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Abstract. In 1954 Steinhaus raised the question of whether a rectifiable curve is charac- 
terized by its projections. A projection onto a line G at the point p counts the number of 
points in the set which lie on the line which is perpendicular to G and passes through p. We 
prove this is so, and give a method to reconstruct a closed connected rectifiable set from its 
projections. 

1. Introduction 

A fundamental inverse problem in integral geometry is to determine when sets are 
determined by its projections. A projection onto a line G at the point p counts the number 
of points in the set which lie on the line which passes through p and is perpendicular 
to G. A classical version of  this inverse problem, the subject of  this paper, is whether 
(the trace of) a rectifiable curve A is determined by its projections. This problem was 
raised by Steinhaus [l l] in 1954. (Steinhaus actually said "We believe without proof 
this theorem to be true") This paper answers the problem in the affirmative by giving a 
method for reconstructing the curve A from knowledge of  the projections of  A. Some 
history and results on the problem appear as problem G8 in [ 1 ]. Santal6 [9] indicates a 
proof for rectifiable Jordan curves. Fast [3] independently solved Steinhaus's problem. 
The results in [3] are actually more general, allowing recovery of closed (not necessarily 
connected) sets. However, the method of  reconstruction presented in this paper is simpler 
and more direct than that in [3]. 

In an earlier paper [8] we solved a similar uniqueness and reconstruction problem 
over the class of  sets of finite total absolute curvature, which we call K-sets. However, not 
all rectifiable curves trace out a set of this type. This paper is based on a reconstruction 
method different from that of  [8], but it is related to it in that both reconstruction methods 
are founded on differentiability properties of the projections. The reconstruction method 
of  this paper is both more complicated and less stable than the reconstruction method 
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for K-sets, in cases where both methods apply. The two reconstruction methods are 
independent in the sense that each method applies to some set that the other does not. 
(K-sets can have multiplicities.) 

2. Main Result 

Let H denote the set of lines in the plane and let H ~ denote the set of oriented lines. 
Let S 1 denote the unit sphere in IR 2. An oriented line H ~ in the plane is represented by 
(p, 0) 6 IR • S l, where 0 is the positively oriented unit tangent to the corresponding 
line O ( H  ~ := {x 6 R2: (x,  . 0 )  = p}, where ,0  6 S 1 denotes the unit vector 
obtained by rotating 0 through (positive) 90 ~ Here O: H ~ ---> H represents the two 
sheeted covering of H by H ~ and ( - ,  �9 ) denotes the standard inner product in ~2. The 
measure d/z := dp dO is the kinematic density on H ~ [9]. The kinematic density is 
the Haar measure (i.e., the invariant measure) on H induced by Euclidean motion in 
the plane. The parameters p and 0 serve as local coordinates on H via O. Hence, the 
kinematic density on H is locally expressible as dp dO. 

To a set A in the plane one can associate a function ha: H ---> Z +, defined by 
na (H) :----- 7"/~ A H) (7"/0 is the counting measure.) This function is referred to as the 
characteristic Crofionfunction [6] of the set A. If  we fix 0, then the function na (p, 0), 
defined for p ~ I~, is the projection of A in the direction 0. For notational simplicity, we 
use ha: H ~ "-> Z + to denote nA o O. 

The Favard, or integral geometric, measure [4], [5], [7], [10] of a Borel set B is 
defined as 

~:(B) :=  l f  nB(n)d~. 
The functional Z extends to a Borel regular measure. A fundamental theorem of integral 
geometry is Crofton's formula, 

length(c) = Z(c), 

where c is a curve. More generally, the one-dimensional Hausdorff measure [2], [5], 
[10], [12], 7-/1 , defined by 

Hi(A) = lim inf diam(Ui): A C Ui, diam(Ui) <_ 8 , 
8--~0 It i=1 i=1 

agrees with Z on rectifiable sets [5, (3.2.26)1, [101. 
Steinhaus defines the following distance function for plane sets: 

dz(A1, A2) = ~ InA~(H) -- nA~(H)ld#. 

