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Abstract. A closed convex surface S in E d is an ellipsoid if and only if for any x, y ~ S 
there is an affinity mapping x onto y and a neighborhood of x in S onto a neighborhood of 
yin S. 

1. Introduction and Statement of Result 

1.1. The present articles deal with the problem of characterizing ellipsoids among 
all closed convex surfaces in Euclidean d-space E d by local transformation properties. 
Using topological tools the answer for odd d was obtained in the first article. Here the 
answer for all d is given. More precisely, the following result is proved where the closed 
convex surface is the boundary of a compact convex subset o f E  d with nonempty interior. 

Theorem. Let S be a closed convex surface in E d with the following property .A: to 
any pair of points x, y E S there corresponds an affine transformation Axy ofE d which 
maps x onto y and a suitable neighborhood Nxy of x in S onto a neighborhood of y in 
S. Then S is an ellipsoid. 

For related results we refer to the introduction of the first article. To the convexity 
results cited there we include M~iurer [11]. Related results in the context of  differential 
geometry and affine differential geometry are due to Szab6 [15] and Liu and Wang [9]. 

1.2. The proof relies heavily on results of  Leichtweiss on floating bodies and of  
Blaschke and Petty in affine differential geometry. In particular, a characterization of  
ellipsoids due to Petty is needed utilizing the notions of  affine distance and Santal6 
point. Moreover, use is made of  a characterization of  spheres by the property that their 
Gauss curvature is constant, which goes back to Liebmann, and of a characterization of 
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convex sets due to Tietze. In addition, we use tools from the first article and in the case 
d = 2 the solution of  a functional equation is needed. 

2. General Tools and Preliminaries 

For concepts not explained below and results for which no reference is given we refer 
to [14]. Let I" I, conv, relint, and det stand for volume, convex hull, relative interior with 
respect to a given surface, and determinant of  the linear part of  an affinity, respectively. 
II �9 II and S d-l  denote the Euclidean norm and the unit sphere in E d. 

Let S be a closed convex surface in E d. 

2.1. It is well known that: 

(1) A convex function on an interval in l~ is almost everywhere twice differentiable. 

2.2. The supporting function h(S, .) of  S is defined on S d-1. Assume now that S is 
smooth, i.e., of class C 1. Then f o r x  ~ S we denote by n(S, x)  the exterior normal unit 
vector of  S at x. Given 3 > 0, let C(S,  x,  3) be the cap of S with center x and height 3, 
that is the part of  S between the supporting hyperplane of  S at x and its translate by the 
vector - 3 n  ( S , x ). The base B ( S , x,  3 ) of C ( S , x ,  3 ) is the convex hull of  the intersection 
of S with the translated supporting hyperplane. If /x = Iconv C (S, x, 3) l, then/z is called 
the volume of C(S, x, 3) and instead of B(S,  x ,  3) and C(S,  x,  3) we write B(S,  x ,  #)  
and C(S,  x ,  #) ,  respectively. For S of class C 2 let K(S, u) be the Gauss curvature of  S at 
the point(s) of  S with exterior normal unit vector u. Thus to(S, .) is defined on S d-1. 

2.3. Let S be of  class C 1. For v > 0 a closed convex surface SEv I in the interior of  S is 
the floating surface of S corresponding to v if  any supporting hyperplane of S M cuts off 
from S a cap of volume v. The following resnit is well known: 

(2) Let SLy I be a floating surface of  S. Then the base of  each cap of S of volume v 
touches St~ 1 at a unique point and this point is the centroid of  the base. 

In order to state the next result we introduce the following notion where e > 0. 
The surface S is e-smooth if for any x 6 S there is a (solid Euclidean, ) ball of  radius e 
contained in conv S which touches S at x. I f  for each x 6 S there is a ball o f  radius I / e  
containing S and such that its boundary touches S at x, then S is called e-strictly convex. 

From Leichtweiss [6] we take the following proposition: 

(3) Let S be e-smooth for a given e > 0 and strictly convex. Then there is a ~. > 0 
such that for 0 < v < )~ the floating surface St~ 1 of  S exists, is of  class C 2, and 
the inequality ~c(S H ,  .) > 0 holds. 

2.4. Elementary calculations yield the next result, compare [7]. 

(4) Let S be of class C 2 and let L be a volume-preserving linear transformation of 
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IE d. Then, for each x 6 S and u = n(S, x),  

L - t ( u )  
n(L(S), L(x)) - -  

IIt-'(u)ll 
- -  = v, say, 

and 

x(S,u) 
x(L(S),  v) -- 

IIL-'(u) l[ a+~" 

Here L- t  is the inverse of  the adjoint transformation of L. 

