Skip to main content
Log in

A review of significant directions in fluorosiloxane coatings

Examen d’importants développements dans le domaine des revêtements de fluorosiloxane

Eine Übersicht der wichtigen Entwicklungen bei Fluorosiloxanlacken

  • Reviews
  • Published:
Surface Coatings International Part B: Coatings Transactions

Summaries

An outstanding characteristic of fluorocarbon substitution in polymers is the potential for obtaining coatings of very low surface energy. The low degree of fluorination in the most familiar fluorosiloxane, polymethyltrifluoropropylsiloxane (PMTFPS) is insufficient to attain this end. PMTFPS is of comparable surface energy to polydimethylsiloxane (PDMS), with similar uses that particularly exploit its solvent resistance characteristics. An exciting trend in fluorosiloxanes is the increasing interest in materials with a higher degree of fluorination than PMTFPS. These polymers have lower surface energies than PDMS with potential for a variety of PDMS surface modification and novel coating applications.

Résumé

Une remarquable caractéristique de la substitution fluorocarbone dans les polymères est le potentiel offert dans le domaine de la production des revêtements qui ont une très basse énergie de surface. Le bas degré de fluorisation dans le fluorosiloxane le plus familier, polyméthyltrifluoropropylsiloxane (PMTFPS) n’est pas assez élevé pour atteindre ce but. Le PMTFPS a une énergie de surface qui est comparable à celle du polydiméthylsiloxane (PDMS) et offre des utilisations similaires, utilisations qui exploitent surtout ses caractéristiques dans le cadre de la résistance aux solvants. Un développement très prometteur en ce qui concerne les fluorosiloxanes est représenté par l’intérêt qui est manifesté pour les matériaux qui ont un degré de fluorisation plus élevé que celui du PMTFPS. Ces polymères ont une énergie de surface qui est plus basse que celle du PDMS et montrent la possibilité de modifier la surface du PDMS d’une variété de manières, tout en offrant de nouvelles applications pour les revêtements.

Zusammenfassung

Eine herausstechende Eigenschaft der Fluorocarbon-Substitution in Polymeren ist die Möglichkeit, Lacke mit einer sehr niederen Oberflächenenergie herzustellen. Die gängisten Fluorosiloxane, Polymethyltrifluoropropylsiloxane (PMTFPS), sind für diesen Zweck wenig geeignet, da sie nur einen geringen Grad der Fluorination zulassen. PMTFPS haben eine ähnliche Oberflächenenergie wie Polydimethylsiloxane (PDMS) und haben vergleichbare Anwendungen, die vor allem ihre Lösungsmittelresistenz ausnutzen. Ein interessanter Trend bei Fluorsiloxanen ist das steigende Interesse in Materialien mit einer geringeren Oberflächenenergie als PMTFPS. Diese Polymere haven deutlich niedere Oberflächenenergien als PDMS mit dem Potential für mehrere PDMS Oberflächenveränderungen und neuen Anwendungen in Farben und Lacken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim Y K, ‘Fluorine compounds, organic — poly(fluorosilicones)’,Kirk-Othmer Encyclopedia of Chemical Technology, (3rd edition),11, 74–82, Wiley-Interscience, New York, 1980

    Google Scholar 

  2. Maxson M T, A W Norris and M J Owen, ‘Fluorosilicones’,Modern Fluoropolymers, (ed) J Scheirs, Chapter 20, 359–72, John Wiley and Sons Inc, New York, 1997

    Google Scholar 

  3. Jarvis N L and W A Zisman, ‘Fluorine compounds, organic: Surface chemistry of fluorochemicals’,Kirk-Othmer Encyclopedia of Chemical Technology, (2nd edition),9, 707–38, John Wiley and Sons Inc, New York, 1966

    Google Scholar 

  4. Owen M J, ‘Fluorosilicone surface activity’,Fluoropolymers, 2000; Current Frontiers and Future Trends, Chapter 2, 1–8, eMedix Inc, 2000

  5. Kobayashi H and M J Owen, ‘Surface properties of fluorosilicones’,Trends Polym Sci,3, 330–5, 1995

    CAS  Google Scholar 

  6. Hopken J and M Moller, ‘Low-surface-energy polystyrene’,Macromolecules,25, 1461–7, 1992

    Article  CAS  Google Scholar 

  7. Kobayashi H, ‘Surface tension of poly(fluoroalkylsilsesquioxanes)’,Makromol Chem,194, 2569–77, 1993

    Article  CAS  Google Scholar 

  8. Nishino T, M Meguro, K Nakamae, M Matsushita, and Y Ueda, ‘The lowest surface free energy based on −CF3 alignment’,Langmuir,15, 4321–3, 1999

