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The Number  of Extreme Triples of a Planar Point Set* 
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Abstract. An extreme triple or 3-set of a finite set S in the plane is a subset of S of size 
3 of the form S fq h, for some half-plane h. We establish an upper bound [1 ln/6J + 1 for 
the number of extreme triples of any S with [SI = n >_ 10. This almost matches the known 
lower bound [1 ln/6J. 

1. Introduct ion 

Let S be a set of  n points in R 2. For a half-plane h, S' = S N h is called a k-set of S 
where k = [ S'[. Without loss of  generality we can consider only half-planes determined 
by lines that do not contain any of the points in S. Let ek(S) denote the number of  k-sets 
realized by S, and define ek(n) = max{ek(S): S _c R 2, IS[ ----- n} for 1 _< k _< n - 1. 
For the importance of  these numbers in combinatorial  and computational geometry, 
and for references, see [1] and [4]. We also say extreme pairs and extreme triples, or 
pairs and triples for short, instead of  2-sets and 3-sets. Edelsbrunner and St6ckl [6], [2] 

determined that e2(n) = [3n/2J for n > 4, and they found a construction that shows 
that e3(n) > 1 ln/6, for n a multiple o f  six, which can be extended to e3(n) _> [1 l n / 6 j  
for n > 15, n ~ 19. In this note we prove a corresponding upper bound [1 l n /6 J  + 1. 

As defined, k-sets are determined by half-planes bounded by (straight) lines, so we 
can say that the k-sets are determined by an arrangement of  lines. Our upper bound is 
actually for k-sets determined in the same manner on a set of  points S by half-planes 
bounded by an arrangement ofpseudolines C, that is, a collection of topological  lines in 
which every pair intersects exactly once at a crossing point (and no point in S incident to 
a pseudoline in C). For a point set S and a pseudoline arrangement C, let gk(S, C) be the 
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number of k-sets determined by C on S, let gk (S) be the maximum of g~ (S, C) over all 
arrangements of pseudolines C, and let gk(n) = max{gk(S): S c R 2, ISI = n}. Clearly, 
ek (n) < gk (n). There is another definition of k-sets, based on k-levels in an arrangement 
ofpseudolines, which is equivalent to the definition based on circular sequences [1 ], [4]. 
Because of a duality principle for arrangements of pseudolines [3], the k-sets in both 
definitions are related; we do not elaborate on this relation. 

Our proof of the upper bound for g3 (n) is essentially a (somewhat tedious) case anal- 
ysis of the possible configurations which concludes that the lower-bound construction 
is optimal. We believe that [ l l n /6 J  is the correct upper bound for n > 7, but we have 
avoided a more careful consideration of configurations with few points which would 
settle the matter. 

There are difficulties in extending this to larger values of k. First, we note that gk (n) < 
[OtknJ where otk = sup{gk(m)/rn: m > 1}. The upper bound proof for g3 (n) is possible 
because the sup defining ce3 is achieved and the extremal configuration is periodic. It is 
not clear that this is the case in general. Second, even if this is true, the corresponding 
case analysis already becomes too difficult to handle for k = 4. A possible aiternative 
would be to devise a systematic approach that could be implemented on a computer. 
More importantly, the real interest is to estimate ek(n) and gk(n) for k = ~9(n). 

In Section 2 we explain the approach and illustrate it by proving that g2 (n) < [3n/2J 
(essentially the proof in [2] but using our framework); Section 3 contains the proof of 
the upper bound for g3 (n). 

2. Framework and Upper Bound forg2(n) 

Layers. For j > 0, let the j-layer Lj be the boundary of the j-hull of S and let the 
j-vertices Sj be those points of S on Lj (Lj is the boundary of the convex hull of Tj where 
To = S and Tj = S - [.j{-1 Si for j > 1). The edges between consecutive j-vertices are 
called j-edges. Any line c r o s s e s  Lj twice or not at all, but crosses any j-edge at most 
once. Hence, if  a k-set contains a j-vertex, then it contains an i-vertex for i < j .  Thus, 
we can assume that Sj = I~ for j >__ k. 

A similar situation can be obtained when we consider k-sets determined by an ar- 
rangement of pseudolines. Let the layers L0, L1 . . . . .  Lk-1 be nested closed simple 
curves in order from outside (for example, concentric circles), and let p be a point inside 
Lk-1. The j-vertices and j-edges are defined as before. The k-sets are determined by an 
arrangement of curves C such that: 

(i) Each C ~ C is topologically a line that starts and ends outside L0. 
(ii) Each pair C, C' ~ C intersects once at a crossing point. 

(iii) Each C e C crosses each Lj twice or not at all but not in points of Sj and not 
more than once in any j-edge. 

