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Abstract. In this paper we obtain an effective algorithm to compute all even orders 
and ramification indices of homeomorphisms of finite order acting on compact surfaces, 
orientable or not. This completes the case of odd orders, previously studied by the authors. 

Introduction 

The study of  actions of finite groups on compact  topological  surfaces goes back to Wiman 

[8], and a partial list of the vast literature on the subject produced in the last 20 years can 
be seen in the references of [4]. 

Although most authors restrict themselves to orientation-preserving actions on ori- 
entable surfaces without boundary, we get an algorithm to compute all orders and rami- 
fication indices of homeomorphisms of  finite order acting on compact surfaces, possibly 
with boundary, orientable or not. Obtaining this information is the first step in determin- 
ing the homeomorphism groups of  surfaces. As is well  known, the problem is equivalent 
to computing the data for automorphisms on compact  Klein surfaces, i.e., compact  topo- 
logical surfaces, orientable or not, possibly with boundary, equipped with a dianalytic 
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structure. Our result is directly applicable to the birational geometry of real or complex 
algebraic curves, using the functorial correspondence between compact Klein surfaces 
and projective, smooth, irreducible algebraic curves as stated in [1]. 

Throughout the paper we only consider actions of even order. The odd case was 
solved by the authors in [3], but now the situation is more involved. In fact, if f is a 
homeomorphism of finite order on the surface S, we can attach to the pair (S, f )  the 
numbers  t71 (S, f )  = 2 or 1 according to S being orientable or not, or2 (S, f )  = 2 or 1 
according to the quotient Sf of S under the action of f being orientable or not and, in 
case S is orientable, r (S, f )  = 1 or - 1  according to f being orientation-preserving 
or not. For fixed go and k0 and fixed crl, tr2, and r we want to determine the numbers 
N such that there exist a surface S of genus go and k0 boundary components and a 
homeomorphism f on S of order N such that ~ri(S, f )  = tri, r (S,  f )  = r.  For odd 
N it is obvious that cq(S, f )  = tr2(S, f )  and if this value is 1, then r(S,  f )  = 1, but 
in the even case only the triple (trl, tr2, z) = (2, 1, 1) cannot occur. As we shall see 
later, another extra difficulty in the even case is the existence of comer points for the 
canonical projection S -~ Sf, that is, ramification points in the boundaries. Thirdly, as 
is quite obvious, the results of the odd case are required to compute even orders. We 
freely use them throughout the paper, which is organized as follows: in Section 1 we 
state precisely the problem and introduce the notation and some auxiliary functions to be 
used later. A finite number of cases, which are not covered by the general algorithms, are 
studied in Section 2. The main results are stated and proved in Sections 3-7, according 
to the orientability character of the surface and its quotient and, dealing with orientable 
surfaces, the orientation-preserving (resp. reversing) character of the homeomorphism. 
Some explicit examples are explained in Section 8. 

1. Preliminaries 

Let Sf be the quotient of the compact surface S under the action of the cyclic group of 
order N generated by the homeomorphism f on S. The topological data of the canonical 
covering Jr/: S -~ Sf are the following integers: 

(i) The genus go and the number k0 of boundary components of S. 
(ii) The genus g and the number k of boundary components of Sy. 

(iii) The ramification Ry of zrf at interior points of Sf. It is a finite set of pairs 
Rf = { ( m l , / Z l )  . . . . .  (mr,/Zr)} where/3, i is a positive integer, ml . . . . .  mr are 
distinct integers larger than or equal to two, with the obvious meaning: for 
every 1 < i < r there are/z i interior points in Sf over which zrf ramifies with 
multiplicity mi. 

(iv) The action of yrf on the set of connected components of the boundary 0 S of S is 
codified by a set of pairs a f  = {(/1, )~1) . . . . .  (lp,)~p)} where li, ~.i are positive 
integers, li 5~ lj if i ~ j ,  with the following geometrical meaning: for every 
j = 1 . . . . .  p there are exactly )~j blocks of N~ lj boundary components of S 
which are mapped by zrf onto the same connected component of OSf. 

(v) The total number 2c of comer points of zry. 
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(vi) The integer a = a (S)  = 2 or 1 according to S being orientable or not. The 
integer a = ~r(S, f )  = 2 or 1 according to Sf  being orientable or not. In case 
a = 2, we define r = r (S ,  f )  = 1 or - 1  according to f reverses the orientation 
of S or not. 

This notation is fixed throughout the paper. 

Definition and Remark 1.1. The ordered list 

(go, k0, a ;  g, k, a,  r;  ml . . . . .  mr, 1~1 . . . . .  ~r,  11 . . . . .  Ip, )~1 . . . . .  ~.p, C) 

is called the topological data of  the projection rrf: S --~ Sf .  
For technical reasons it is convenient to introduce two more integers. First, P0 (S) = 

P0 = ago + k0 - 1 which, except in case of classical surfaces, i.e., (k0, a)  = (0, 2), is 
the genus of the canonical double cover of S. Of  course, P0 _> 0 except for go = k0 = 0, 
i.e., for spheres. Secondly, the deficiency of the covering n f  is the nonnegative integer 

k ! 

P 
k - E ~ i  

i=l  
P 

if ~ r = l  or (a, r )  = (2,1),  

k - E ) , i  - 1 otherwise. 
i=1 

(1.0) 

Counting the number of  boundary components of  S and using the Riemann-Hurwitz  
formula we get the fundamental equalities 

 ~ 77' z;' 

I r ( 1 ) ]  
(1.1) 

Statement of the Problem.  The input of  the algorithm is a triple (go, k0, a) ,  where go 
and k0 are nonnegative integers and a = 1 or 2. We denote by K (go, k0, a)  the family 
of  (orientable if a = 2, nonorientable if  a = 1) compact Klein surfaces of  genus go 
whose boundary has k0 connected components. Without any further reference we use the 
sets O~ of odd orders of  automorphisms acting on surfaces in K(go,  ko, a)  which were 
computed in [3]. We define the sets El(Cr), E 2 ( - 1 ,  cr), E2(1), cr = 1, 2, as follows: 
E1 (cr) is the set of even orders of  automorphisms on surfaces in K(go,  ko, 1) with an 
orientable quotient if 0r = 2 and nonorientable i f o  = 1. The sets E2(1) and E 2 ( - 1 ,  ~)  
are defined in the same way; E2 (1) refers to orientation-preserving automorphisms on 
orientable surfaces and E2 ( - 1 ,  cr) corresponds to orientation-reversing automorphisms 
on orientable surfaces, with a = 2 for an orientable quotient and cr = 1 in the other 
case. Note that the quotient of an orientable surface under the action of an orientation- 
preserving automorphism is necessarily orientable, and so all possibilities are covered 
by these five sets. The output of  the algorithm consists of  these E-sets and, for every even 
integer N in each of them, the topological data of  the covering S ---> Sf  associated to all 
automorphisms f of  order N acting on surfaces S ~ K (go, k0, a)  in the prescribed way. 
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The algorithms have been implemented in the language C by the fourth author in the 
operating systems MSDOS and UNIX. All computations can be carried out practically. 
In Example 8.1 all information concerning automorphisms on orientable surfaces of 
genus 12 with two boundary components is given. In fact, the use of the computer gave 
us evidence of the veracity of the following surprising result: 

Theorem. (See Theorem 7.2.) Let (go, ko, or) be fixed and let E be one of the sets 
E1 (a), E2(-1,  or), E2(1). If D is even divisor of N E E, then D ~ E. 