The problem Steinhaus [11 ] raised was whether d i  is a metric on 7-/1 equivalence classes. 
Obviously, dz(., .) ___ 0 and dz satisfies the triangle inequality. Thus, Steinhaus' question 
is whether dz(A1, A2) = 0 implies 7-/l(A1 A A2) = 0, where A denotes symmetric 
difference. There are entirely nonrectifiable sets of positive and finite 7-I 1 measure. Such 
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sets have zero Favard measure [2], [5]. Every set of finite ~1 measure uniquely decom- 
poses, modulo sets of 7-/1 measure zero, into a rectifiable part and entirely nonrectifiable 
part. Thus, apart from the issue of  multiplicity, the most general version of Steinhaus's 
problem concerns rectifiable sets. 

In this paper we prove the following. 

Theorem 2.1. If A1 and A2 are closed connected rectifiable sets, then dz ( A 1, A 2 ) = 0 
ifandonly/fT"/l(A1 A A2) = 0. 

Onedirectionisobvious:dz(A1,A2) = 0ifT-/l(A1AA2) = 0sinceZandT-/1 agreeon 
rectifiable sets. We prove the opposite implication by giving a procedure to reconstruct 
A from any measurable function h satisfying fH [nA(H) -- h(H)l  d/z : -  0, i.e., from 
any representative of  the L 1 (H) equivalence class of n m. 

In [8] it is shown that the characteristic Crofton function of  sets of  finite total curvature 
is a function of bounded variation. The theory of  functions of  bounded variation is 
exploited there as the basis of  the reconstruction. For less regular sets, however, the 
characteristic Crofton function has a less accessible structure and a different approach 
is required. 

Gelfand and Smirnov [6] define the concept of  a Crofton density. An even 1-density 
in R 2 is a real-valued function ~o(x, u) o f x  e R 2 and a vector u in the tangent space at 
x such that 

~o(x, au) = lal~0(x, u) 

for all a e IR. (To simplify the notation we identify the tangent space to x in R 2 with 
I~ 2 in the canonical way, i.e., u ~ R2.) Even densities can be integrated over manifolds 
without orientation [6]. An even 1-density ~o is a Crofton 1-density in It~ 2 if the integral 
of  ~o over a manifold can be represented as the integral of  the characteristic Crofton 
function of  the manifold with respect to a measure that is absolutely continuous with 
respect to the kinematic density. The reconstruction method developed for K-sets in [8] 
used certain simple Crofton densities. The reconstruction method of  this paper considers 
instead more complicated Crofton densities and shows that the underlying set can be 
recovered from evaluation of  the integrals of these Crofton densities over the set. 

3. Rectifiable Sets 

A (parametrizedplane) curve is a continuous function c: [a, b] --+ ~2 that is nonconstant 
on any open subinterval. The trace of a curve c is the point set image of c, i.e., 

tr(c) :=  {x: c -1 (x) r 0}. 

The length of a curve is defined by 

For C 1 curves, L (c) is equal to ffl Ik (t)l dt, i.e., the length of  c according to the classical 
definition. 
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I l L ( c )  < ~ ,  then c is a rectifiable curve. A set E C I~ 2 satisfying 7"~l(E)  < OO is 
rectifiable if 7-[ 1 (E \U~=I  trci) = 0 for some countable collection of rectifiable curves 

{Ci}. 
Let Bp (x) denote the open ball of  radius p centered at x, and let Bp abbreviate Bp (0). 

Let E C ]R n. Assuming it exists, the one-dimensional density of E at x is 

|  :=  lira 7-ll(Bo(x) fq E) 
p --, 0+ 2p 

Points x ~ R" such that |  x) = 1 are regular points of  E.  I f  E is rectifiable, then 
7"[ l-almost every point in E is regular [2]. Rectifiable sets also have tangents (in a suitably 
weak sense) ~ l_a lmos t  everywhere. (See [2] or (3.2.19) of  [5].) Thus, even 1-densities 
can be integrated (with respect to ~ l )  over rectifiable sets. 