The set of points of S in the half-plane not containing p bounded by a pseudoline C e C 
is a (pseudo) k-set if its cardinality is k. Note that if a k-set contains a j-vertex, then it 
also contains an i-vertex for i < j .  

We need to argue that the c u r v e s  Lj and the point p exist for a given arrangement of 
pseudolines C determining k-sets: p is guaranteed to exist for n > 3k + 1 by Helly's 
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theorem. To obtain the curves L j, start with a large pseudocircle C that contains the 
point set S and intersects each C e C twice; then sweep with C over C toward p (in [5] 

j - I  
it is shown that this is possible). Let To = S and Tj = S - Ui=0 Si for j > 1. Sweep- 
ing as far as possible but without going beyond any of the points in Tj results in Lj ; 
Sj is the set of  points of S on  Lj. Under the assumption that each point in S is in some k-set 
determined by a curve in C, then S = [,.jk-~ Sj. 

By removing p,  we can view the curves Lj as nonintersecting curves on a cylindrical 
surface wrapping around once. In our figures we draw the curves Lj as horizontal lines 
in the plane and assume that they wrap around and close outside of the window in the 
figure; thus, the pseudolines in C start and end below L0, and the half-planes determining 
k-sets are those below the pseudolines. 

Conventions. For the purpose of the presentation, a j -ver tex is labeled with a letter 
with subscript j .  The labels of  consecutive j-vert ices are consecutive letters from the 
end of the English alphabet. For example, the vertex uj is on Lj and its neighbors to 
the left and fight are tj and vj. Greek letters are used when we do not want to make 
an implicit statement about the relative positions, and subscripts omitted when its hull 
index is undetermined. Pairs and triples are written as (ctfl) and (c~/~y) where or, 13, y are 
vertices. For the purpose of referring to figures, the vertices with label u (in each hull) 
are drawn as a square (rather than a circle). 

Proof Structure. The goal is to prove by induction that gk(n) <_ qn /p  + C where C is 
a constant. For the basis, we check exhaustively all the possible configurations for point 
sets with less than some D points and find that gk(n) <_ qn /p  + C for n < D. For the 
inductive step, we consider an arbitrary configuration with n _ D vertices and show 
that either it is not maximal (k-sets can be added) or it is reducible, that is, it is possible 
to modify the point set and arrangement locally, so that p '  vertices are removed, and the 
number of  k-sets is reduced by at most q '  (some k-sets disappear, some new ones are 
introduced) with p '  and q'  satisfying q ' /p '  < q/p .  This is called a (p' ,  q') reduction. 
Thus, we have 

gk(n) <_ gk(n -- p') + q' < q(n -- p ' ) /p  + C + q' 

= q n / p -  qp ' /p  + q ~ +  C < qn /p  + C, 

where we have used the inductive hypothesis for the second inequality, and q' /p '  <_ q /p  
for the last one. 

For convenience of exposition, the inductive step (the fact that a maximal configuration 
with n _> D can be reduced) is presented as a sequence of properties that a maximal 
irreducible configuration must satisfy. The conclusion that no maximal configuration 
with n _> D is irreducible proves the inductive step (D is the smallest n for which the 
reductions apply). The proofs of  these properties consider a window of the configuration 
consisting of some constant number of  consecutive vertices in each of the layers, and 
assumes that the pseudolines that determine k-sets on the vertices in the window do not 
wrap around. See Fig. 1. This is easily justified for k = 2 but more care is needed for 
k = 3. Within a window, we can regard the vertices in the j - layer  as linearly ordered 
from left to right. Two possible k-sets (sets of  points of  cardinality k) are said to conflict 
if  there are no curves that determine them and satisfy conditions (i)-(iii) above. 
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Fig. 1. Pseudoline wrapping around. 

Upper Bound for g2(n). Only two types of  extreme pairs are possible: An H-pair  is 
of  the form (UoVo), and a V-pair is of  the form (uoul). The initials H and V stand for 
horizontal and vertical. See Fig. 2. Within a window, two V-pairs (aoOq) and (/3o/51) are 
in conflict if  either 

(i) oq = fll and Uo and flo are not adjacent, or 
(ii) or0 is to the left of  fl0 and O/1 is to the right of ]~1, o r  vice versa (this assumes no 

wrapping around). 

The goal is to prove that the number of  pairs is at most 3n/2 + C, so (1, 1) and (2, 3) 
reductions are acceptable. We have the following sequence of observations about an 
irreducible configuration assuming that there is no wrapping around: 

(1) If  (u0, oq) and (v0,/~1) are V-pairs, then ul is not to the right of  ill: otherwise 
there is a conflict of  type (ii). 