The starting point to produce the algorithm is to obtain necessary and sufficient 
conditions of the existence of even cyclic actions in terms of diophantine equations in 
the parameters of the branching data. 

Remarks 1.2. (1) Let go, k0, or, ~r, and N be given. The existence of a solution of the 
system of diophantine equations (1.1) is a necessary, but in general not sufficient as we 
shall see later, condition for N occurring in the corresponding set E. Note that since N 
is bounded a priori in terms of the input--see 1.4---all variables in (1.1) are bounded by 
above as a function of (go, k0, or). In particular, c < 2ko/N. 

(2) Let E be one of the sets E1 (or), E2(-1 ,  a) ,  E2(1) and let f be an automorphism 
of order N E E on a surface S ~ K (go, k0, or) acting in the prescribed way. We can write 
N = M- 2 e for some e > 1 and some odd M, and g = f 2e, h = fM are automorphisms 
on S of orders M and 2 e, respectively. Hence, 'M being odd, it follows that M E O~ and 
2 e E E. Thus, as a general strategy, we look first for the set P of 2-powers occurring in 
E to determine after what elements of P .  O4 actually occur in E. In both steps, Theorem 
7.2 quoted above simplifies the computations. 

In order to avoid unnecessary repetition, we now introduce some auxiliary func- 
tions which are used to obtain sharp upper bounds for orders of automorphisms of 
the form 2 e. 

Definition 1.3. Given integers k0 > 1 and e > 1, the "2-adic expansion of ko with 
respect to e" is given by the formula 

e-1 

ko = E aj(e, ko) -2 j, 0 < aj < 1 
j=0 

if j ~ e - 1 ,  ae-1 >0.  

For i = 1, 2, we define 

e-2 

Pi: N x N ~ N: (e, ko) ~ ae-1 (e, ko) + i E aj(e, ko). 
j=O 
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For i = 1, 2, 3 we define el: N x (N O {0}) -+  N as follows: 

el(e, k0) = 

e2(e, ko) = 

e3(e, k0) = 

3, 
2 e-1 -- 1, 

2, 
2 e-1 , 
2 e-1 + 1, 

2e(pl(e, ko) - 1), 
2e(pl(e, ko) - 1) + 1, 
2epl (e, ko) - 1, 

e-1 -k 1, 
2 e-l ,  

ko, 
2 e-l (pz(e, ko) - 2) + 1, 

[ 2e-l pz(e, ko), 

13, 
2 e-I -- 1, 

k o + l ,  
ko - 1, 

5, 
'2  e-1 q - l ,  

2 e ( p l ( e - - l , ~ ) - - l ) ,  

2 e ( p l ( e - - l , ~ ) - - l )  +1 ,  

1, 

k o = 0 ,  e < 3  or (e, k o ) = ( 1 , 2 ) ,  
k o = 0 ,  e>_3,  
(ko, e) = (1, 1), 
k o = l ,  e > l ,  
k o = 2 ,  e >  1, 
ko > 2  is odd, 
k o > 2 ,  k o ~ 2  (mod4), e >  1, 
otherwise. 

k o = l  or (ko, e ) = ( 0 , 1 ) ,  
k o = 0 ,  e > l ,  
k o > l ,  e = l ,  
ko > 1 is odd, e > 1, 
otherwise. 

ko = 0, e < 2, 
k o = 0 ,  e > 2 ,  
k o < 2 ,  e - - l ,  
k o > 2 ,  e = l ,  
k o - - - - e = 2 ,  
k o = 2 ,  e > 2 ,  

k o > 2 ,  k o - - 0  (mod4), 

k o > 2 ,  k o - 2  (mod4), 

otherwise. 

e > 2 ,  

e > 2 ,  

The first step to produce an algorithm to compute the E-sets above is to obtain sharp 
upper bounds on the number of  their elements. Until recently this has been an unsolved 
problem in general, but a complete solution has been obtained for prime-powers in E, 
in case k0 > 0, in [5]. This together with the classical bound of Wiman and the results 
for k0 = 0 in [2], [6], and [7] provides us with the following: 

Proposi t ion 1.4. Let go, ko, a ,  a ,  and N be given, Po = ago + ko - 1. Let E be one of  
the sets El(a) ,  E1 (1), E l ( - 1 ,  a). Then: 

12(p~ if N E E I ( a )  or N E  E, 
N_< | 2 ( p o + 2 )  if N E E 2 ( 1 ) ,  k o = 0 ,  

1 2 ( p o + 3 )  if N 6 E 2 ( - 1 , a ) ,  k o = 0 .  

ko > 0 ,  

Moreover, if N = 2e for some e > 1, then 

Po > 

e2(e, ko) if 2 e E El(a) ,  
el(e, ko) if 2 e E E2(1), 
e3(e, ko) /f  2 e E E l ( - 1 ,  1). 
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2. Even Cyclic Actions on Surfaces withpo < 1 

The general algorithm to be developed in the forthcoming sections holds for surfaces 
admitting the upper half-plane as the universal covering. In this section we deal with 
surfaces S e K (go, k0, oe) whose universal covering is either the sphere or the euclidean 
plane, i.e., P0 = ago + k0 - 1 < 1. For every automorphism f on S of finite order, the 
topological data of the covering S --+ Sf  satisfy, from (1.1), the inequality 

c 
- -  - -  /Z i -{- ~ ~__ 0 .  ( 2 . 1 )  

i = l  

Since c can be written as 

c = 1 - for some integers nij >_ 2, (2.2) 
i=1 j = l  

it is easy to obtain by inspection all solutions of (2.1), which are listed in Table 2.1. We 
use the symbol �9 when k = 0, and nothing in the fifth column indicates the empty set. 
Except for the annulus, and in this case c = 0, the number k of boundary components 
of the quotient satisfies k ___ 1 and so we denote for k = 1 the ramification indices in the 
boundary as n l  . . . . .  nsl .  

In Table 2.1, the first 17 cases, i.e., those with P0 = 1, correspond to the well known 
17 plane euclidean groups. The strategy now is the following: for each row in Table 
2.1, we look for all surfaces S and all automorphisms f of finite order on S such that 
po(S) < 1 and the topological data of the covering S --+ S f  : M are the ones of the 
chosen row. Let M be the candidate to be Sf  with these data and let A be its fundamental 
group as orbifold. Then we must search all epimorphisms from A onto cyclic groups 
whose kernel is the fundamental group of some compact surface, the S we are looking 
for. 

