, then we can put J0 into a frame triangle. Otherwise, rotate J0 to a wall and apply 
Corollary 17. The only way for j 2 j l j o  to be collinear in A minus the f rame triangles 
is to fold j0 onto j2. If, on the other hand, one of cases (2)-(4) holds, then dragging j0 
along the wall moves Jl above some fence so that J0 can rotate on C1 to J2- [] 
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We make one more useful observation. I f  we can put two joints together above a 
fence, then we can fold three links to one. 

L e m m a  20. Given a ruler with joints abcd, if a and c are positioned at a common 
point above some fence, then we can fold all three links onto cd without moving d. 

Proof. Joints b and d lie on the single arc Ac = Aa. [] 

L e m m a  21. If  jo is on the trellis, we can put j l  onto the trellis or fold three links to 
one by rotating at most seven joints. 

Proof. We apply our analysis of two-link rulers to jojl jE and j4ja j2. First, we make sure 
that collinearity can never prevent joint j2 from reaching a frame triangle. Then we rotate 
j2 to a wall and drag it until Jojlj2 or j4j3J2 stop the motion according to Corollary 17. 
We handle mixed cases--where hJaJ2 prevents motion of J2 in one direction and jojl  J2 
prevents motion in the other--by reducing them to cases where the ruler jojl j2 does not 
restrict the motion of J2. Finally, we show how to solve these cases by folding three links 
to one or moving a joint into a frame triangle and applying Lemma 18. 

If  j0 is in a corner frame triangle, then we move the trellis away from this corner, 
pivoting on J2, until J0 is at the edge of the frame triangle strictly inside A. (Notice that 
if joint jl hits an edge of A during this process, then jl  is in a frame triangle.) Now, 
since A minus the corner frame triangles has diameter at most 21 and J0 is in the frame 
inside this region, any future collinearity of jojl J2 will imply that j2 has entered a frame 
triangle. 

Since J0 is in a frame triangle, Jl is on an arc of A l that intersects a frame triangle. 
We can move jl into that flame triangle, pivoting on j3, unless j2 hits a wall. By rotating 
and reflecting A, we can assume that this wall is ~-'~. 

Suppose, without loss of generality, that the ruler jojlJ2 does not allow j2 to slide 
freely to the right. We will show either how to satisfy the theorem or else arrange that one 
joint (j2 or J3) can slide without restriction from preceding links. Since J0 is in a frame 
triangle, J2 can be restricted only by cases 3(i), 3(ii), or 5(iiA) of Lemma 15--only these 
cases have a region for a that intersects a frame triangle. (See Figs. 14 and 16.) 

Case 5(iiA). This case is the easiest--we move the trellis to have a vertex at w and J0 
moves out of the critical region and no longer restricts the motion of j2. (This is because 
the arc A0 goes above the vw-fence after the move.) 

//~',, 5(iiA) /~",.,,3(ii) 

, ,, ,, "\ / ,  .... \ 

J~- 3(i) , /  " 

~ 5 

J1 J2 

Fig. 16. Dealing with cases in which JoJlj2 restricts j2- 
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--'if2 = ' j4  --if2 j~" - j :  

Fig. 17. Only the ruler j4j3j2 restricts j~. 

Case 3(ii). Joint j l  is between the v w  frame triangle and the uw-fence, which means 
that J2 is near v. I f  we drag J2 toward v, Lemma 15 implies that only the ruler jaj3J2 can 
prevent j2's entry into the v frame triangle. 

I f  joints j4, j3, and J2 become collinear by folding, then j2 = J4 and Lemma 20 
implies that we can fold three links. With any other collinearity, j4 is in the frame. The 
only case of  Lemma 15 that applies to the ruler ja j3j2 is 30). (Joint j2 is too close to v 
for 4(iiB).) In that case, drag j2 and ja along ~-'~, pivoting on j4 and moving the trellis 
as necessary. Joint j3 hits the wall at j l .  Next, move j2 on C3 = C1 to k-~ and move the 
trellis to u. Then the ruler j o j l j 2  does not restrict the motion of j2 on ~ .  