(2) A 1-vertex belongs to at most two V-pairs (except if n = 4): otherwise there is a 
conflict of  type (i). 

(3) A 1-vertex belongs to at least two V-pairs: otherwise it can be removed, a (1, I) 
reduction. 

(4) A 0-vertex belongs to at least one V-pair: otherwise it can be removed, a (1, 1) 
reduction. 

(5) Two adjacent 0-vertices belong to V-pairs with a common 1-vertex: otherwise the 
0-edge can be "contracted", a (1, 1) reduction. 

;'uo 
H-pair 

Cz ~ ' ,  130 
V-pair type (i) conflict type (ii) conflict 

Fig. 2. Pairs and conflicts. 
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Fig. 3. Optimal configuration for k = 2. 

(6) A 0-edge corresponds to an H-pair: otherwise it can be added without introducing 
any conflict. 

Finally, the only configuration possible where neither of these reductions apply is one 
in which each 0-edge forms an H-pair and a corresponding 1-vertex forms V-pairs with 
each of the two 0-vertices of the 0-edge. See Fig. 3. In this configuration, a 0-edge can 
be "contracted" and its corresponding 1-vertex removed, resulting in a (2, 3) reduction. 
Finally, the possibility of a pseudoline wrapping around only affects a reduction when as 
a result two pseudolines would intersect twice. By considering the small configurations 
for which this happens, it is found that [3n/2J is a tight upper bound. 

3. Upper Bound for g3(n) 

3.1. Types of  Triples 

Four types of triples are possible: An H-triple is of the form (UoVoWo), a V-triple is of 
the form (uoulu2), a D-triple is of the form (uovoUl), and an N-triple is of the form 
(UOUlVl). The initials H, V, D, and N stand for horizontal, vertical, delta, and nabla, 
respectively. See Fig. 4. 

Assuming no wrapping around, the triples of types D and N conflict in cases similar 
to those of the pairs, as illustrated in Fig. 5. 

v o w o 

Fig. 4. Triples H, V, D, and N. 
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Some conflicts between triples. 

3.2. Lower-Bound Construction 

The construction in [6] and [2] played an important role in devising the upper-bound 
argument; in fact, the proof  aims to show that the construction is optimal. The ba- 
sic configuration is a sequence of six points. Figure 6 shows eleven straight lines that 
determine eleven extreme triples on the six points of  a basic configuration. Note that 
these eleven triples use the first two points of  the next basic configuration. Figure 7 
shows the eleven triples of  the basic configuration using our framework. For n = 6m, 
m > 2, the construction consists in repeating m times the basic configuration wrap- 
ping around (wrapping around one basic configuration results in conflicting triples). 
This can be extended to n not a multiple of  six by removing 2-veltices (note that for 
n mod 6 = 1, 2, 3, 4, 5, /1 l (n mod 6)/6J = 1, 3, 5, 7, 9, respectively). For n > 7, this 
fails forn = 7, 8, 9, 13, 14, 19. Forn  = 7, 13, 19,in the constructions for n = 5, 11, 17, 
insert two extra vertices as shown in Fig. 8(a) which introduce three additional triples. 
For n = 8, 9, 14, in the construction for n = 5, 6, 11, insert three extra points as shown 
in Fig. 8(b) which introduce five additional triples. This shows that g3(n) > [ l l n / 6 J  
for n > 7. 

The basic construction in Fig. 6 can be modified by an affine transformation so that 
it can be repeated around a circle m times for m > 3, wrapping around. By removing 
2-vertices this shows the second part of  the following theorem. 

Fig. 6. Lower-bound construction. 
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Fig. 7. Lower-bound construction in our framework. 

Theorem 3.1. 

(i) g3(n) _> [l ln/6Jforn > 7. 
(ii) e3(n) > [lln/61forn > 15, n ~ 19. 

3.3. Proof of the Upper Bound 

Reductions. In general, a reduction consists in removing some vertices which results 
in some triples lost, possibly adding other vertices (with a net decrement in the num- 
ber), and then introducing some new triples that become possible (this requires some 
local modification of the arrangement). We mention some examples of reductions. In a 
contraction of an edge ct~, vertices a and/~ and all triples containing either of them are 
removed, a new vertex y is introduced together with as many as possible of the triples 
that contained either u or/~ but not both, now substituted with ),. See Fig. 12 for an ex- 
ample. We also contract two or three consecutive edges into one, this requires removing 
all but the extreme vertices in those edges. See Fig. 22 for an example (where vertex u 1 
has also been removed). A collapse is performed when the same configuration appears 
repeated consecutively, one of the copies is removed. See Fig. 14 for an example. In some 
reductions, as in Fig. 17, after removing some vertices (the black ones), four vertices 
(the white ones in layers 0 and 1) become adjacent and new triples can be introduced. 