In this paper the symbol v always denotes a unit normal to a rectifiable set A. A 
rectifiable set A is oriented by (Tel-measurably) selecting a unit normal vector at each 
point of  A possessing a tangent line. For an even 1-density 9, we define 

f a 9  := fA~o(x,v(x))dT-[l(x). 

4. The Reconstruction 

The reconstruction has two distinct steps. The first step finds all straight line segments 
in A. The second step yields a dense subset of  that part of  A not containing any straight 
line segments. Both steps rely on using back-projection to define Crofton densities. 

I f  01 # --02, then l e t / ( 0 1 , 0 2 )  denote the (signed) angle of  minimal magnitude 
through which 01 can be rotated to make it coincide with 02. For x ~ IR2\0, let ~ denote 
the projection o f x  on S 1 , i.e., .~ = x/Ixl. 

4.1. Weighted Back Projection 

For any x e R 2, the back projection of a rectifiable set A at x is essentially the total 
angle subtended by A at x .  Here we consider weighted back projections. 

Let T= denote translation by z in the plane. For any 1-density 9, the 1-density Tz~0 is 
given by Tz~o(x, u) = qg(x -- z, dT=(u)) = qg(x -- z, u). 

Let o9 e C ~ ( S  1) be an even function, i.e., o9(0) = o9(-0) .  For each such o9, we 
define a 1-density ~0 '~ as follows: set 9'~ u) = 0 and i f x  # 0, then set 

~0'~ := o9(:7)I(u,~)l 
Ixl 

For each x, h, u e 1~ 2 le t s (x ,  u, h) e {1, 0, - 1 }  be defined as follows: 

,[sgn(x, u ), ix ,  u ) -7/: 0, 
s(x,u,h) := [ sgn( -h ,u ) ,  (x,u)=O. 

For x # 0 and u 6 •2, we define 

Dh~O~~ : =  s (x ,u ,h) lx l -2(og(Y) (2(u ,Y) (h ,~) - (u ,h  )) +&(~)(u ,Y) (  *h,Y)),  
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where & denotes the derivative of  ~o on $1 in the usual sense. For x, y E IR e, let 

79(x,y) :=  {z EIR2: ( z , y ) ( z , x )  < 0}. 

The following regularity estimate is an important device in our reconstruction. 

L e m m a  4.1. Letx  E I~2\O and assume Ihl ~ 0.1 Ixl. Then 

Th~O~ U) -- ~O~~ U) = Oh~O~ U) d- e(oa, h, x, u), 

where, if u E 7P(x - h, x), then e(w, h, x, u) satisfies 

l u l l h l  
le(og, h , x ,u ) l  < 

[xl 3 (51xl IIo~11~ + Ihl I1~11o~ ), 

and, if u ~ 79(x - h, x ), then e( o9, h, x, u) satisfies 

le(o9, h,x ,  u)l < 6 lullhl2 (11o~11o~ + I1~11~ + Ixl I1~11~). 
- ix[3 

Proof. The proof  is elementary and is given in the Appendix. [] 

Observe that fA Tx~~176 is continuous on IR2\~ as a function of x (here A denotes the 

topological closure of  A.) There may be points x e A at which fa Tx~~ does not have a 
continuous extension. Rather than concern ourselves with these points, we smooth ~0 ~. 
For any x, u E IR2 and p > 0 define 

~o~(x, u) :=  ~o~ u) dy. 
:rrP 2 p(x) 

Although ~o ~ is not a Crofton density (see below), ~o~ is. 

L e m m a  4.2. For every p > O, ~o~ is a Croflon density. 