According with the data of the chosen row, the group A has the following presentation 
by means of generators and relations (see [4]): 

Generators: 

Xl . . . . .  X r ; e l  . . . . .  ek;Cio  . . . . .  Cis~, i = 1 . . . . .  k, and 

al, bl . . . . .  ag, bg if a = 2  or dm . . . . .  dg if a = l ,  

Relations: 

- _ _  C 2  . X l  t = e i lcioeiCis , - -  ,,j = ( c i , j _ lC i . j )  m'j = 1, 

Xl  . . . . .  X r . e l . . . e k . [ a l , b l ] . . . [ a g ,  b g ] = l  i f  a = 2 ,  

2 1 if a = 1. (2.3) X l , . . . , X r . e l . . . e k . d  1 . . . d g  = 

Note that the condition po(S) _< 1 means that S is one of the following surfaces: 
sphere, disk, projective plane, torus, annulus, Mtbius strip, or Klein bottle. The study of 
all epimorphisms from such groups A onto cyclic groups involves much computation. 
For a guide to the reader we carefully develop three examples. The complete final result 
is displayed in Table 2.2. 
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Table 2.1 

39 

Surface S f  = M Po g k (7 ml  . . . . .  mr" I*l . . . . .  IXr nl . . . . .  ns 

Torus 1 1 0 2 , 
Annulus 1 0 2 2 

1 0 1 2 ml  = # 1  = - 2  

1 0 1 2 m l = 2 ; / Z l = l  2,2 
1 0 1 2 2,2,2,2 
1 0 1 2 ml = 4 : # 1  = 1 2 
1 0 1 2 ml  = 3 : / z 1 =  1 3 
1 0 1 2 2,4,4 
1 0 1 2 3,3,3 
1 0 1 2 2,3,6 
1 0 0 2 ml =2: /xl  = 4  �9 
1 0 0 2 m l = 2 : / z l = l : m 2 = 2 : / z 2 = 4  * 
1 0 0 2 m 1 = 3 : / * i  = 3  * 

1 0 0 2 m l = 2 ; m 2 = 3 ,  m 3 = 6 : l x l = I z 2 = I z 3 = l  * 
Klein bottle 1 2 0 1 , 
MObius strip 1 1 1 1 

1 1 0 1 ml  = / Z l  = 2  �9 
Sphere 0 0 0 2 , 

0 0 0 2 m l = m : / z l = 2  * 
0 0 0 2 m l = 2 ; / z l = l ; m 2 = 3 ; / z 2 = 2  * 
0 0 0 2 m l = 2 : m 2 = 3 ,  m 3 = 4 ; I Z l = l Z 2 = l z 3 = l  * 

0 0 0 2 m l = 2 : m 2 = 3 ,  m 3 = 5 ; # 1 = i z 2 = i z 3 = l  , 
Disk 0 0 1 2 

0 0 1 2 ml =-m:/zl = 1 
0 0 1 2 n l = - n 2 = n  

0 0 1 2 2,3,3 
0 0 1 2 m 1 = 3 ; / * l = l  2 
0 0 1 2 2,3,3 
0 0 1 2 2,3,4 
0 0 1 2 2,3,5 

Projective plane 0 1 0 1 , 
0 1 0 1 ml =m; /z l  = 1 * 

E x a m p l e  2.1. (i) We analyze the third row in the Table 2.1. The  group A has the 

presentat ion 

A = ( X l , X 2 ,  e , c ;  x l x e e = x l  2 = x  2 = c  2 = 1 ) .  

Let  N be an even posit ive integer  and let 0: A ~ ZN be an ep imorph i sm onto the 

cycl ic  group of  order  N whose  kernel  is the fundamenta l  group of  some  compac t  surface 

S. Then  

N 
20(c)  = 0; 0(Xl) = 0(x2) = 7 '  and so 0(e)  = 0. 

Hence  N = 2 since 0 is surjective, and two possibi l i t ies  can occur:  

(1) O ( c )  = 0. In this case S is orientable with k0 = N / ( o r d e r  o f 0 ( e ) )  = 2 boundary 

components  with genus go = 0, because  2g0 + k0 - 1 = P0 _< 1. Consequent ly  

S is an annulus and the projec t ion  zr f :  S ~ S T = M associated to the induced 

au tomorphism f on S maps  both components  o f  OS onto the unique  one of  O M .  

F r o m  Corol lary  3.2.3 in [4], f preserves  the orientat ion of  S. 



40 E. Bujalance, A. E Costa, J. M. Gamboa, and J. Lafuente 

VI  

rq  

.= 

0 

II II 

II II 

II II II II 

I] II II II 

II ~ II 

II 

II 

II II 

II ~. II II II 

[I ~ II II II 

II 

II II 

�9 ~ . -7  

II II 

II II 

II II 

O 0  O 



An Algorithm To Compute Orders and Ramification Indices of Cyclic Actions, II 41 

(2) 0 (c) ~ 0. Consequently S is nonorientable with k0 = 0 boundary components,  

because xl �9 c e ker0 ,  and since 1 = P0 = go + k0 - 1, S has genus go = 2, i.e., 
S is a Klein bottle. 

Both possibilities actually occur, as is shown by the epimorphisms induced by the 
assignments: 

1 = O(xl) = 0 ( x 2 ) ;  0 ( e )  = 0; O(c) = 0 or 1. 

(ii) The fundamental group as an orbifold of  the Mrb ius  strip M occurring in the 16th 
row of  Table 2.1 is presented as 

A = (d , e , c ; ed  2 = c  2 = 1 ) .  

Let O: A ~ ZN be an epimorhism whose kernel F is the fundamental group, as an 

orbifold, of  a surface S ~ K(go, ko, ct) with ago + k0 - 1 = po(S) = 1. We should 
distinguish several subcases: 

(1) c ~ F.  Then x = 0 (d) generates ZN, since 0 (e) = -- 20 (d), and so 0 (e) = - 2x has 
order N/2,  which implies k0 = 2. Therefore ~ = 2, go = 0, i.e., S is an annulus. 
Since M is nonorientable, the induced automorphism f reverses the orientation 
of  S, and the coveting try: S ~ Sf = M maps the boundary components of  the 
annulus to the one component of M. 

(2) c r F. Now y = O(c) has order 2 and {y ,x  = 0(d)} generate ZN. If  q = 
order of  x,  N = 1.c.m.{2, q} and two possibili t ies occur: 

(2.1) q ~ N. Then q = N/2  must be odd, and also 0(e) has order q. In particular, 
d q E I" and, q being odd, S is nonorientable with k0 = 0 because c r F. Thus 
go = 2, i.e., S is a Klein bottle. 

(2.2) q = N. Again k0 = 0 and d N/2. c ~ I'. Thus S is orientable if  and only if  N/2  
is odd. On the other hand, ago = 2 and we conclude that S is a torus if  N/2  is 

odd, and S is a Klein bottle if N/2  is even. 