Cutting Open the Arrangement. For k --- 3, it becomes more difficult to consider small 
configurations for which the observations do not apply, because of pseudolines wrapping 
around. We get around by "cutting" the cylindrical surface and the arrangement so that 
the layers Lj become horizontal lines in the plane (but now they are not assumed to 
wrap around and close), the pseudolines begin and end below the lowest layer line, and 
the half-spaces determining k-sets are those below the pseudolines. We define g~ (n) in 
this setting analogously to gk (n). The connection between gk (n) and g~ (n) depends on 

~ o 

(a) 

Fig. 8. 

(b) 

Extending the lower bound to nonmultiples of six. 
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v, (, 
Configurations (2, 2), (1, 2), and (2, 1). 
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U2 

Ul 

the procedure for cutting open the arrangement; this is dealt with in the final argument. 
All the observations below are for this setting in which there is no wrapping around. 
Unfortunately, in this way we do not obtain a tight bound (assuming that the additive 
constant is actually zero). 

Observations. The proof follows the outline described in the previous section. We have 
a sequence of observations that apply, given the assumption of no wrapping around, 
to an irreducible maximal configuration (this is just an alternative way of present- 
ing the inductive step of the proof). It is shown that a configuration which does not 
have the claimed property can be locally modified resulting in a (p', q') reduction 
for p', q' with q' /p '  < 11/6. In particular, any (p', q') reduction with p' < 6 and 
q' < 2p' is acceptable. In the proofs, previous observations are often used without 
mention. 

Observation 3.2. A 2-vertex u 2 belongs to exactly two V-triples and this can happen 
in only three possible confgurations (see Fig. 9): 

(i) A (2, 2)-configuration [uovo, Ull)l, U2] which consists of triples (U0UlU2) and 
(1)0/)1U2)- 

(ii) A (1, 2)-configuration [Uo, UlVl, u2] which consists of triples (uoulu2) and 
(U0/)lU2)- 

(iii) A (2, 1)-configuration [uovo, Ul, u2] which consists of triples (uoulu2) and 
(l)oUlU2). 

Proof Consider the V-triples that contain the 2-vertex//2. If/12 is in a V-triple with 
oh and in a V-triple with fll then oq and/~1 must be adjacent. Similarly for 0-vertices 
in V-triples with u2. So let Uo, Vo, Ul, vl be the vertices that may belong to a V-triple 
together with u2. This limits the number of V-triples of u2 to four. However, two of them 
conflict: (UoVlU2) and (VoUlU2); see Fig. 10(i). Thus, u2 can belong to at most three 
V-triples: (UoUlU2), (VOVlU2), and rl = (VoUlU2) (or the symmetric one); see Fig. 10(ii) 
(we call this a (2, 2)'-configuration). However, rl can be substituted with r2 = (uovovl) 
without changing the number of triples. The reason is that rl and r2 conflict (so r2 could 
not have been in the original configuration) and, as inspection shows, any triple that 
conflicts with r2 (other than rl) also conflicts with rl or with one of the V-triples. See 
Fig. 10(ii). Thus we can assume that u2 belongs to at most two V-triples. On the other 
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hand if u2 is only in one triple, then it can be removed with a loss of only one triple. 
Therefore the only possible cases are those listed in the statement of the observation. [] 

Observat ion 3.3. 

(i) A O-edge belongs to at most one (2, 2)- or (2, 1)-configuration. 
(ii) a 1-edge belongs to at most one (2, 2)- or (1, 2)-configuration. 

(iii) A 1-vertex belongs to at most one (2, 1)-configuration. 

Proof. (i) A 2-vertex cannot be in two (2, 2)- or (2, 1)-configurations, so if (u0v0) is in 
two of these configurations, then there is a pair of  triples (U0a1132) and (13ofll u2) which 
are in conflict. (ii) Similarly, if (u1131) is in two configurations, then there is a pair of  
triples (Otoui v2) and (~01)1U2) which are in conflict. (iii) Similar to (i) and (ii). [] 

Observa t ion  3.4. There is no pair of  triples (uoul v~ ) and (vo WOUl), nor the symmetric 
configuration. 

Proof. Suppose rl = (UOUlVl) and r2 = (130W0Ul) are in the original configuration. 
Then substitute r2 with r3 = (uovoVl). r3 was not there because it conflicts with r2, and 
inspection shows that r3 introduces no conflicts. See Fig. 1 l(i). Note also that r3 does 
not introduce a configuration of the type that is being avoided: this could only occur 
if either (woulvl)  or (toVl Wl) (dotted in Fig. 11 (ii)) is present, but they cannot as they 
conflict with r 1 . [] 

Observat ion 3.5. There are no (2, 1)-configurations. 