Proof. Ifdist(0, A) > 0, then polar projection of R2\0  onto the unit circle (x ~ x / Ix  I) 
is a Lipschitz function on A. In this case we can apply the area--coarea formula of  
geometric measure theory [5, (3.2.22)], [7] to obtain 

fA 1 ~ og(O)FtA(O,O)dO. (4 .1 )  ~~176 = ~ 1 

Equation (4.1) shows that fa ~ ~176 is just the og-weighted back projection of A at the origin. 
Strictly speaking, ~0 ̀~ is not a Crofton density because the required measure is singular 
with respect to the kinematic density. 

Let 1/ ~ C~176 be a nonnegative function with range [0, 1] and support in [ - 1 ,  1] 
1 satisfying 0(t) = 1 for Itl < ~. For r > 0, define ~o~'r(x, u) := (1 - 0 (rlxD)~o~ u) 

tor 2 (or and ~op. := (1/Jrp ) fB~x~ ~o , (y, u) dy. Furthermore, let na.r(H) :=  fArm ( 1 -  
r/(r Ix I)) dT-U (x). This function can be interpreted as the characteristic Crofton function 
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of the set A, where the multiplicity of  A at x ~ A has been set to 1 - r~(r[xD. Since 
fA ~ ~176 = fa\Bl/C2~ ~O~ we can again apply the area-coarea formula (even if 0 ~ A) 
to obtain 

fA fPw'r ~ l fs10)(O)~ta.r(O,O)dO. 
It follows from the Fubini theorem that 

fa '/BY, ~o# = 27rp 2 p ~ w(O) nT~a,r(O,O)dOdy. 

A straightforward application of  the monotone convergence theorem (let r --+ oo) and a 

change of  variables yields 

fA 1 f n f s  ~o~ ~ -- 2rrp 2 ~ ~ og(O)~,a(O,O)dOdy 

lf -- o9(0) (p2 _ pZ)l/2fiA(p ' O)dO dp. [] 
~rp  2 p z 

4.2. Recovering Straight Line Segments 

To recover line segments we set w(O) = 1. Henceforth in this section we drop w from 
our notation. Thus, q) = ~o ~ where o) - 1. 

Assume now that A is a rectifiable set with bounded support, i.e., A C BR for some 
R < ~ .  It is clear that a suitable R can be determined from the L 1 equivalence class of  
na since nA (H) = 0 for all H such that BR Cl H = 0. Thus, there is no loss in generality 
in assuming a fixed R .  

Let x E ]R2\B--RR and define Lx(A) :=  {y ~ A: (v(y) ,  y - x ) = 0}. We conclude 
from (4.1) that fa Tx~o = limp__, o+ fa Tx (~Op), hence fa Txq) is uniquely determined by 
the L 1 equivalence of ha. Now, for any Ixl > R, we have 

fA TxDh~O = fT_xaDh~O" 
Since ["]~>0{Y E T-xA: v(y) ~ 79(y - eh, y)} = I~, we have 

lim 7"[1{y ~ T_xA: v(y) ~ 7~(y - eh, y)} = 0 
e~O+ 

and we can apply Lemma 4.1 to obtain 

fA TxDhq) = ~limo+ e - l ( f  A Tx+eh~O-- fA Tx~o). 

Thus, Vx fA Txq) exists if and only ifT-[l(Lx(A)) = 0. More precisely, 

fADhTx~o-t- faD_hTx~o = 2 fL [ (v 'h ) l  dT-[l(y). 
~(a) lY - x[ 2 
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Since 7-[ 1 (A) < oo, there are at most countably many lines H for which 7-/~ (H tq A) is 
positive. It is now evident that this set of  lines is determined by fA T~o, x ~ IR2\BR, and 
that if x e H, then f n  n A l Y -- X I - 2 dT"/1 (y) is determined. B y differentiating with re spect 
to x on H, we can also d e t e r m i n e  fHNA ]Y - x [  -(2+i) dT"/l (Y) for i ~ Z +. From the Stone-  
Weierstrass theorem and the factthatdist(x, A) > 0, we see that fnna  f ( l y - x l )dT - [~ (y )  
is determined for each f e C(~) .  It follows from the general theory of  rectifiable sets 
that A tq H is uniquely determined up to a set of  7-/1 measure zero. 