These three possibilities actually occur. It is enough to consider the epimorphisms 
A ~ ZN induced by assignments: 

01(d) = 1, 01(e) = N -  2, Ol(C) =O incase( i i (1 ) ) ,  
N 

02(d) = 2, 02(e) = N - 4, 02(c) = - -  in case (ii(2.1)), 
2 
N 

03(d) = 1, 03(e) = N - 2, 03 (c) = - -  in case (ii(2.2)). 
2 

(iii) Our last example corresponds to the last row in Table 2.1. 
We deal with an orbifold M whose fundamental group is A = (d, x; xd  2 = x "  = 1). 

Every epimorphism O: A ~ ZN with even N whose kernel is the fundamental group 
of some S ~ K(go, ko, a), with po(S) < O, maps x to an element of  order m and so 
O(d) generates ZN. Hence m = N/2,  because 20(d) = -O(x) ,  and, N being even, S is 
orientable. By (1.1), 

2 g o + k o - 2 = N ( c r g + k - 2 + l - 1 ) = - 2 ,  
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i.e., go = k0 = 0 and S is a sphere. The induced automorphism on S reverses its 
orientation because M is nonorientable. Of course, the assignment O(d) = 1, O(x) = 
N - 2 shows that such an epimorphism actually exists. 

3. The Algorithm To Compute Even Cyclic Actions on Nonorientable 
Surfaces with an Orientable Quotient 

Now that the study of cyclic actions on the exceptional surfaces is complete, we begin 
the algorithmic part of the paper. In this and the forthcoming sections go and k0 are fixed 
nonnegative integers and ~ = 1, which in particular implies go > 1. We always assume 
P0 > 2 which in this section means go + k0 > 3. The key result to compute E1(2), 
i.e, even orders of automorphisms acting on surfaces in K(go, ko, 1) with an orientable 
quotient, is the next proposition which follows from Theorem 3.1.6 in [4] for k0 > 0 
and Theorem 3.5 in [2] for k0 = 0. Recently, Yokoyama [9]-[11] has obtained a similar 
result to Proposition 3.1 and the analogous Propositions 4.1, 5.2, 6.1, and 7.1 in the 
forthcoming sections. 

Proposition 3.1. A positive even integer N occurs in E1(2) i f  and only i f  there exist 
nonnegative integers g, r, p, k', c, positive divisors ml . . . . .  mr, 11 . . . . .  Ip o f  N,  mi 5k 
m j,  li ~ lj i f  i # j ,  mi >__ 2, and positive integers IZl . . . . .  tZr, kl . . . . .  L v, called the 
multiplicites o f  ml . . . . .  mr, 11 . . . . .  Ip, respectively, such that: 

(1) ko - c ( N / 2 )  = y~P=l(N/li)~.i.  
(2) Po - c ( N / 2 )  - 1 = N(2g  + k' + )~ - 1) + ~7=1 (N  - N /mi ) i z i ,  ~. ---- ~P=I ~-i. 
(3) / fg  = k' = O, then N = 1.c.m. (ma . . . . .  mr, Ii . . . . .  lp). 

Remarks  3.2. (1) The first two conditions are nothing other than the fundamental 
equalities in (1.1). The variables in the statement have the geometric meaning of Section 
1. In particular k' is the deficiency as defined in (1.0). So, the number k of connected 
components of the boundary of the quotient is k = k' + X + 1. 

(2) It does not seem obvious from the definition that all even divisors Of elements 
in Et (2) belong to El (2) too. Let f be an automorphism on the surface S of order 
N with orientable quotient Sf. The natural candidate to realize N / d  as order of an 
automorphism on a surface of the same topological type is f d ,  but there is no reason for 
S N to be orientable too, if d is even. However, from Proposition 3.1. we get: 

Corollary 3.3. All even divisors o f  N ~ E1 (2) also occur in El (2). 

Proof. Let  D be an even divisor of N. If  the quotient d = N / D  is odd, the result is 
obvious since, for every automorphism f of order N on S ~ K(go, ko, 1) with orientable 
quotient Sf,  the automorphism f a  on S has order D and Sfa is orientable. Hence we 
can assume that N = 2D and let gN, r, p, k' u, cN, ml . . . . .  mr, Ii . . . . .  Ip, l~l . . . . .  IZr, 
)'l . . . . .  )~p be a solution of the equations in Proposition 3.1 for the integer N. We change 
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the notation slightly as follows: we write 

Ms = {ml . . . . .  mr}; 

and define, for all m ~ M s  and I ~ LN their multiplicities 

UN (m) = Ui if m = mi; ~.N (1) = ~-i if 

LN = {11 . . . . .  lp} 

We define 

UN = E us(m); ks  = E Xs(1), 
mEMN, IELN. 

l = l i .  

= E u s ( m ) ;  k'N = E )~N (l), U'N 
m EMN, (M/re)odd I~LN. (N//)odd 

and we now find a solution of the equations in Proposition 3.1 for the integer D. Note that 
! ! ! 

UN +XS r 0 if gN = ks = 0 by condition (3), and so h = 2(2gN +k's)--  1 +U's +~.~ > 
0. Hence there exist nonnegative integers gD and k' D such that 2gD + k' o = h. 

We choose CD = 2CN and, for every divisors m and 1 of D with m > 2, we define 

[2UN(m) if D/m is even, 
UD(m) ---- [2UN(m) + UN(2m) if D/m is odd, 

/ 2 k s ( l )  if D / l  is even, 
~.D(1) = [2XN(/) + ~.N(2/) if D / l  is odd, 

where the functions #N and k s  are extended to be equal to zero outside MN and L s ,  
respectively. To be coherent with the statement of  Proposition 3.1 we take Mo = {2 < 
m divisor of  D: #o(m) > 0} and Lo = {l divisor of  D: ~.D(1) > 0}. We claim that 
go, k'o, co and the sets MD, Lo with multiplicities # o  and ~-O are a solution of the 
equations in Proposition 3.1 for the integer D. In fact, it is easily checked that 

~ 

7xoq)= xs(t), 
IELo lELN 

which implies that condition (1) is fulfilled, and analogously 

E --n~ uo(m) = E #u(m),  
mEMo mEMN 

which together with 2#N -- U~ = # 0 ;  2~-N -- ~'~V = 3.O, where 

~-D(1), 

meMo IEL D 

prove that condition (2) also is satisfied by our choice of  gD, k~, and co. 
Finally, assume go = k'o = O. Then g s  = k~v = 0, U~v + 3.~ = 0 and so N = 

1.c.m.(Ms U LN) and without loss of  generality we can suppose that all I in L s  divide 
D and there is aun ique  q ~ MN with N/q  odd, U s ( q )  = 1. Now, i f q '  = q/2 
we know that UO(q') = 2UN(q') + Us(q )  > 1, i.e., q' ~ MD. Since MD and LD 
contain all elements x in MN (resp. LN) with even N/x ,  and q' ~ MD it follows that 
D = 1.c.m.(MD tO LD) as desired. [] 



44 E. Bujalance, A. F. Costa, J. M. Gamboa,  and J. Lafuente 

Comment. As observed in Remarks 1.2, to develop the algorithm we first compute 
the set P1 (2) of 2-powers occurring in E1(2). For N = 2% e > 1, its divisors are 
2 i, i = 0 . . . . .  e, and we change the notation in Proposition 3.1 by writing 

{~j, if l j , = 2 J ,  
YJ = if 2J r . . . . .  lp}, 

X j = { ~ j ,  if m j , = 2 J ,  
if 2 J r . . . . .  mr}. 