I ~ / / - - -  "~i 

(i) 

/ . . . . . . . . . . . . . . .  ?: , -- : : : : : : : :7 . . . . . . . . . . . . . . . . . . . .  ,, '"... 
.... ....+ 

. . .  .... 

:' t o Ili Uo I Vo:] Wo ) 

(ii) 

Fig. 11. 
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Fig. 12. 

Proof. Suppose the (2, 1)-configuration [UoVo, ul, u2] occurs. Then contracting UoVo 

and removing u2 results in a (2, 3) reduction. (uovoul) is the third triple that may be 
lost, and no other triples may be lost. Figure 12 shows the contraction. In particular, no 
H-triple may contain UoVo, no other D-triple may contain uovo, and it is not possible to 
have two N-triples containing the same 1-edge and each of u0 and v0. No conflicts are 
introduced by the contraction. [] 

Observation 3.6. There are no (1, 2)-configurations, and there are at most  two N- 
triples containing the same O-vertex. 

Proof. First, we rule out some configurations to simplify further analysis: 

(a) There are no two (1, 2)-configurations with the same 0-vertex u0, adjacent as 
[uo, UlVl, u2] and [u0, VlWl, v2], or with N-triples in between. 

(b) There are no two adjacent (1, 2)-configurations [uo, u j or, u2] and [o0, vl Wl, v2]. 
(c) There is no (1, 2)-configuration [u0, u 1 vl,  u2] adjacent to a (2, 2)-configuration 

[vowG, v t w b  v2], or the symmetric configuration. 

See Fig. 13. The first case is taken care with a collapse, shown in Fig. 14, and the others 
by contracting uovo. 

The case left is that of a (1, 2)-configuration [uo, UlVl, u2] which is not adjacent 
to any other (1, 2)-configuration, and not adjacent to a (2, 2)-configuration in the form 
ruled out above (but an adjacent (2, 2)-configuration [uov0, 01Wl, v2] is possible, and 
similarly on the left). Removing u2 and contracting UlVl results in a (2, 3) reduction, 
except if there are two triples separated in the 0-layer by a vertex and containing u 1 and 

Fig. 13. 
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vl, respectively (because they would conflict after the contraction). On the left side, this 
can be the result of either the N-triple (toh u a), or the D-triple (sotou l), or both of them (it 
cannot be a V-triple because of the cases already ruled out). Similarly on the right side. 
If both of them are present (on the same side, say on the left) then substitute (Sotoul) 
with (toUoq), which is shown dashed in Fig. 15. 

Case (ii) only (on one side, say on the left) is taken care of by contracting touo, 
removing u2, and contracting UlVl. See Fig. 16. This is a (3, 5) reduction, since the 
H-triple (SotoUo) may be present (it is not possible to have the N-triple (U0tl u 1) because 
together with (sotoul) it forms the configuration forbidden by Observation 3.4). 

Finally, case (i) only (on both sides) is taken care of by removing u0, ul, Vl, u2 (and t2 
and/or v2 if they are in (2, 2)-configurations [t0u0, tlU 1, t2] and [u0v0, vl Wl, v2]) resulting 
in a (4, 7) reduction (or (5, 9) or (6, 11), respectively). See Fig. 17. The figure on the 
left shows with continuous lines the seven triples that can be lost: (uoul u2), (U0VlU2), 
(UoUlV~), (tououl), (uovoVl), (toqul), (VoVlwl). The figure on the right shows the four 
triples that can be introduced after removing the vertices; they replace the triples (U0tl u 1), 
(U0Vl Wl), (touotl), (uovowl) whenever they were present (if an N-triple is not possible 
after the reduction, then the corresponding triple was not present before the reduc- 
tion). [] 

O b s e r v a t i o n  3 .7 .  

(i) If  the N-triples (uoulvl) and (voul vl) occur, then the D-triples (uovoul) and 
(uovoVl) also occur. 

(ii) If  the (2, 2}-configuration [UoVo, ulvl, U2] occurs, then the D-triples (uovoul) 
and (UoVoVl) also occur. 

., ........... ) 

)ll-! lil Vo Wo 

Fig. 15. 
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Proof. If  the D-triples are not present, then they can be added because anything in 
conflict with them was already in conflict with the N-triples or the V-triples, respectively. 
See Fig. 18. [] 

Observat ion 3.8. A O-edge belongs to at least one D-triple. 