Let LA denote the closure of  the set {y: O(A tq H, y) = 1} for some H E H. 
Obviously, L~ C A when A is closed. We have proved the following. 

Theorem 4.3. I f  A is a rectifiable set of  compact support, then L A is uniquely deter- 
mined by the L 1 equivalence class of  hA. 

4.3. Recovering Curved Segments 

In this section we prove Theorem 2.1. The key idea is to study the regularity of hA near 
lines which are, in some sense, tangent to A. 

Let b ~ C~ be a nonnegative even function with support in ( - 1 ,  1) satisfying 
fa &(x) dx  = 2l and &(x) = 0 in some neighborhood of  zero. For any 0 < e _< 1 and 
lp e S l , we define an even function we.q, e C~176 by 

w~d,(0 ) : =  e-1/2~(e-l /2 arcsin(0, ~ )), 

where arcsin: [ - 1 ,  1] --~ ( - z r /2 ,  zr/2]. We have, fs '  we,q,(O) dO = 1. Let 

QA(X)  : =  sup l imsup ,,+esq,~e - T~-Esq,~o~"q, �9 
q,ES )3>0 e--~O+ JA 

The function QA is carefully designed to test for a particular regularity property of  n A . 
Since Tzg~ ~ is a Crofton density for any z, QA is determined by the L 1 equivalence 
class of  n A . 

L e m m a  4.4. Let A be a rectifiable set. l f  dJst(x, A) > 0, then QA(X)  = O. 

Proof Fix x, s, and ~p. Without loss of generality, we can assume x ----- 0. Let 8 denote 
min(dist(0, A), 1) and assume 6 > 0. Define 

A~ :=  {y E A: w~.~(~) ~ 0}. 

Since A~>0 ((-Je<~ Ae) = 0, we have lime ~ 0+ 7-/1 (AE) = 0. Let z ~ Be be arbitrary 
and let h denote z + es~p. Using the notation of  Lemma 4.1 we write 

Thq9 ~'~ (y, u) -- T_h~O ~~ (y, u) 

= Dh~OW"*(y, U) -- D_h~OW"*(y, U) + e(we,r h, y, u) - e(we.q,, - h ,  y, u). 

From the estimates of  Lemma 4.1 we conclude that there are constants Cl = Cl (s, 6) < 
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o~ and C 2 ~--- C2(s, ~) < (X) such that if e(1 + s) < 0.1~, then 

~_~ Cl(~ , s)(e*/21l~ll~ + 1[~llo~)7-t 2 (ae) 

+ C2(& s)E~/2(ll~ll~ + I1~11o~ + II~llo~)~a(A). 

The lemma follows easily from this. [] 

The remainder of the proof rests on establishing that Q A > 0 on a dense subset of the 
curved part of A. Our approach relies on certain properties of convex sets and functions 
on S 1 of bounded variation. 

The total variation Vs, (g) of a real function g �9 Ll(S 1) is defined as the supremum 
of {~in__ 0 Ig(Oi) - g(Oi-1)l}, where 00, 01 ..... 0n = 0-1 is an ordered cycle of Lebesgue 
points [12] o f g  in S 1. If Vs,(g) < o~, then we say g �9 BV(S1). Standard theory on 
B V functions implies that if g �9 B V ($1), then g exists almost everywhere in S 1 . 

Let D be a closed bounded convex set in I~ 2. For each 0 �9 $1 define 

f(O) := sup{(x,O):x �9 D}. 

Proposition 4.5. The function f (O) is absolutely continuous and f �9 BV(~I). Fur- 
thermore, if f (o) exists, then xe(O) := f (O)O + f (O) *0 is the unique (extreme)point 
of D satisfying f(O) = (xe(O), 0 ). 