Case 3(i). Joint j2 is below the uv-fence and can move to the v w  frame triangle unless 
j3 hits ~ according to case 4(i). However, then the trellis can be moved to u so that j2 
can slide freely between the uv-fence and the v w  frame triangle. Thus, j3 carl  slide on 
k--5 without constraint from Jojl j2j3.  

We can now slide a joint freely along a wall, with respect to preceding links. We call 
the joint j2 and assume that the wall is between the v w  and v frame triangles on ~'-~. 
According to Corollary 17, we can put j2 or J3 onto the frame unless ja j3j2 become 
collinear or I > 2~r3 - 3 ~ 0.464 and one of cases (2)-(4) depicted in Fig. 15 (and 
Fig. 17) occurs. 

Case 3. This is the easiest case. Joint j2 (as c) is always above the uw-fence, so A2 
has one connected component. Joint j3 sweeps this component, so must hit j l .  Then the 
positions of j2 and j4 place them on the same connected component of A3 -~ A1 ; we 
can move J2 to fold j l j2 j3J4  to a single link. 

Case (4). In this case, joint j3 stops j2 from reaching the v w  frame triangle by hitting 
according to 5(iiB). Move j2 as close to the v w  frame triangle as possible. Apply 

Lemma 15 to ruler j s j4 j3  in an attempt to drag j3 into the u w  frame triangle. (Notice 
that we can slide j2 toward the v w  frame triangle so that J2 never prevents this motion 
of J3-) One of four outcomes occurs. First, if  J3 reaches the flame, then we are done by 
Lemma 18. Second, if j4 exits the case (4) region of Fig. 15, then we are done because 
J2 is no longer restricted in both directions by j4j3j2.  Third, if j4 hits a wall in the case 
(4) region, then it does so at j2 and above the uv-fence; Lemma 20 says we can fold 
three links to one. Finally, if js, j4, and j3 become collinear, then j5 = j3. Joints j2 and 
j4 are on the same connected component of A5 = A3, so moving j3 folds j2 ja j4j5  to a 
single link. 

Case (2). In this case, joint J3 stops j2 from reaching the v w  frame triangle by hitting 



Folding Rulers Inside Triangles 285 

u-"6 above the u w-fence. Attempt to drag j3 on ~-'~; notice that we can slide j2 so that it 
never prevents the motion of  J3. 

Either j3 reaches the frame triangle at v, and we are done by L e m m a  18, or j3 
goes below the uw-fence and J2 enters the vw frame triangle, or one of the cases of  
Corollary 17 occur for j5j4j3. In case (1), joint j3 becomes coincident with js  above the 
uw-fence and Lemma  20 says that we can fold j2j3jaj5 to a single link. We need not 
consider case (2), because there J3 goes below the uw-fence.  In cases (3) and (4) we 
slide j3 as far toward the uv frame triangle as possible and j4 hits ~ at j2. Now, J3 and 
J5 are on the same connected component  of  A3 = A5 and we can again fold j2j3J4js. 

Case (1). In the last case, j4, j3, and j2 become collinear. I f  one of  these joints is in a 
frame triangle, then Lemma 18 appl ies-- this  must occur if  the ruler jaj3j2 straightens. 
Othe rwi se ,  ja j3J2  folds so that j2 = j4. 

If  j2 = j4 is above a fence, then L e m m a  20 applies. Otherwise, we have two compo-  
nents of  A 2 = A4. I f  joint J3 is on a component  that intersects a frame triangle or one 
of  joints j l  or js,  then we are done by L e m m a  18 or by folding three links to one. In 
the remaining case, which is illustrated in Fig. 17(1), joint  J3 can be moved to ~'U and 
dragged into the u v f lame triangle without interference f rom the rulers j l  j2j3 or J5 j4j3. 

This completes the proof  that joints can be moved onto the trellis or links folded. 
Since our motions affect at most three links before and three links after the freely sliding 
vertex, we move at most seven joints. [] 
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