This way, the third condition in Proposition 3.1 says x e -1- Ye > 1 if g -- k' = 0, and 
so we get 

Corollary 3.4. For e > 1, 2 e occurs in E1 (2) /f and only i f  there exist nonnegative 
integers g, k', d ,  xl  . . . . .  Xe, Yo, . �9 �9 Ye such that: 

(1) ko C2 e -1  X ' e  " 2 e - i  
- -  = L . , i = O  Y i  �9 

(2) Po - c2e-1 - -  1 = 2e(2g + k ' +  X - 1) + ~--~.~=1 (2  e - 2e-i)x  i, )~ = EiLO Yi. 

(3) I f  g = k' = O, then X e -~- Ye >-- 1. 

Now, by using Propositions 1.4, 3.1, and 3.3 we get the desired algorithm: 

Step 1. Determine the set X = {e > 1:2 e _< 2(p0 + 1)} and its maximum ex.  

Step 2. Determine the set Y = {1 < e < ex: e2(e, k0) < P0} and its maximum er.  

Step 3. Determine the set 

PI (2) = {2e: 1 < e < ev: the equations in Corollary 3.4 admit a solution}. 

Step 4. Determine the set of candidates 

Cl(2) = {2eM: 2 e E P1(2), M E O1,2eM <_ 2(p0 + 1)}. 

Step 5. Determine the set 

E1(2) = {N ~ Cl(2): the equations in Proposition 3.1 admit a solution}. 

Once E1 (2) is known, the final step is 

Step 6. FIND SOLUTIONS. This means that for every N ~ E1 (2) the computer calcu- 
lates all solutions 

(g, k', ml  . . . . .  m r ,  1s . . . . .  lZr ,  l l  . . . . .  lp ,  )~1 . . . . .  )~p) 

of the equations in Proposition 3.1. This gives the topological data of the covering 
S ~ S / f o r  all automorphisms f of order N acting on surfaces S ~ K (go, k0, 1) with 
S/orientable, taking into account that the number k of boundary components of Sf is, 
by (1.0), k = k' + 1 + Y'~/P=I )~i. In the next sections we just write FIND SOLUTIONS. 
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Remarks 3.5. (1) As previously observed, the variable c in Proposition 3.1 is bounded 
above by 2ko/N. Thus, the implemented version of our algorithm treats it as a discrete 
parameter with values c = 0, 1 . . . .  up to the integral part of 2k0/N instead of an unknown 
and solve many more equations with one variable less. 

(2) In our previous paper [3] we explained how the computer handled these diophan- 
tine equations with nonnegative unknowns and so we do not repeat it here. It should 
be mentioned that knowing the precise distribution of the comer points the computer 
also gives, by the same procedure, all possible decompositions of 2c = ~ yici for even 
positive integers ci with 0 < ~ yi < k'. This way it is known how many comer points 
appear on each boundary component of the quotient. 

(3) To compute the set Pl(2) in Step 3 we begin with a set of candidates {2e: 1 < 
e < er} and we know after Corollary 3.3 that the divisors of elements in Pl (2) occur 
in P1 (2) also. Hence, the efficiency of the algorithm seems to be optimum if we begin 
the test of Step 3 with the intermediate exponent e m =  integral part of ev /2  and then 
going up or down according to whether 2 em does or does not belong to P1 (2). In the same 
way, for every odd M ~ O1 and the maximum exponent eM such that 2 eM E Pa (2) and 
M2 eM < 2(p0 + 1), the algorithm seems to be more efficient if we begin the test of Step 
5 with M2 ~-', with em, = integral part ofeM/2 .  

These remarks remain valid for the forthcoming sections. 

4. The Algorithm To Compute Even Cyclic Actions on Nonorientable 
Surfaces, with a Nonorientable Quotient 

As in the preceding section, g0 > 1 andk0 > 0 are fixed integers and p0 = g0+k0-1 > 2. 
The analogous result to Proposition 3.1 concerning nonorientable quotient follows from 
Theorem 3.1.8 in [4] for k0 > 0 and Theorem 3.6 in [2] for ko = 0: 

! 
IZN = 

Proposition 4.1. A positive even integer N occurs in El (1) if and only i f  there exist 
nonnegative integers g > 1, r, p, k', c, positive divisors ml . . . . .  mr, ll . . . . .  lp o f  N,  
mi ~ mj ,  li ~ lj i f i  ~ j ,  mi > 2, andposit ive integers # l  . . . . .  #r,  )~1 . . . . .  )~p such 
that: 

(1) ko - c (N /2 )  = ~/P=l(N/li)2"i" 
(2) Po - c (N /2 )  - 1 = N(g  + k' + )~ - 2) + Y]~7=1 (N - (N/mi) ) t z i ,  ~ - ~  ~ P = I  )~i. 
(3) We define 

( N / li )odd N ~  li r 

['s ; f t  N = ]Z i .  

( N / li )odd N~ li ~4Z 

(3.1) I f  k' = 0, then c = 0 and )d N + #'N is even. If, moreover, g = 1, then N = 
1.c.m.(ml . . . . .  m r ,  ll . . . . .  I p ) .  

! If H (3.2) / fk '  = ) ~  + #u  = 0 and g = 2 and N 6 4Z, then )~u + #U is odd. 
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As in the last section we obtain 

Corollary 4.2. All  even divisors o f  N E El( l ) ,  also occur in El( l ) .  

Proof. As in Corollary 3.3 it suffices to study the case of D = N / 2 .  We denote by 
g/v, k~v, and c/v the values of g, k', and c realizing N as an element of E l ( l )  and define 

e = l l  if g / v = l ,  ) , ~ = # ~ = 0 ,  
/o otherwise. 

We now choose go = 2 ( g / v -  I ) + ) . ~ r  > 1, k~ = 2 k ~ c - e ,  co = 2cN 
and define M o ,  L o  and the multiplicities # o  and )-o as in Corollary 3.3. The same 
computations of Corollary 3.3 show that these values fulfill conditions (1) and (2) of 
Proposition 4.1 for the integer D, and we must just check that the restrictions of (3.1), 
(3.2) are also satisfied. First, ifk~ = 0, then k~ = 0, hence c/v = 0 and so co = 0. Also 

E Xo(I) + E IZD(m) 
l~Lo,(D/l)odd mEMo,(D/m)odd 

= Z (2X/v(/) + )~/v (2/)) + E (2/z/v(m) +/z/v(2m)) 
IELo,N/lq~4Z mEMo,N/mff4Z 

= )-~+#~v ( m o d 2 ) = 0  (mod2). 