2.5. A closed set U in Ed is saJd to have the local supporting property if, for each of its 
boundary points x, there is a hyperplane through x, such that all points of  U in a suitable 
neighborhood of x are on the same side of  the hyperplane, possibly on the hyperplane. 
A result of Tietze [ 16] implies the following: 

(5) Let U be a closed compact surface in E d which is star-shaped with respect to the 
origin o, that is, each open ray starting at o meets U in precisely one point. If  U 
has the local supporting property, then it is a closed convex surface. 

2.6. Let S be of  class C 2 with x (S, .) > 0 and assume that o is in its interior. Generalizing 
a result of Blaschke [3], Petty [12] proved, for the affine distance, 

(6) a (S ,  u) -~- h(S,  u)g(S ,  u) -1/(d+l) 

from o to the (unique) point x 6 S where u = n(S, x), the formula 

(7) 

dd+tlconv({o } U B(S, x, 6))1 
a(S, u) d+l = lim 

a--,+0 (d + 1)d--IKd_IIconv C(S, x, 8)1" 

Here rd-1 is the volume of  the unit ball in E d-l .  
The Santaldpoint of S is the point 

san S = [ uh(S, U) -(d+l) dot(u), (8) 
J sd-I 

where tr is the ordinary surface area measure on S d-1 and the integral is to be understood 
componentwise. 

The following characterization of ellipsoids is due to Petty [13]: 

(9) Let S be of class C 2 with K(S,-)  > 0 where o = sanS. I f a ( S , - )  is constant on 
S d-l, then S is an ellipsoid with center o. 

2.7. It is well known that: 

(10) If S is of  class C 2 with x(S, -) > O, then 

f s  u d a  (u) 
o. 

d-I K(S, U) 
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Also well known is the next result, of  which a first version was given by Liebmann [8]. 

(11) Let S be of  class C 2. I f  x(S,  .) is constant, then S is a sphere. 

3. Proof of  the Theorem 

Let S be as stated in the theorem. The proof  that S is an ellipsoid is split into three parts: 
in Section 3.1 some necessary tools from the first article are cited and a lemma on e- 
smoothness is proved. In Sections 3.2 and 3.3 we distinguish the cases where respectively 
there are and are not points p,  q e S such that for corresponding affinities Apq and Bpq 
the nonequality ]det Apq[ ~ Idet npq[ holds. In the former case we treat the cases d = 2 
and d > 3 separately. 

3.1. Tools from the First Art ide  and a Lemma.  

3.1.1. From Sections 3.2, 3.3, 3.4.2, and 3.4.3 of  [5], respectively, we take the following 
propositions: 

(12) S is of class C 1 and is strictly convex. 
(13) det Axy ~ 0 for all x,  y e S. 
(14) Assume that for each pair  x,  y ~ S the value of  IdetAxyl is the same for all 

affinities Axy. Then, given p e S, the function 

x ~ IdetApxl:X ~ S 

is continuous and thus bounded between positive constants by (13). 
(15) Assume that for each pair x,  y e S the value of IdetAxyl is the same for all 

affinities Axy. Then, given p e S, there is a # > 0 such that 

C(S ,p ,# )  C Npx, 

Apx(C(S, p, #)) -~ C(S, x, [detApx[#) 

for each x ~ S and suitable Apx. 
(16) Let d > 3 and assume that there are points p,  q ~ S and corresponding affinities 

Apq and Bpq with [detApq[ ~ [det Bpq[. Then S is an ellipsoid. 

3.1.2. This subsection contains the proof  of  the following lemma: 

(17) There is an e > 0 such that S is e-smooth and e-strictly convex. 

Since the proofs for e-smoothness and for e-strict convexity are very similar, only the 
former will be given. The first step is to show the following: 

(18) For each x ~ S there is a ball Bx, with x ~ Bx C cony S. 

Obviously, there is a point p e S and a ball B such that p E B C conv S. Now, 
for any x ~ S, by replacing B by a suitable smaller ball which then is also denoted 
by B, if necessary, we may assume that B C conv Npx where Npx is a neighborhood 
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corresponding to p,  x. Then 

x = Apx (p) ~ Apx(B) C Apx (conv Npx) = c o n v  Apx (Np~) C conv S. 