Proof. Let ~ := suP0 f(O) = SUpx~olxl and assume 7 > 0. Let 01,02 �9 ~1 and 
assume that f(02) > f(01). We can findx �9 OD such that (x,  02 ) = f(02). It follows 
that f(O1) >_ (x ,01)  so f(02) - f(01) < Ixl102 - 0al _< fl~(02,001. Thus, f is 
absolutely continuous. A simple argument, which we omit, shows that f has left and 
right derivatives, f (O-)  and f(O+) respectively, for all 0. Furthermore, 

{x �9 D: ix ,  0) = f(0)} = {f(O)O +fl*O: fl �9 [ f (0-- ) ,  f (0+)]} .  

Therefore, if f(O) exists, then OD tq Ho is a singleton. Moreover, it follows easily that 
/ �9 B E ( S 1 ) .  ['7 

From Proposition 4.5, we conclude that )7 exists for almost all 0 �9 S 1 . Using this 
fact, we obtain the following. 

Lemma 4.6. For almost all 0 �9 S 1 , there exists a unique extreme point Xe(O ) of D, 
satisfying f (O) = ( Xe, 0 ), and a real number K (O) < oo such that 

Xe+Setg~e kY, ") ~ 0 

for all y E D whenever s >_ K and e <_ K -1 . 
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Proof. By Proposition 4.5, f and f exist ~ l_almost  everywhere in $1. Let 0 be a point 
where f and f exist, and let 5 6 (0, 1) be small enough so that if IZ(aP, 0)1 _< 5, then 

f ( ~ )  <_ f(o) + f (o) / (o ,  7I) + (1 + If(0)l) [L(0, ~0)] 2. (4.2) 

By Proposition 4.5, Xe = f(O)O + f (O)  *0 is the unique point in D such that f (O) = 
(Xe, 0 ). It follows that if  IZ(q/, 0)1 _< 5, then 

(Xe, 1]t ) - -  f ( O )  > f (O)( (  O, ~ ) - 1) + f ( o ) ( (  *0, ~ ) - / ( 0 ,  ~O)) 

- ( ]  + If(0)l) [ /(0,  1//)12 
> -([Xel + 1 + If(0)l) [z(0, 0)] 2. (4.3) 

Let K(O) = max{5 -2, 2(Ix~l + 2 +  If(0)l)} and assume s > K and e < K -1 . Let z 6 Be 
and y ~ ]R2\(Xe + seO + z) be such that Tx,+seO+zq) ~176 (y, u) ~ 0 for some u ~ Tv. We 
show that this implies y r D, which proves the lemma. 

Since Tx,+seo+dO (y, u) r 0, the line through y and Xe + seO + z has a unit normal 
1 1 that satisfies IZ(0, ~)1 < e': < 5. Note that (0,  ~O) > 7' Using this and (4.3) we 

obtain 

(Y, ~ )  - f ( ~ )  

and, therefore, y r D. 

= ( X e + s e O + z , ~ O ) - f ( ~ t )  

> se(O, q/) - e(IXel + 2 + If(0)l) 
> 0 

[] 

We are now ready to prove the main technical lemma. 

L e m m a  4.7. I f  A is a closed connected rectifiable set, then the set { QA >-- 1} is dense 
in A \ L A  . 