+ u ;  = 

If, moreover, go = 1,alsog/v = 1 andsol.c.m.(MuUL/v) = N. HenceX~v+/z~v = 1 
and as in Corollary 3.3 we conclude that D = 1.c.m.(Mo U L o ) .  

Secondly, we are going to prove that conditions k~ = )'~9 -t-/z~ = 0, go = 2, and 
D E 4Z never occur, and therefore the restriction (3.2) is trivially satisfied. Otherwise 
we would have k~ = 0,).~v = /z~ = 0,).N(l) = #N(m) = 0 for all 1 E L o  and 

m E M o  with N / l  and N / m  f[ 4Z,  2 = go = 2(g/v - 1) + e and, since D 6 4Z, also 
N E 4Z. Thus, on the one hand, k~ = )-~v + #~v = 0, gN = 2, N E 4Z, and this implies 
).~ + #~ is odd. However, since each X/v(/) =/z/v(m) = 0 for N / 1 ,  N / m  f[ 4Z,  this 
means ~.~ + #~  = 0, which is absurd. [] 

With the same "change of variables" of Corollary 3.4 we now obtain: 

Corollary 4.3. For e > 1, 2 e occurs in El ( l )  i f  and only i f  there exist nonnegative 

integers g > 1, k',  c, x l  . . . . .  Xe, Yo . . . . .  Ye such that: 

(1) ko c2 e-1 ~-,e , 2e-i 
- -  ~ / - . ~ i = 0  Y i  �9 

(2) PO - -  c 2 e - I  - -  1 = 2 e ( g  --]- k t q- ~, - 2) -~- E ; = 0  (2e - 2 e - i ) x i '  )" = Ee=0  Yi .  

(3) l f k '  = O, then c = 0 and xe + ye is even .  If, moreover, g = 1, then Xe + Ye > O. 

(4) I f k '  = 0 = Xe + Ye and g = 2 and e > 1, then Xe-1 + Ye-1 is odd. 

If we define P1 (1) as the set of those 2-powers occurring in E1 (1), the algorithm to 
determine E1 (1) and the corresponding topological data is the following: 

Steps 1 and 2. As in Section 3. 
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Step 3. Determine the set 

1~ = {2e: 1 < e < ey: the equations in Corollary 4.3 admit a solution}. 

Step 4. Determine the set of candidates: 

C1 (1) = {2eM: 2 e E P1 (1), M E O1,2eM < 2(p0 q- 1)}. 

Step 5. Determine the set 

E1 (1) = {N ~ C1 (1): the equations in Proposition 4.1 admit a solution}. 

Step 6. FIND SOLUTIONS. 

Note that according to (1.0) for each solution of the equations of Proposition 4.1, the 
number of  boundary components of each quotient is k = k' + '~-~/P=I ~-i. 

5. The Algorithm To Compute Orientation-Preserving Even Cyclic 
Actions on Orientable  Surfaces  

As is well known, the quotient Sf of an orientable surface S under the action of the group 
generated by an orientation-preserving automorphism f of  finite order, is orientable. 
Moreover, from Corollary 3.2.3 of  [4], the deficiency k' of  the covering S ~ Sf is zero, 
and in particular there are no corner points. So it is simpler to study the topological data 
of the covering in this case, and the diophantine equations we must solve to decide if 
N ~ E2(1) have fewer unknowns than in the preceding sections. On the other hand, it is 
obvious than f2  preserves the orientation of S and the quotient Sf2 is orientable. Hence, 
the analogy in this case to Corollaries 3.4 and 4.3 is obviously true. To understand the 
condition N ~ E2(1) better we first need the following: 

Definition 5.1. 

(i) A family {qx . . . . .  qs} of (nonnecessarily distinct) natural numbers satisfies the 
elimination property if either every qi = 1 or each of them divides the 1.c.m. of  
the others. 

(ii) Let Pl . . . . .  Ps be distinct natural numbers and let Pl . . . . .  Ps be positive integers. 
The pairs {(Pl, Pl) . . . . .  (Ps, Ps)} satisfy the elimination property if this is so for 
the family 

{pl, .P.'., Pl . . . . .  ps, .P.~., ps}. 

For fixed go > 0, k0 > 0 with P0 = 2g0 + k0 - 1 > 2 we get from Theorem 3.1.5 
and Corollary 3.2.3 in [4], for k0 > 0, and [7], for k0 = 0, the following: 

Proposition 5.2. A positive even integer N occurs in E2(1) if  and only if there exist 
nonnegative integers g, r, p,positive divisors ml . . . . .  mr, ll . . . . .  lp of  N,  mi ~ mj, I i 
lj, if i ~ j ,  mi >__ 2, and positive integers Izl . . . . .  /zr, )~ . . . . .  ~p such that: 
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(1) k0 = ~,P=l(N/li)~.i. 
r N (2) P0 - 1 = N ( 2 g  + k - 2) +)-'~i=1( - ( N / m i ) ) # i ,  k = Y~P=l )~i. 

(3) The pairs {(ml , /z l )  . . . . .  (mr, lZr), (11, ~.1) . . . . .  (lp, ~.p)} satisfy the elimination 
property. 

(4) Let M = 1.c.m.{ml . . . . .  mr, 11 . . . . .  Ip} and lz = ~'~(M/m,)oad #i.  l f  g = O, then 
M = N,  and ifko = O, then # is even. 

As in the previous sections we characterize from Proposition 5.2 the set P2(1) of  
2-powers occurring in E2(1): 

Corol la ry  5.3. I f  e > 1, the number 2 e occurs in P2(1) i f  and only i f  there exist 
nonnegative integers g, Xl . . . . .  Xe, Yo . . . . .  Ye such that: 

(1) k0 = ~ e =  0 yi2 e-i. 

(2) P0 - 1 = 2e(Zg + k -- 2) + Y~f=l ( 2e -- 2e-i)xi '  k = ~_,ieo Yi. 

(3) Let A = {1 < i < e:xi + Yi ~ 0} anddefine 

d = { o a X A  i f A i s n o n e m p t y ,  
otherwise. 

Then either d = 0 or xd + Yd > 2. 
(4) I f  g = O, then Xe + Ye > 1. I f  ko ---- O, then xd is even. 

In terms of the set 0 2 of odd orders of  automorphisms acting on surfaces in k (go, ko, 2), 
which was calculated in [3], we get the following algorithm to compute E2(1) and the 
topological data: 

Step 1. Determine the set 

X =  e > l , 2  e < | 2 ( p o + 2 )  if k o =  

and its maximum ex.  

Step 2. Determine the set Y = {1 < e < ex: e(e, ko) <_ P0} and its maximum ey. 

Step 3. Determine the set 

P2(1) = {2e: 1 < e < ey: the equations in Corollary 5.3 admit a solution}. 