Now choose a ball Bx contained in the ellipsoid Apx (B) with x ~ Bx. The proof of  (18) 
is complete. 

Clearly, we may assume that for each x e S the ball Bx has maximum radius, say ex. 
A simple compactness argument then yields 

(19) Sn = {x ~ S: ex > 1/n} is closed in S for n = 1, 2 . . . . .  

By (18), 

(20) s = U.=~ s..  

Since S is (with the induced metric) a complete metric space, a version of  the Baire 
category theorem together with (19) and (20) implies that 

relint Sn # 0 for a suitable index n. 

Let p e relint S~. Obviously, 

Apx(Npx f'l relint S~), x e S, is an open coveting of  S. 

By the compactness of  S there are open neighborhoods N1 . . . . .  Nk of p in Sn and 
nonsingular affinities A1 . . . . .  Ak such that 

A1 (N1) . . . . .  Ak(Nk) is an open coveting of S. 

Again, the compactness of  S in conjunction with Lebesgue's coveting lemma then shows 
that there are sets 

(21) M1 C N1 . . . . .  Mk C Nk, compact, 

while still 

(22) AI(M1) . . . . .  Ak(Mk) is a coveting of  S. 

Since Mi C Ni C Sn, for i = 1 . . . . .  k, the definition of  Sn in (19) implies: 

(23) For each q ~ Mi, i = 1 . . . . .  k, there is a ball of  radius e = 1/n in cony S which 
touches S at q. 

Taking into account (12) and (21), by decreasing e if necessary, we may replace (23) by 
the following proposition: 

(24) There is an e > 0 such that for each q ~ Mi, i = 1 . . . . .  k, there is a ball Bq of  
radius e with q ~ Bq C cony Ni. 

Now (22), (24), and an argument which is slightly more complicated than the one that 
led to (18) give (17). (Here we have to deal with k ellipsoids.) 
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3.2. Case 1. We assume here that: 

(25) There are points p, q e S and corresponding affinities Apq and Bpq with 
Idet Apq[ ~ [det Bpq[. 

Our aim is to show that then 

(26) S is an ellipsoid. 

Remark. Since the affinities which map neighborhoods of points on an ellipsoid onto 
neighborhoods on the ellipsoid are volume-preserving, this shows that Case 1 actually 
cannot hold. 

3.2.1 (d = 2). At first it is shown that a convex arc which properly contains an affine 
image of itself must contain an arc of a conic. The proof of this 1emma in essence consists 
of the solution of a functional equation. The lemma together with assumption (25) then 
easily leads to (26). 

We first show the following lemma: 

(27) Let p e S and let A be an arc of S starting at p. Assume that Cpp 5k id is an 
affinity with detCpp > 0 such that Cpp(A) is also an arc in S which starts at p 
in the same direction as A. Then a subarc of A is an arc of a conic. 

At first A and Cpp(A) are represented in a suitable Cartesian coordinate system: 
choose p as the origin, let the supporting line of S at p (which is unique by (12)) be 
the first coordinate axis such that A starts in the direction of the positive axis and let 
the positive second axis point into the half-plane containing S. The coordinates in this 
system are denoted s, t. 

Clearly, we may represent a subarc of A which starts at p in the form 

t = f ( s )  or s = g ( t )  

with suitable functions f ,  g. It follows from (1) and the property .4 of S that S is 
everywhere twice differentiable. Hence 

(28) f(s) ~ ors 2 as s --+ -t-0 and thus g(t) ~ fit U2 as t ~ +0,  

where et > 0 by (17) and fl = ot -1/2. 
Since the arcs A and Cpp(A) on S both start at (the origin) p in the direction of the 

positive first coordinate axis, the affinity Cpp maps the positive axis onto itself. Hence 
we may represent Cpp in the form 

C ) - - - ~ ( a s + b : )  for 

with suitable a > 0, b, c. Clearly, det Cpp = ac > 0 implies that c > 0. By replacing 
Cpp by Cp 1 and writing Cpp for C ;  1, if necessary, we may assume that 

(29) 0 < a <  1, c > 0 .  
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Cpp maps (g(t), t) ~ onto (ag(t) + bt, Ct) t. For small t > 0 the latter point is also on 
the subarc of A which is represented by g(.). Thus 

(30) ag(t) + bt = g(ct) for small t > 0, 

and therefore 

aflt 1/2 + bt "~ cl/2 flt 1/2 as t ~ q-0 

by (28). Hence a = c 1/2 or c = a 2. Thus, i r a  = 1 we have c = 1 and (30) yields b = 0, 
that is, Cpp = id, a contradiction. Hence a ~ 1 and instead of (29) the sharper statement 

(31) 0 < a <  1, e = a  2 

holds. 
The final step in the proof of (27) is to show that 

(32) g(t) = fit 1/2 - (b/a(1 - a))t for small t > 0. 