Proof. Let y ~ A be a regular point of  A disjoint from LA. Since A is connected and 
7-[l(Bp(y) Cl A) > fo  7"l~ ) Cl A) dp, we can conclude that 7-[~ Cl A) 
{ 1, 2} for infinitely many arbitrarily small p. Let Dp denote the closed convex hull of 
A A Bp(y) and assume 7-/~ Cl A) e {1, 2}. Since y is disjoint from LA, it 
follows that Dp has a nonempty interior. Thus, there exists an open subset E ~ S 1 
such that if 0 ~ E and x ~ Dp maximizes (x ,  0 ) o v e r  Dp, then for x r OBp. By 
Lemma 4.6 we can find 0 e E such that there is a unique extreme point x of Dp 
with exterior normal 0. Furthermore, there is a finite constant 1 < K < oe such that 
if e < K -1, then fAnBp(y) Tx+ EKo~~176 = 0. Since x is an extreme point of  Dp, we 
have x ~ A. Since A is connected, there exists a path inside A tq D o from x to some 
x'  E OB o f3 D o. (Connected and pathwise connected are the same for rectifiable sets 
in the plane [2].) Since (x ,  0 ) > (x ' ,  0 ) it follows that if e is sufficiently small, and 
Tx_eKO+z~o ~176 (w, u) ~ 0, where Z ~ Be, then the line H through x - eKO + z and w 
intersects the line segment joining x to x ' .  Hence, H intersects the path from x to x '  in 
A A D o. We conclude 

fA Tx-eKOq)~'~ >- 1. 
C~Bp (y) 
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From Lemma 4.4, we deduce QA\Bp(y)(X) = 0 and we now obtain QA(X) _> 1. Since 
p is arbitrarily small, we conclude that y is in the topological closure of  {QA >_ l}. [] 

By Lemmas 4.4 and 4.7, we see that if  A is a closed connected rectifiable set, then 
A = {QA >_ 1} U LA. Since Qa(x) is determined by the L 1 equivalence class of  ha ,  we 
see, by Theorem 4.3, that the proof  of  Theorem 2.1 is complete�9 

Appendix  

Proof of Lemma 4.1. We assume throughout that Ihl ~ 0.11xl. 
Assume first that u ~ ? ( x  - h, x).  Then 

I(x,u)l  _< lul * ~ L - ~ , x  _< lullhl 

and, similarly, [(x - h, u )l < lullhl. We now obtain the bounds 

,Th~O<o(x,u)_tpO~(x,u), <- ilwll~(l(x-h,u)l~c.25h12 + I(x,u)l)lxl - - - 5 -  

_< 311wll~ lullhllxl -z, 
[Oh~OW(X, u)l < 2110~11~ lullhllx1-2 + IId~ll~ lullhl21x1-3. 

Combining these bounds yields the claimed estimate. 
Henceforth, we assume u • 79(x - h, x). Since ~o<~ u) is an even 1-density, we can 

assume that s (x, u, h) = 1 without loss of  generality. We now have 

ThrOw(x, u) -- ~o~ u) = [ZhOg(X) -- w(.~)][Th(Ixi-2(x, u )) -- Ix l -2 (x ,  u )] 

- ] - [ T h a ) ( X )  - -  w(~) ]lxl-2 ( x, u ) 

+w(~)[Th(Ixl-E(x, u )) -- Ixl-2(x, u )]. (A.1) 

The first term in (A.1) can be bounded above by 611(oll~lhlElullx1-3. Since 116>11~ _< 
Jr II/Dll~, we obtain the estimate 

. . . .  ( x , * h ) l  

Let 

Then 

< IIdJIIoo I (~' *h ) 
- [ Ixl 

61x1-2 Ilgbll~lhl 2. 

�9 / ( Y , * h ) ~ l  ((.~,*h)] 
arcsm~ ~-- - -h i  ) + II~bll~ arcsin2 \ i x - - -h i  ,] 

(A.2) 

F ( x , u , h )  :=  
2(~ ,u ) ( .~ ,h )  - ( u , h )  

Ixl 2 

 lx,  lx, u h)lxl J  ihi2ix, ul 
T h \  ix12 , ] - - \  ix12 ,] = F(x, 12 ixl21x_hl2. 
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Since IF(x, u, h)l ~ 21ullhllx1-2, we obtain 

I ((x,u)~ (x,u) F(x,u,h)l<61h[2 Zh~ ixl2 ] [x12 _ [x[3. (A.3) 

Substituting (A.3) and (A.2) into (A. 1), the desired result is obtained. [] 
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