Step 4. Determine the set of candidates: 

C 2 ( 1 ) =  2eM:2 e ~ P z ( 1 ) , M ~ 0 2 , 2 e M < _  [ 2 ( p o + 2 )  if k o = 0  " 

Step 5. Determine the set 

E2(1) = {N E C2(1): the equations in Proposition 5.2 admit a solution}. 

Step 6. FIND SOLUTIONS. 

Recall that the variable k in Proposition 5.2 is the number of  boundary components 
of  the quotient, which is orientable, and that there are no comer  points in this case. 
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6. The Algorithm To Compute Orientation-Reversing Even Cyclic Actions 
on Orientable Surfaces with an Orientable Quotient 

We fix nonnegative integers go, ko such that P0 = 2g0 + k0 - 1 > 2 and let f be 
an automorphism of finite even order N on a surface S 6 K (go, k0, 2) which reverses 
the orientation of  S and such that the quotient Sf is orientable. Then it follows from 
Corollary 3.2.3 in [4] that N / 2  is odd. Thus in this section we do not need to compute 
the maximum 2-power occurring in E 2 ( - 1 ,  2) and it follows that the set of candidates 
is 

/ C 2 ( - 1 , 2 ) =  2 M : M ~ 0 2 , 2 M _ <  [ 2 ( p 0 + 3 )  if k 0 = 0  ' 

where O2 has the meaning of  Section 5. We must just decide what elements of C2 ( -  1, 2) 
are actually in E2 ( - 1 ,  2) and to do that we use the following result, which is a conse- 
quence of  Theorem 3.1.5 and Corollary 3.2.3 in [4] for k0 > 0 and of  [6] for k0 = 0. 

Proposition 6.1. Let  M be odd. Then N = 2 M  occurs in E2 ( -  1, 2) i f  and only i f  there 
exist nonnegative integers g, r, p ,  k' ,  c, posi t ive  divisors ml  . . . . .  mr,  11 . . . . .  Ip o f  M ,  
mi 5~ m j , l i  ~ lj i f  i 5/= J, mi >_ 3, and posi t ive integers #1 . . . . .  IZr,)~l . . . . .  )~p such 
that: 

(1) ko c M  = 2 P - -  E i = I  (M/li))~i. 
(2) Po - c M  - 1 = 2M(2g + k ' +  ~. - 1) + 2 ~-'~7=l ( M  - ( M / m i ) ) # i ,  ,k = Y~i=l i. 
(3) I f  g = k'  = O, then M = 1.c.m.{ml . . . . .  mr,  ll . . . . .  lp} = l. 

Example  6.2. In particular, for M = 1, we get that 2 6 E2 ( -  1, 2). In fact, to solve the 
equations above, necessarily r = 0, each li = 1, and condition (3) is trivially fulfilled. 
Hence only the solvability of the system of equations 

k0 - c = 2)~; P0 - c - 1 = 2(2g + k' + )~ - 1) 

must be proved, and since P0 = 2g0 + ko - 1, this is equivalent to k0 = c + 2X; go = 
2g + k', which clearly admits solutions. 

We describe the algorithm to compute E2 ( -1 ,  2) and the topological data: 

Step 1. Determine the set 

/2(po + 1) 
C2( -1 ,  2) ---- 2M: M 6 O2, 2M _< [2(po + 3) 

Step 2. Determine the set 

E 2 ( - 1 ,  2) = 

,O;Oo} 
if ko 

{2M 6 C 2 (--  1, 2): for this M the system of equations in 

Proposition 6.1 admit a solution}. 

Step 3. FIND SOLUTIONS. 

As in the previous section we recall that, for each of  the solutions, the number of 
boundary components of  the quotient is k = k' + )~ + 1. 
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7. The  Algor i thm To C o m p u t e  Or ienta t ion-Revers ing  Even  Cyclic Act ions 
on Orien tab le  Surfaces  with a Nonor ientable  Quotient 

Using Theorem 3.1.9 in [4] for the case k0 > 0 and [6] for ko = 0 we characterize the 
elements in E 2 ( - 1 ,  1) for fixed go > 0, k0 > 0 with P0 = 2go + k0 - 1 >_ 2, in the 
following way: 

Proposition 7.1. A positive even integer N occurs in E 2 ( - 1 ,  1) if  and only if  there 
exist nonnegative integers g >_ 1, r, p, k', c, positive divisors ml . . . . .  mr, II . . . . .  lp of 
N /2, m i  5 k mj, I i ~ lj if i ~ j ,  m i  > 2, and positive integers lZl . . . . .  tZr, ~'1 . . . . .  ~'p 

such that: 

(1) ko - c(N/2)  = ~'~fi=l (N/li)~.i. 
r N P (2) p o - c ( N / 2 )  - 1 = N ( g + k '  + ~ . u - 2 )  +Y']~i=I( - (N /mi ) )# i ,  s  = ~ i=l  ~.i. 

(3) I f  k' = O, then c = O. I f  k' = 0 and g = 1, then N / 2  = 1.c.m.(ml . . . . .  mr, 
11 . . . . .  lp) .  

(4) We define 

Z ~ =  E ~i and #IN= E #i. 
N~ li r N / li r 

I f  N ~ 4Z, then k' = 0 and )~  + lz~ + g is even. 

As a consequence we can prove the most striking result: 

Theo rem 7.2. Let (go, k0, or) be given with P0 = ago + k0 - 1 > 2, and let E be one 
of the sets El(a) ,  E 2 ( - 1 ,  a ) ,  E2(1), a = 1, 2. All even divisors of elements in E also 
occur in E. 

Proof. We already proved the theorem in case E = El (a) ,  and it is obviously true for 
E = E2(1) or E 2 ( - 1 ,  2), in the last case because E 2 ( - 1 ,  2) does not contain multiples 
of  4. Thus we are just concerned with E = E 2 ( - 1 ,  1) and it is enough to prove that if  
N 6 E is a multiple of  4, then D = N/2  ~ E. By Proposition 7.1 there exist gN > 1, 
two subsets MN and LN of divisors of  N/2,  with m > 2 if m 6 MN, and for every 
m r MN, l ~. LN some multiplicity #N(m), )~N(I) > O, such that if~.N = EIELN ~.N(l), 

k 0 = E / ) ~ N ( I ) ;  p o - - I = N ( g l v + ) ~ N - - 2 ) +  E ( N - N ) # N ( m )  
I~LN m~MN 

with Z~ + #~v + gN even and, i f g ~  = 1, N/2  = l.c.m.(MN t_J LN). 
In particular the last condition implies that 

go  = 2(gN - 1) + ) ~  +/z~v _> 1, 

and for all divisors m, l of D/2, m > 2, we define the new multiplicities 

I ~ 
2 # s ( m )  if - -  ~ 4Z, 

m 

~D(m) = 12UN(m)+~u(2m) if  --D r  
m 



An Algorithm To Compute Orders and Ramification Indices of Cyclic Actions, II 51 

~.D(1) = 

�9 2)~N (l) if D E 4Z,  
1 

D 
2~N (1) + ~-N (2l) if ~ r 4Z. 