Proof. If UoVo is not in a D-triple, then contracting uovo results in a (1, 1) reduction 
(one of two H-triples containing UoVo may be lost, no N-triples may be lost because of 
Observation 3.7(i)). [] 

Observat ion 3.9. A 1-vertex belongs to at least one D-triple. 

Proof. Suppose u 1 is not in any D-triple. We can assume that u 1 is not in any V-triple, 
for in that case, according to Observation 3.7(ii), a D-triple containing u 1 could be added. 
Likewise, u 1 cannot be in the N-triples (uou I Vl ) and (Oou 1 vl) (or (tot1 u 1) and (uotl u 1 )), 
for Observation 3.7(i) implies that ul is in a D-triple. Thus, Ul is in only two triples, the 
N-triples (U0tl U 1) and (uou 1 vl). Then tlU 101 can be contracted into an edge resulting in 
a (1, 1) reduction. See Fig. 19. [] 

Observat ion 3.10. A O-edge belongs to at most three D-triples. 

Proof Let UoVo belong to D-triples with tl, ul ,  Vl, Wl. Then neither of  the 1-edges 
t lul ,  UlVl, VlWl belong to a (2, 2)-configuration, and the edge UlVl is not in any 
N-triple. See Fig. 20. Thus, the edge ulvl  can be contracted resulting in a (1, 1) 
reduction. [] 

Observat ion 3.11. A 1-vertex belongs to at most two D-triples. 

Proof Vertex ul can belong to at most three D-triples because triples (SotoUl) and 
(VoWoul) would conflict. Suppose ul belongs to the three D-triples (tououl), (uovoul), 
and (VoWoul). We consider three cases: 

(i) No H-triple contains uovo. Then one of  the triples can be eliminated by con- 
tracting UoVo into a vertex with a loss of one triple, a (1, 1) reduction. This may 
fail only if because of the contraction other triples are lost; but this can only 
happen for N-triples using u0 or v0 and 1-edges tl u l or u 1 Vl. However, because 
of Observation 3.4 the only possible N-triples are (uotlUl) and (V0UlVl), and 
they remain different after contracting uooo. See Fig. 2 l(i). 

(ii) One H-triple contains UoVo, say (touoVo). Note that Ul is in at most one N-triple, 
(v0ul v 1). Then remove U l and contract t0u0 v0 w0 into an edge resulting in a (3, 5) 
reduction (or (4, 7) reduction if there is u2 in a configuration [v0w0, U lVl, u2]). 
See Fig. 21 (ii) and the reduction in Fig. 22. 

(iii) Two H-triples contain uovo, (touovo) and (uovowo). Note that Ul is not in any 
V- or N-triple. Then remove Ul and contract touovoWo to an edge resulting in a 
(3, 5) reduction. See Fig. 21 (iii). [] 



The Number  of Extreme Triples of a Planar Point Set 13 

! e ~ 
[ IS 0 ; l 0 ~ [ l l l U o [ i l l l  1) 0 

contract 

Fig. 16. 

! , , 'e  e /  

i ,'0 [] �9 
, s o ~.~ ~i V o 

/[ to /ll[~ollll/ Vo 

? 
, _ . . ~ , : : - - 2 2 2 2 2 . 2 " _ 2 - _ ' _ - - - - 2 2 2 - _ - _ 2 - - - - 2 2 " _ 2 2 - - 2 2 , ~ , ,  

', ~ i (o t  . . . . . . . . . . . . . . . . . . . . . . . .  w o )'," 
', . . .  1 . . . . . . . . . . . . . . .  1 . ' . ' , ,  

.... / 

,, i~~ o ', / v0O ,~/ 

Fig. 17. 

: ' i i " - . ,  ; ,-%',, 

 o,i I 
Fig. 18. 

(11 tD "', 
i'u o I I "~o ~ 

-- contract 

v o 

r 

to 
9 
Uo v o 

Fig. 19. 
_ . . . . . . . . . . . . .  . , 

/" ~, i 

v o 

Fig. 20. 



14 E .A.  Ramos 

(i) (ii) (iii) 

Fig. 2L 

Observation 3.12. Two adjacent O-edges form D-triples with a common 1-vertex. 

Proof. Suppose the statement is not true for u0 vo and v0 w0, and consider the rightmost 
D-triple of  uo1)o and the leftmost D-triple of 1)owo. Because of  Observation 3.9, the 
corresponding 1-vertices are consecutive, so let the triples be (uovoUl) and (VoWoVl). If 
(UoVoVl) cannot be a triple, then either (VoOtul) or (xova~) is present where u = tl or u2 
and/~ = Yo, wl, or v2. See Fig. 23. However,/~ # y0 or 1)2 because then 1)1 is in three 
D-triples. Similarly if (VoWoUl) cannot be a triple. 

