Skip to main content
Log in

Biocidal nanosol coatings

  • Communications
  • Published:
Surface Coatings International Part B: Coatings Transactions

Summary

The inclusion of biocidal compounds into modified silica matrices using the sol-gel technique offers new interesting prospects for antimicrobial coatings with controlled release effects. The coatings are well suited for the functionalisation of flexible supports such as paper, textiles and polymer foils as they exhibit good adhesion and improved mechanical properties. It is possible to combine and coimmobilise different biocidal components to expand the antimicrobial efficiency. In the simplest case, modified silica coatings with immobilised boric acid can be used for the protection of wood against biological degradation. Moreover, silica coatings with embedded nanoparticular silver combined with organic biocidal compounds efficiently decrease the survival rate of different bacteria on textiles and medical catheters. Finally, novel types of antimicrobial nanosol coatings with volatile biocidal compounds (VBCs) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brinker C J and G W Scherer,Sol-Gel Sciences: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston, 2–10, ISBN: 0121349705, 1990

    Google Scholar 

  2. Böttcher H, ‘Bioactive sol-gel coatings’,J Prakt Chem,342, (5), 427–36, March 2000

    Article  Google Scholar 

  3. Watanabe T,Photocatalytic Purification and Treatment of Water and Air, (ed) D F Ollis, Elsevier, New York, ISBN: 0444898557, 1993

    Google Scholar 

  4. Isquith A J, E A Abbott and P A Walters, ‘Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride’,Appl Microbiol,24, 859, 1972

    CAS  Google Scholar 

  5. Böttcher H, K-H Kallies and C Roth, ‘Antimikrobielles Material’, German Patent DE4329279, 1993

  6. Trapalis C C, M Kokkoris, G Perdikakis and G Kordas, ‘Study of antibacterial composite Cu/SiO2 thin coatings’,J Sol-Gel Sci Technol,26, 1213–8, 2003

    Article  CAS  Google Scholar 

  7. Kawashita M, S Tsuneyama, F Miyaji, T Kokubo, H Kozuka and K Yamamoto, ‘Antibacterial silver-containing silica glass prepared by sol-gel method’,Biomaterials,21, 393–8, 2000

    Article  CAS  Google Scholar 

  8. Böttcher H, C Jagota, J Trepte, K-H Kallies and H Haufe, ‘Sol-gel composite films with controlled release of biocides’,Journal of Controlled Release,60, 57–65, 1999

    Article  Google Scholar 

  9. Böttcher H, ‘Funktionelle Beschichtungen auf Basis anorganischer Nanosole’,Mat-Wiss Werkstofftechn,32, 759, 2001

    Article  Google Scholar 

  10. Böttcher H, K-H Kallies and H Haufe, ‘Model investigations of controlled release of bioactive compounds from thin metal oxide layers’,J Sol-Gel Sci Technol,8, 651–4, 1997

    Google Scholar 

  11. Böttcher H, J Trepte, M Scheithauer and C Swoboda, ‘Möglichkeiten des Einsatzes von sol-gel-Beschichtungen im Holzschutz’, GDCH-Monographie Bd 15,Bauchemie von der Forschung bis zur Praxis, (ed) GDCh-Fachgruppe Bauchemie and F Winnefeld, GDCh, Frankfurt/M, 246–9, ISBN: 392476378X, 1999

  12. Mucha H, D Höfer, S Aßfalg and M Swerev, ‘Antimikrobielle Ausrüstungen und Modifikationen’,Melliand Textilberichte,82, 238–43, 2002

    Google Scholar 

  13. Mahltig B, D Fiedler and H Böttcher, ‘Antimicrobial sol-gel coatings on textiles’,J Sol-Gel Sci Technol, (in press)

  14. Ikeda T, ‘Antibacterial activity of polycationic biocides’,High Performance Biomaterials: A Comprehensive Guide to Medical & Pharmaceutical Applications, (ed) M Szycher, 42, Technomic Publishing Co, Lancaster, ISBN: 0877627754, 1991

    Google Scholar 

  15. Begin A and M-R Van Calsteren, ‘Antimicrobial films produced from chitosan’,Internat J Biolog Macromolecules,26, 63–7, 1999

    Article  CAS  Google Scholar 

  16. Lim S-H and S M Hudson, ‘Review of Chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals’,J Macromol Sci,C 43, 223–69, 2003

    Google Scholar 

  17. Sauvet G, S Dupont, K Kazmierski and J Chojnowski, ‘Biocidal polymers active by contact: V. Synthesis of polysiloxanes with biocidal activity’,J Appl Polymer Sci,75, 1005–12, 2000

    Article  CAS  Google Scholar 

  18. Seifert H, B Jansen and B M Farr,Catheter-Related Infections, Marcel Dekker, New York, ISBN: 0824798481, 1997

    Google Scholar 

  19. Vermeiren L, F Devlieghere, M van Beest, N de Kruijf and J Debevere, ‘Developments in the active packaging of foods’,Trends in Food Science & Technology,10, 77–86, 1999

    Article  CAS  Google Scholar 

  20. Vermeiren L, F Devlieghere and J Debevere, ‘Effectiveness of some recent antimicrobial packaging concepts’,Food Additives and Contaminants,19, 163–71, 2002

    CAS  Google Scholar 

  21. Suprakul P, J Militz, K Sonneveld and S W Bigger, ‘Active packaging technologies with an emphasis on antimicrobial packaging and its applications’,J Food Science,68, (1003), 408–20

  22. Böttcher H, K-H Kallies, G Reinhard and G Hahn, ‘Korrosionsinhibierendes Kompositmaterial’, German Patent DE 19708285, 1997

  23. Haufe H, H Böttcher and D Fiedler, ‘Kompositmaterial mit antimikrobieller Wirkung in der umgebenden Gasphase’, German Patent DE 10234916, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Haufe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haufe, H., Thron, A., Fiedler, D. et al. Biocidal nanosol coatings. Surface Coatings International Part B: Coatings Transactions 88, 55–60 (2005). https://doi.org/10.1007/BF02699708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699708

Key words

Navigation