We take Mo = {m divisor of  D/2: Izo(m) > 0} and Lo = {m divisor of D/2: )~D(1) > 
0}. 

It is straightforward to check the equalities: 

IELo 

where Xo = Y~teLo Xo(I). 

p O - - I = D ( g D + ~ . D - - 2 ) +  E ( D - D ) # D ( m ) ,  
mEMo 

Moreover, we have chosen k' = 0, because N ~ 4Z and if go = 1 it means gu = 1 
and ) ~  + #~r = 1. Thus N /2  = 1.c.m.(Mu U LN) and wittiout loss of  generality we 
can assume that each N / l  ~ 4Z for I ~ LN and there is a unique q ~ MN such that 
N/q  ~ 4 Z , # u ( q )  = 1. 

Of course q'  = q/2 divides D/2 and #o(q')  = 2#D(q') + #o(q)  > 1. This together 
with the equality N /2  = 1.c.m.(MN to LN) and the fact that MD (resp. LD) contains all 
elements x in M s  (resp. Lu)  with even N/x ,  implies that D/2 = 1.c.m.(Mo tO Lo).  

To finish assume that D ~ 4Z. We must check that ) ~  + # ~  + go  is even. However, 
~-~ + US = ~-~ + #~  (rood2), therefore, ~ + # ~  + go = 2 ( ~  + #~)  (mod2) as 
desired. [] 

Another consequence of  Proposition 7.1 is the following: 

Corol lary  7.3. 

(i) Ifko is odd, E 2 ( - 1 ,  1) does not contain multiples of 4. 
(ii) As in Section 6, 2 E E2 ( -1 ,  1). 

Proof (i) I f  N 6 4Z it follows from Proposition 7.1 that k' = 0 and so c = 0. 
Substituting in the first equation, k0 = Y~=I ( N / l i ) ~ . i  m u s t  be even since each I i divides 
N/2. 

(ii) For N = 2 in Proposition 7.1 we should have r = 0, each li = 1, and conditions 
(3) and (4) hold trivially. Thus everything reduces to studing the system k0 = c + 2>,; 
P0 - c - 1 = 2(g + k' + X -  2), g _> 1, with c = 0 if k' = 0 which clearly admits 
solutions. [] 

Corol lary 7.4. Let e > 1 be an integer. Then 2 e E E 2 ( - 1 ,  1) if and only if there exist 
nonnegative integers g > 1, xl . . . . .  Xe-1, Yo . . . . .  Ye-1 such that: 

(1) k0 = Y]~7=-~ Y i2e-i" 
(2) P0 - 1 = 2e(g + X - 2) + Y~f-~ (2 e - 2e-i)xi, )~ = ~_f-~ Yi. 
(3) Xe-I + Ye-1 + g is even. 
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To decide if an even integer N occurs in E2 ( -1 ,  1) requires two different approaches 
according to the parity of N/2. Hence we introduce the subsets 

F2 = 4Z A E2(-1 ,  1); T2(-1, 1) = E2(-1 ,  1) - F2(--1, l) 

and we compute them separately. We also denote by P.~ ( -1 ,  1) the set of 2-powers 
occurring in E2 ( -  1, 1). We can describe the algorithm to compute E2 ( -  1, 1 ) as follows: 

Step 1. For odd ko define X = {1} and for even ko determine the set 

{ , J 2 ( p o + l )  if k 0 > 0 }  
X =  e> l'2e <t2(po+3 ) if k o = 0  

and its maximum ex. 

Step 2. Determine the set Y = {1 < e < ex: g3(e, ko) < Po} and its maximum ey. 

Step 3. Determine the set 

P2 ( - ] ,  1) = {2e: 1 < e < ey: the equations in Corollary 7.4 admit a solution}. 

Step 4. Determine the set of candidates: 

A2(-1,1) = {2M:M E Oz, M < { p~ + l 
- p 0 + 3  

and 

if k0 > 0 |  
if k o = 0  / 

B2(-1,  1) = 2eM:2e~pe( - l ' l ) 'M~Oz '2e - lM<[(po+3)  if k o =  q 

Step 5. Determine the set 

F2(-1,  1) = {N ~ B2(-1,  1): the equations in Corollary 7.4 admit a solution 

with k' = c = 0, )~v + #N + g even}. 

Step 6. Determine the set 

T2(-1, 1) = {N E A2(-1,  1): equations (1)-(3) in Corollary 7.4 admit a solution}. 

Step 7. Determine the set E2(-1 ,  1) = F2(-1,  1) U T2(-1, 1). 

Step 8. FIND SOLUTIONS. 

8. Final Remarks and Examples 

Let E be one of the sets El (a) ,  E2(-1 ,  o-), or E2(1) for a given input (go, k0, or) and 
O = O~. As we have explained, the strategy to determine E consists of first producing a 
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finite set of candidates C = {M2e: M e O~} and then subjecting elements in C to some 
tests. This leads us to an unsolved question about how to minimize the complexity of the 
algorithm: in what order must the elements in C be tested to achieve rapid computation? 
One should take into account that, from Theorem 7.2, even divisors of elements in E 
belong to E too. We should thank the computer, "who" after managing a lot of examples 
gave us practical evidence of the validity of Theorem 7.2. 

Example 8.1. Using the algorithm of [3] to compute the odd orders of automorphisms 
of an orientable surface of genus 12 with two boundary components we obtain that the 
orders are: 3, 5, 7, 9, 13, 15, 25, 27. By using the algorithm just presented we have the 
following even orders: 

Even orders of automorphisms preserving the orientation: 2, 4, 6, 8, 10, 12, 14, 16, 
18, 20, 24, 26, 28, 30, 32, 36, 48, 50. 

Even orders of automorphisms reversing the orientation: 2, 4, 6, 8, 10, 12, 14, 16, 18, 
24, 26, 28, 30, 32, 36, 48. 

Note that there are automorphisms of order 27, but not of order 54 and so, with the 
notations above, 2 02 ~ E2. 

We would need many pages to list all topological data of the involved automorphisms 
and so we do not reproduce them here. For example, all automorphisms of order 18 
reverse the orientation and we have: 

1. Orientable quotient of genus 0 and with two boundary components. Two branching 
points with ramification indices 3. If fl  is such an automorphism then f9  has a 
fixed curve and the action of fl  on the boundaries permutes the two components 
and f2 acts on each component as a rotation of order 9. 

2. Nonorientable quotient of genus 1 with one boundary component. Two branching 
points with ramification indices 3. If f2 is such an automorphism then f9 has no 
fixed points and the action of f2 on the boundaries permutes the two components 
and f2 acts on each component as a rotation of order 9. 

Note that f l  and f2 cannot be realized as the restrictions of rigid motions on surfaces 
embedded in R 3 and there are different topological classes of automorphisms in each 
type. 
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