Thus, if neither (uo1)ovl) nor (VoWoUl) can be a D-triple, then either of  the following 
two cases must hold: 

(i) The triples (t0tlU 1 ) and (x01)111)1) are present. 
(ii) The triples (VoOtUl) and (Vo1)1fl) are present, where ot ----- tl or//2 and/~ = w 1 

o r  1) 2. 

See Fig. 24. In case (i), contracting UoVoWo into an edge results in a (1, 1) reduction (the 
triple that may be lost is the H-triple (UoVoWo)). 

In case (ii), note that ul vl is not in a (2, 2)-configuration, and that the triples (tououl) 
and (woxovl) are not present because of Observation 3.4. Thus, removing v0, u 1, Vl (and 
112 and/or 1) 2 if they form (2, 2)-configurations [UoV0, qul,  u2] and [v0w0, U l W l ,  1)2], re- 
spectively) results in a (3, 5) reduction ((4, 7) or (5, 9), respectively). The five triples that 
may be lost are (uo1)oul), (Vowovl), (you11)1), (UoqUl), (WoVlWl). Note that four new 
triples may be introduced after removing the vertices; they replace the triples (voq u,) ,  
(roy1 wl), (uovotl), (vowowl). This is similar to the last case in the proof of  Observa- 
tion 3.6. [] 

! ~ } ~ ~ ~ I / : "  tl fll ,. 

Fig. 22. 

f 

. , '  ' - ' - . .  . . .  . . . . . . . .  , 

; s : , , "  "- , .  ", 
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// t o Wo~ ~ 
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Fig. 23. 

Observat ion 3.13. 

(i) A O-edge belongs to either two or three D-triples. A O-edge that belongs to exactly 
three D-triples does not belong to a (2, 2)-configuration. 

(ii) I f  (uoul Vl) is an N-triple, then (a0uoul) and (a0U0Vl) are D-triples where ao = to 
or ot 0 ~ 1) O. 

Proof  The first part of (i) follows from Observations 3.10, 3.11, and 3.12 (the number 
of  D-triples must be at least two). The second part of (i) is easily verified. (ii) is implied 
by several already existing constraints. [] 

Observat ion 3.14. There are no H-triples. 

Proof. First consider two H-triples sharing a 0-edge, say (uovoWo) and (VoWoXo). Then 
by Observations 3.11, 3.12, and 3.13(i), there are vertices ul, vl such that the follow- 
ing D-triples are present: (Uovoul), (VoWoul), (vowovl), (woxovl). In particular, VoWo 
belongs to exactly two D-triples, for the 1-vertex in a third one could be removed with 
a (1, 1) reduction or would contradict Observation 3.4. Also, neither Ul nor Vl are in a 
(2, 2)-configuration because of Observations 3.7(ii) and 3.11. Edges uovo and woxo may 
be in three D-triples; let al  and/31 be the vertices forming the middle D-triple containing 
UoVo and WoXo, respectively, if they exist. See Fig. 25 (in that example there is no Otl, 
and 131 ----- wl). Then oq, Ul, Vl,/31 can be substituted by a single 1-vertex, and v0, w0 
removed, resulting in (5, 7), (4, 6) (the case shown in the figure), or (3, 5) reduction 
depending on whether two, one, or none of al  and fll exist. 

Now, let rl = (UoVoWo) be an H-triple not sharing more than one vertex with another 
H-triple. By Observation 3.13, each of uovo and VoWo is in two or three D-triples, and 
there is a vertex ul such that the triples (uovoul) and (VoWoul) are present. Neither of 
UoVo and VoWo is in a (2, 2)-configuration. Let a l  and/31 be as before. See Fig. 26 (in 

;* �9 o',, 
to / / il Xo' 

( i) (ii) 

Fig. 24. 
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that example there is no oq and fll = Vl).  Then Otl, u 1 , f l l  Can be substituted by a single 
1-vertex, and v0 removed, resulting in a (3, 4), (2, 3) (the case shown in the figure), or 
(1, 1) reduction depending on whether two, one, or none of oq and fl~ exist. 

Note that we used Observation 3.13(ii) implicitly to restrict the possible N-triples. [] 

Observation 3.15. No two adjacent O-edges can belong each to exactly two D-triples, 
or to exactly three D-triples. 