(30), (31), and (28) show that, for small t > 0, 

g(t) 
1 _ ,  , b = gka2t) - - t  
a a 

{ 1  b } b  ~g(a4 t )  b _ 1 g(aat)-- a2t - - - t =  -- ( l + a ) t  
- -  a a a 

i n b 1 abl-anl - a 
- - t  - -  g(a2nt ) -  ( l + a + - - - + a ~ - l ) t =  g(aZnt) 

fltl/2 b - - t  as n --~ ~ ,  
a(1 - - a )  

which concludes the proof  of  (32). 
Since the arc of  S defined by g(.) where t > 0 is small is a conic arc by (32), the 

proof of  (27) is complete. 
Having proved (27), the proof of  (26) is simple. Note assumption (25) and let Cpp = 

-1 2 2 Apq npq. By replacing Cpp by Cpp and writing Cpp for Cpp, if  necessary, we may suppose 
that 

(33) 0 < det Cpp ~ 1 and thus, in particular, Cpp ~ id. 

Clearly, Cpp maps p onto p and, for a suitable arc A in S starting at p, Cpp(A) is also 
an arc of S starting at p. The strict convexity of  S (see (12)) and det Cpp > 0 (see (33)) 
imply that A and Cpp(A) both start in the same direction. Thus an application of (27) 
shows that S contains an arc of a conic. The transformation property .,4, the compactness 
of  S, and the fact that two overlapping arcs of conics are actually on the same conic then 
implies that S is a conic itself. Being bounded, it is an ellipse, concluding the proof of 
(26). 

3.2.2 (d > 3). Assumption (25) together with (16) immediately yield (26). 
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3.3. Case 2. We now assume that: 

(34) For each pair x, y e S the value of Idet A~yl is the same for all corresponding 
affinities A xy. 

Again, our aim is to prove that 

(35) S is an ellipsoid. 

As a first step it is shown that [detAxy[ = 1 for all x, y e S. Then we prove that the 
floating surfaces T = S[vl also have property .4. Next, to each T we assign a closed 
star-shaped surface U. (It is perhaps worth noting that T is a dilatation of the curvature 
image of U, compare [10].) It then turns out that U also has property .4 but with linear 
affinities. This yields in particular, using Tietze's theorem (5), that U is a closed convex 
surface. Hence the floating surfaces V = Utv ] of U may be considered. They, again, have 
property .4 where the affinities are linear. A further property of the V's deals with the 
affine distance. This permits the application of Petty's characterization (9) of ellipsoids. 
Hence each V is an ellipsoid. Then, going back from V to U, from U to T, and then to 
S, we see that S is also an ellipsoid. 

3.3.1. This subsection contains the proof that 

(36) IdetApxl = 1 for all p , x  E S. 

Property .,4 and assumption (34) yield the following proposition: 

(37) Let p, z, y e S and let Apz, Azy, Apy be corresponding affinities. Then Idet Apy I 
= [detApz [ [detAzy[. 

Let p e S. Assumption (34) together with (14) implies that there is a q e S such that 

Idet Apql = max{Idet Apz I: z e S}. 

Thus 

(38) IdetAp:l < IdetApql for allz E S. 

Let x e S and consider Aqx. The affinity Aqx maps a neighborhood Nqx of q in S onto 
a neighborhood Nx ofx  in S. For any y e N~ there is a point z ~ Nqx with Aqx(z) = y. 
By (34) we thus have 

IdetAzyl = IdetAqxl. 

This, (37), and (38) together then show 

IdetApy I = ]detAp:l IdetAzyl <_ IdetApql IdetAqxl = IdetApxl foraU y ~ Nx. 

The function x ~ Idet Apx I thus has a local maximum at any point x e S. Since this 
function is continuous by (34) and (14), it is a constant. Taking x = p, it follows that 
this constant is 1, concluding the proof of (36). 
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3.3.2. By (3) and (17), 

(39) there is a )~ > 0 such that T = Sty a exists, is of  class C 2, and K(SI~ J, -) > 0 for 
0 < v  <~..  

