## Cr-Ta (Chromium-Tantalum)

## H. Okamoto

The Cr-Ta phase diagram in [Massalski2] was redrawn from [87Ven] with a change in the form of  $\beta$ Cr<sub>2</sub>Ta solidus to comply with the Gibbs-Konovalov rule. The (Ta) liquidus and some other boundaries were speculative.

[93Dup] obtained the Cr-Ta phase diagram (Fig. 1) by optimization of thermodynamic parameters. Calculated phase boundaries agree well with existing experimental data as shown. Cr-Ta crystal structures of  $\beta$  and  $\alpha$ Cr<sub>2</sub>Ta (Table 1) were determined by [52Duw].

## **Cited References**

52Duw: P. Duwez and H. Martens, Trans. AIME, 194, 72-74 (1952).

87Ven: M. Venkatraman and J.P. Neumann, Bull. Alloy Phase Diagrams, 8(2), 112-116 (1987).

93Dup: N. Dupin and I. Ansara, J. Phase Equilibria, 14(4), 451-456 (1993).

## Table 1 Cr-Ta Crystal Structure Data

| Phase               | Composition,<br>at. % Ta | Pearson<br>symbol | Space<br>group       | Strukturbericht<br>designation | Prototype          |
|---------------------|--------------------------|-------------------|----------------------|--------------------------------|--------------------|
| (Cr)                | 0 to 5                   | cl2               | Im3m                 | A2                             | w                  |
| βCr <sub>2</sub> Ta | 30 to 38                 | hP12              | P6 <sub>3</sub> /mmc | <i>C</i> 14                    | MgZn <sub>2</sub>  |
| αCr <sub>2</sub> Ta | . 33 to 36               | cF24              | Fd3m                 | C15                            | Cu <sub>2</sub> Mg |
| (Ta)                | 100                      | cI2               | Im3m                 | A <sub>2</sub>                 | w                  |