Proof  Let Uo Vo have exactly three D-triples, say with u 1, va, w~. Then there is no (2, 2)- 
configuration containing uovo, and the only N-triples containing Ul, vl, Wl are (UoUl vl) 
and (V0Vl Wl). Thus, a 0-edge with three D-triples contributes a total of five triples. On 
the other hand, a 0-edge with two D-triples contributes at least two triples; four triples 
if in a (2, 2)-configuration, and at most six triples depending on the neighbor 0-edges 
(an N-triple may conflict with the N-triples of neighbor 0-edges). See Fig. 27. If two 
adjacent 0-edges each belongs to exactly two D-triples, then they can be collapsed into 
one by removing two or three vertices (two iftbe 0-edges are not in (2, 2)-configurations), 
resulting in a (2, 3) or (3, 5) reduction. See Fig. 28. If two adjacent 0-edges each belongs 
to exactly three D-triples, then they can be collapsed into one by removing three vertices, 
resulting in a (3, 5)-reduction. See Fig. 29. [] 

This leaves as the only possibility a configuration in which 0-edges alternate between 
having exactly two D-triples (and possibly a (2, 2)-configuration) and having exactly 
three D-triples. Then two adjacent 0-edges (and their corresponding 1- and 2-vertices) 
can be removed, resulting in a (5, 9) reduction, or a (6, 11) reduction if there is a (2, 2)- 
configuration. This last configuration is precisely the one shown in Fig. 7. This implies 
an upper bound 1 l n / 6  + C for g'3(n) where C is a constant. 

Lemma 3.16. 

(i) g~(n) < 1 1 ( n - 2 ) / 6 +  �89  > 3. 

(ii) g'3 (n ) < 9(n - 2)/5 + 2 for  n > 3 if  there is no (2, 2)-configuration. 

Proof. The proof is by induction using the previous observations. A better multiplica- 
tive constant is obtained in case (ii) because (6, 11) reductions occur only if there are 

1 and 2 appear to take care of some particular con- (2, 2)-configurations. The constants 5 
figurations in the basis: in case (i), five vertices in a (2, 2)-configuration with a total of 
six triples; in case (ii), four vertices (two in the 0-layer and two in the l-layer) with four 
triples. [] 

The proof of the upper bound in the following lemma is similar to that for g2 (n). The 
optimal confguration is obtained by repeating the following basic configuration with an 
overlapping 0-edge: a 1-vertex forming D-triples with three consecutive 0-edges, and 
each two consecutive 0-edges form an H-triple. 

Lemma 3.17. g3 (n) < L5n/3J for  n > 10 if  only D- and H-triples are allowed. 
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Cu t t i ng  o p e n  the  a r r a n g e m e n t .  

T h e o r e m  3.18. e3(n) < g3(n) < [ l l n / 6 J  + l f o r n  > 10. 

Proof. Recall the constraint n > 3.3 + 1 = 10 to obtain the layers with the point inside. 
A 2-vertex is in four V-triples only if n = 5, so this case is disregarded; it is in three V- 
triples in a (2, 2)'-configuration (see proof  of  Observation 3.2, and it is in two V-triples in 
configurations (2, 2), (1, 2), or (2, 1) (without the no wrapping around condition, it may 
not be possible to reduce a (2, 2)'-configuration to a (2, 2)-configuration). We consider 
the following cases: 

(i) there is a 2-vertex u2 in a (2, 2) '- or (2, 2)-configuration [u0v0, UlV], u2]; else 
(ii) there is a 2-vertex u2 in a (1, 2)-configuration [u0, UlVl, u2]; else 

(iii) there is a 2-vertex u2 in a (2, 1)-configuration; else 
(iv) there is an N-triple (UoUlVl); else 
(v) there is a D-triple (UovoUl); else 

(vi) there are only H-triples. 

In case (i) the number of  triples using only vertices U2, Ul, Vl, U0, tP 0 is at most  six. 
As illustrated in Fig. 30 the arrangement can be cut open: the six pseudolines are re- 
moved and the remaining arrangement is modified so that no pseudoline intersects a half- 
line from p (shown dashed in the fgure).  Then Lemma 3.160) leads to the bound 
(11 ((n - 1 ) - 2) /6  + 1) + 6 = 11 n /6  + 1 (the open configuration has n - 1 vertices and 
six triples were removed). We proceed similarly in the other cases: the arrangement can be 
cut open and using Lemmas  3.16 and 3.17 we obtain the bounds (9 (n - 2) /5  + 2) + 3 = 

1 2 for case (iv) 9n/5 - -5 for cases (ii) and (iii), (9((n + 2) - 2) /5  + 52-) + 0 = 9n/5 + "5 
(in this case no triples are lost as a result of  cutting open the arrangement), 5n/3 for 
case (v), and n for case (vi) (no need to cut open the arrangement in the last two cases). 
Overall, we obtain the bound 1 ln /6  + 1. [] 
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