Since Idet Axyl = 1 for all x, y �9 S by (36), the following is a simple consequence of 
(15), where for Axy w e  take ApyAp-lx: 

(40) There is a # > 0 such that 

Axy(C(S, x, 11)) = C(S, y, 11) 

for all x, y e S and suitable Axy. 

In the following when we write Axy it is to be understood that Axy is a volume-preserving 
affinity which satisfies (40). 

Our aim in this subsection is to show that 

(41) T = S M has property .A for 0 < v < min{/., #} where the affinities are 
volume-preserving. 

For the proof of (41) it is sufficient to verify the following: 

(42) Let 0 < v < min{/., #} and u, v e T = St~] be chosen. Since by (12) and (39) 
the surfaces S and T are smooth and strictly convex, there are unique x, y �9 S 
with n(S, x) = n(T, u) and n(S, y) = n(T,  v). Then there is a neighborhood 
M of u in T and a volume-preserving affinity B,o (=  Axy ) which maps u onto 
v and M into T. 

The supporting hyperplane of T at u cuts off from S the cap C(S, x, v) of volume 
v. Since v < #,  this cap is contained in relint C (S, x, 11). Thus, since T is smooth and 
strictly convex (see (39)), there is a neighborhood M of u in T such that: 

(43) For each w �9 M the following hold: if z �9 S is chosen (uniquely) such that 
n(S, z) = n(T, w), then 
(a) the supporting hyperplane of T at w cuts off from S the cap C(S, z, v) of 

volume v, where 
(b) C(S, z, v) C C(S, x, #), and 
(c) w is the centroid of  the base B(S, z, v). 

(a) and (b) are clear and (c) is implied by (2). 
The proof that B,~ = Axy maps u onto v in essence is a special case of  the proof that 

Bu,, maps M into T. Hence only the latter will be given: let w �9 M and choose z �9 S 
such that n(S, z) = n(T, w). By (43), w is the centroid of  the base B(S, z, v) of the cap 
C(S, z, v). Since Axy is nonsingular, Axy (to) is the centroid of  the base of the cap 

A:,y(C(S, Z. v)) = C(S, Axy(Z ), v) C S, 

see the definition of  M, (43), and (40). This implies that Buy (w) = Axy (w) is the point 
where the base of  the cap C(S, Axy(Z), v) touches T. Thus Buv(W) e T, concluding the 
proof of  (42) and thus of  (41). 
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3.3.3. The next aim is to establish the following proposition: 

(44) Let T (=  S N) be a closed convex surface of class C 2 with K(T, .) > 0 which 
has property ,4. Define a closed surface U, star-shaped with respect to o, by 

U = {K(T, t)-l/(d+l)t: t E sd-1}. 

Then U has property ,4 where the affinities are volume-preserving and linear 
and U is convex with o in its interior. 

For the proof that U has property ,4 it is sufficient to prove the following: 

(45) Let r, s ~ S d-1 and choose (unique) u, v ~ T such that r = n(T, u) and 
s = n(T, v). Then there is a neighborhood N of x(T, r)-l/(d+l~r in U and 
a volume-preserving linear transformation LTts (Lrs is the linear part of Buy) 
which maps r (T ,  r)-l(d+l~r onto K(T, r)-l/(d+l>s and N into U. 

By the assumptions in (44) there is a neighborhood M of u in T and a volume- 
preserving affinity Buy mapping u onto v and M into T. The assumptions in (44) also 
show that T is smooth and strictly convex. Hence the exterior normal unit vectors of T 
at the points of M form a neighborhood of r = n(T, u) in S d-1. As t ranges over this 
neighborhood, the vectors K(T, t)-l/(d+X~t form a neighborhood N of~c (T, r)-l/(d+l}r in 
U. In order to show that LrJ maps N into U, let r(T,  t)-l/(d+l~t ~ N. By the definitions 
of N and U there is a w ~ M with t = n(T, w). Now apply (4): 

Lrts (K(T, t)-l/(d+l)t) = K(T, t)-l/(d+l)Lrts (t ) 

__ ( K ( T , t ) ) - ' / ( d + ' )  L~t(t) 

IIZ;s  t ( t)II  d+l  IIZ~' (t)II 

= K (Lrs(T),  L;t( t )  ~-l/(d+l) II~l l  ] n(Zrs(Z)' trs(t~ 

= r(B~o(T), n(Buv(T), B~v(w)))-l/(d+l}n(B~o(T), B~v(w)) 

= K(T, n(T, Buv(w)))-l/(d+l;n(T, B,o(w)) E U, 

since B~(w)  ~ T. Thus L-7~ (N) C U. For w = u we have t = n(T, w = u) = r and 
for v = Buy(U) we have n(T, v) = s. Hence 

Lrts (K(T, r)-l/(d+l}r) = K(T, S)-I/(d+I} s. 