    Article  CAS  Google Scholar 

  9. Thorpe A A, T G Nevell, S A Young and J Tsibouklis, ‘Surface energy characterization of poly(methylpropenoxyfluoroalkylsiloxane) film structures’,Appl Surf Sci,136, 99–104, 1998

    Article  CAS  Google Scholar 

  10. Kim D-K, S-B Lee and K-S Doh, ‘Surface properties of fluorosilicone copolymers and their surface modification effects on PVC film’,J Colloid Interface Sci,205, 417–22, 1998

    Article  CAS  Google Scholar 

  11. Beyou E, B Bennetau, J Dunogues, P Babin, D Teyssie, S Boileau and J-M Copart, ‘New fluorinated polysiloxanes containing an ester function in the spacer: II surface tension studies’,Polym Intl,38, 237–44, 1995

    Article  CAS  Google Scholar 

  12. Bernett M K and W A Zisman, ‘Wetting properties of acrylic and methacrylic polymers containing fluorinated side chains’,J Phys Chem,66, 1207–8, 1962

    Article  CAS  Google Scholar 

  13. Bernett M K and W A Zisman, ‘Wetting properties of poly(hexafluoropropylene)’,J Phys Chem,65, 2266–7, 1961

    Article  CAS  Google Scholar 

  14. Kobayashi H and M J Owen, ‘Surface tension of poly(3,3,4,4,5,5,6,6,6-nonafluorohexylmethylsiloxane)’,Macromolecules,23, 4929–33, 1990

    Article  CAS  Google Scholar 

  15. Ellison A H and W A Zisman, ‘Wettability of halogenated organic solid surfaces’,J Phys Chem,58, 260–5, 1954

    Article  CAS  Google Scholar 

  16. Owen M J, ‘Surface tension of poly(trifluoropropylmethylsiloxane)’,J Appl Polym Sci,35, 895–901, 1988

    Article  CAS  Google Scholar 

  17. She H, M K Chaudhury and M J Owen, ‘Surface properties of thin film poly(dimethylsiloxane)’,Silicones and Silicone-Modified Materials, (eds) S J Clarson, J J Fitzgerald, M J Owen and S D Smith, Chapter 21, 322–31, ACS, Washington DC, 2000

    Google Scholar 

  18. Brzoska J B, I Ben Azouz, and F Rodelez, ‘Silanization of solid substrates. A step towards reproducibility’,Langmuir,10, 4367–73, 1994

    Article  CAS  Google Scholar 

  19. Maoz R, L Netzer, J Gun, and J Sagiv, ‘Self-assembling monolayers in the construction of planned supramolecular structures and as modifiers of surface properties’,J Chim Phys Phys-Chim Biol,85, 1059–65, 1988

    CAS  Google Scholar 

  20. Thanawala S K and M K Chaudhury, ‘Surface modification of silicone elastomer using perfluorinated ether’,Langmuir,16, 1256–60, 2000

    Article  CAS  Google Scholar 

  21. Everaert E P G M, H C van der Mei and H J Busscher, ‘Adhesion of yeasts and bacteria to fluoro-alkylsiloxane layers chemisorbed on silicone rubber’,Colloid Surf B: Biointerfaces,10, 179–90, 1998

    Article  CAS  Google Scholar 

  22. Johnston E, S Bullock, J Ulik, P Gatenholm and P Wynne, ‘Networks from α-ω dihydroxy(dimethylsiloxane) and (tridecafluoro-1,1,2,2-tetrahy-drooctyl)triethoxysilane: surface microstructures and surface characterization’,Macromolecules,32, 8173–82, 1999

    Article  CAS  Google Scholar 

  23. Perutz S, J Wang, E J Kramer and C K Ober, ‘Synthesis and surface energy measurements of semi-fluorinated, low-energy surfaces’,Macromolecules,31, 4272–6, 1998

    Article  CAS  Google Scholar 

  24. Chaudhury M K and G M Whitesides, ‘Correlation between surface free energy and surface constitution’,Science,255, 1230–2, 1992

    Article  CAS  Google Scholar 

  25. Boileau S, B Boutevin and Y Pietrasanta, ‘New fluorinated polysiloxanes’,Poly Mater Sci Eng,56, 384–6, 1987

    CAS  Google Scholar 

  26. Kawase T, K-I Tanba, X Peng, T Fujii, H Sawada, Y Ikematsu, T Yoshimura, and K Wada, ‘Water repellent and antibacterial modification of cellulose using fluoroalkyl end-capped oligomers’,Sen’i Gakkaishi,56, (3), 155–62, 2000

    Article  CAS  Google Scholar 

  27. Patwardhan D V, H Zimmer and J E Mark, ‘Synthesis and surface properties of fluorosilicone end-capped polybutadiene diol’,Polym Preprints,36, (2), 350–1, 1995

    CAS  Google Scholar 

  28. Mason R, C A Jalbert, P A V O’Rourke Muisener, J T Koberstein, J F Elman, T E Long and B Z Gunesin, ‘Surface energy and surface composition of end-fluorinated polystyrene’,Adv Colloid Interface Sci,94, (1–3), 1–19, 2001

    Article  CAS  Google Scholar 

  29. Krska S W, D Y Son and D Seyferth, ‘Organosilicon dendrimers: Molecules with many possibilities’Silicon Containing Polymers (eds) R G Jones, W Ando and J Chojnowski, Chapter 23, 615–41, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000

    Google Scholar 

  30. Nakanishi M, C Yamada and K Nishimura, Japanese Patent 05146745, 15th June 1993, assigned to Toyota Motor Co Ltd

  31. Kanda Y and H Saeki, Japanese Patent 11229298, 24th August 1999, assigned to Nippon Synthetic Chemical Industry Co Ltd

  32. Monde T, H Fukube, F Nemoto, T Yoko and T Konakahara, ‘Preparation and surface properties of silica-gel coating films containing branched polyfluoroalkylsilane’,J Non-Crystalline Solids,246, 54–64, 1999

    Article  CAS  Google Scholar 

  33. Hirofumi K and Y Koichi, European Patent 1300433, 9th April 2003, assigned to ShinEtsu Chemical Co.

  34. Sawada H, T Matsumoto and N Nakayama, Japanese Patent 04296336, 20th October 1992, assigned to Nippon Oil and Fats Co Ltd

  35. Lee C L, O K Johannson, O L Flaningam and P Hahn, ‘Calorimetric studies of the phase transition of crystalline polysiloxanes. I: Polydimethylsiloxane’,Polym Preprints,10, (2), 1311–8, 1969

    CAS  Google Scholar 

  36. Stern S A, V M Shah and B J Hardy, ‘Structure-permeability relationships in silicone polymers’,J Polym Sci Part B,25, 1263–98, 1987

    Article  CAS  Google Scholar 

  37. Avakian P and H W Starkweather Jr, ‘Dielectric properties of fluoropolymers’,Modern Fluoropolymers, (ed) J Scheirs, Chapter 3, 91–101, John Wiley and Sons Inc, New York, 1997

    Google Scholar 

  38. Scheirs J, ‘Perfluoropolyethers (synthesis, characterization and applications)’,Modern Fluoropolymers, (ed) J Scheirs, Chapter 24, 435–85, John Wiley and Sons Inc, New York, 1997

    Google Scholar 

  39. Kerbow D L, ‘Polytetrafluoroethylene’,Polymer Data Handbook, (ed) J E Mark, 842–7, Oxford University Press, New York, 1999

    Google Scholar 

  40. McGill R A, M H Abraham and J W Grate, ‘Choosing polymer coatings for chemical sensors’,Chemtech,24, (9), 27–37, 1994

    CAS  Google Scholar 

  41. Boutevin B, G Caporiccio, F Guida-Pietrasanta and A Ratsimihety, ‘Hybrid fluorinated silicones. Part 2. Synthesis and thermal properties of homopolymers and copolymers’,Macromol Chem Phys,199, 61–70, 1998

    Article  CAS  Google Scholar 

  42. Ameduri B, B Boutevin, F Guida-Pietrasanta, A Manseri, A Ratsimihety and G Caporiccio, ‘Use of fluorinated telomers for the obtaining of hybrid fluorosilicones’,Fluoropolymers Synthesis,1, Chapter 5, 6779, (eds) G Hougham, P E Cassidy, K Johns and J Davidson, Plenum, New York, 1999.

    Google Scholar 

  43. Inoue H, A Matsumoto, K Matsukawa, A Ueda and S Nagai, ‘Surface characteristics of fluoroalkylsiloxane-poly(methyl methacrylate) block copolymers and their PMMA blends’,J Appl Polym Sci,40, 1917–38, 1990

    Article  CAS  Google Scholar 

  44. Guenthne R A, US Patent 3993443, 23rd November 1976, assigned to 3M Co

  45. Johnson K L, K Kendall and A D Roberts, ‘Surface Energy and the Contact of Elastic Solids’,Proc Roy Soc Ser A,324, (1558), 301–13, 1971

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MJ Owen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, M. A review of significant directions in fluorosiloxane coatings. Surface Coatings International Part B: Coatings Transactions 87, 71–76 (2004). https://doi.org/10.1007/BF02699599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699599

Keywords

Navigation