Since L~ -t is volume-preserving, the proof of (45) is finished. 
Now we show that 

(46) U is convex with o in its interior. 

Choose p e U having maximum distance from o. The hyperplane through p orthog- 
onal to the vector p supports U locally at p (even globally, but we do not need this). 
The transformation property .A of U (see (45)) then implies that U is supported locally 
at each of its points. Thus (5) shows that U is convex. By definition of U (see (44)), o is 
in the interior of U, concluding the proof of (46). 

Having proved (45) and (46), proposition (44) follows. 
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Taking into account (44), the argument of Section 3.3.2 shows that: 

(47) For each sufficiently small v > 0 the floating surface V = U H exists, is of  class 
C 2 with x(V, .) > 0, has property ,4 where the affinities are (volume-preserving 
and) linear, and o is in the interior of V. 

3.3.4. This subsection is devoted to the proof  of  the following proposition: 

(48) Let V (=  UN) be a closed convex surface of class C 2 with x(V, .) > 0 and o 
in its interior which has property .,4 where the affinities are (volume-preserving 
and) linear. Then V is an ellipsoid with center o. 

In the proof of (48) we first show that the affine distance from o, 

(49) a(V, .) is constant on V. 

Choose x, y E V and let u = n(V, x),  v = n(V, y). For all sufficiently small ~ > 0 
the cap C(V, x, ~) is mapped by a suitable volume-preserving linear transformation Lxy 
onto a cap of the form C(V, y, e) of the same volume. The assumptions in (48) imply 
that V is smooth and strictly convex. Hence e = e(~) -+ 0 as ~ --~ +0.  Clearly, L~y 
maps the cone conv({o} U B(V, x, 6)) onto the cone conv({o} U B(V, y, e)). Therefore 
both cones have the same volume. This, holding for all sufficiently small ~ > 0, together 
with (7) yield a(V, u) = a(V, v), concluding the proof of  (49). 

From (8), (6), (49), and (10) it follows, for the Santal6 point of  V, that 

san V = f Sd-, uh(V'u)-(d+l) dtr(u) = f Sd-~ ua(V'u)-{d+l)x(V'u)-l dcr(u) 

= const d~(u) 
js -i u )  = o.  

Combining this with (49), we see that the affine distance from the Santal6 point o of  
V is constant on V. Note that V is of class C 2, see (47). Hence an application of Petty's 
characterization (9) shows that V is an ellipsoid with center o. This concludes the proof 
of (48). 

3.3.5. Now we make use of  what has been proved in earlier subsections to show (35), 
i.e., S is an ellipsoid. 

For sufficiently small v > 0 the floating surfaces V = UEv I exist and are ellipsoids 
with center o, see (47) and (48). Clearly, they approximate U arbitrarily closely from 
the interior as v ~ +0.  Hence 

(50) U is an ellipsoid with center o. 

Next it is shown that 

(51) T (=  SN) is an ellipsoid for all sufficiently small v > 0. 

The floating surface T = SE~ 1 exists for all sufficiently small v > 0, compare (39). For 
such v the corresponding closed convex surface U is also an ellipsoid and its center is o 
by (44) and (50). Let L - t  be a volume-preserving linear transformation which transforms 
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U into a sphere with center o. Using (4) and (44) the following relation obtains: 

L - t ( U )  ---- {L-t(K(T, t )- l /(d+l)t): t  E S d- l}  

= {r (T ,  t ) - l / (d+l)L-t( t ) :  t E S d- l}  

[ / (  to(T, t) ~-l/(d+l) L_t( t )  t ] 

iiZ- ll: 
= { r ( L ( T ) ,  S)-V(d+I~S:S e sd-1}, 

see [10]. Since L - t ( U )  is a sphere with center o, this can hold only if K(L(T),  .) is 
constant on S a-1. Now, noting (39), proposition (11) implies that L ( T )  is a sphere. This 
concludes the proof of  (53). 

The floating surfaces T = S M approximate S arbitrarily closely as v ~ +0.  This 
together with (51) shows that S is an ellipsoid. Thus the proof of  (35) is complete. 

3.4. Having shown that S is an ellipsoid, the proof of  the theorem is complete. 
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