Communication: Microstructural Refinement of W-Ni-Fe Heavy Alloys by Alloying Additions by A. Bose and R.M. German

Page 3102:

In Figure 1, the microstructures shown in (b) and (c) have been reversed. Figure 1(b) should actually be Figure 1(c) which shows the emergence of the bimodal distribution.

Correction to Metall. Trans. A, 1988, vol. 19A, pp. 915-23

Orientation Dependence of $\beta_1 \rightarrow \beta'_1$ Stress-induced Martensitic Transformation in a Cu-Al-Ni Alloy by H. Horikawa, S. Ichinose, K. Morii, S. Miyazaki, and K. Otsuka

Page 918:

The correct form of Table IV is:

Table IV.	The Values of W_1	Calculated for	12 Correspondence	Variants (×10 ⁻	²)
-----------	---------------------	----------------	-------------------	----------------------------	----

Sp. No.									
Variant	3	4	5	9	10	12	13	15	
1	4.234	5.111	5.462	5.864	4.342	3.095	5.422	4.565	
1′	4.234	5.111	5.462	5.864	4.342	3.095	5.422	4.565	
2	1.259	1.506	2.542	4.596	1.448	1.043	2.872	3.292	
2'	1.259	1.506	2.542	4.596	1.448	1.043	2.872	3.292	
3	-0.343	-1.347	0.303	3.727	-0.121	1.016	1.058	3.199	
3'	-0.343	-1.347	0.303	3.727	-0.121	1.016	1.058	3.199	
4	1.034	-0.588	0.988	4.127	1.208	3.042	1.797	4.379	
4'	1.034	-0.588	0.988	4.127	1.208	3.042	1.797	4.379	
5	-4.010	-2.507	-4.020	-6.787	-4.178	-5.752	-4.764	-6.933	
5'	- 4.010	-2.507	-4.020	-6.787	-4.178	-5.752	-4.764	-6.993	
6	-2.633	-1.748	-3.335	-6.386	-2.849	-3.727	-4.024	-5.812	
6'	-2.633	-1.748	-3.335	-6.386	-2.849	-3.727	-4.024	-5.812	
Sp. No.				_					
Variant	16	17	18	19	20	21	22	23	24
1	4.150	1.854	1.744	4.147	5.238	6.507	5.968	3.314	4.511
1′	4.150	1.854	1.744	4.147	5.238	6.507	5.968	3.314	4.511
2	1.041	-0.909	-1.134	1.044	2.589	3.794	5.758	1.384	3.288
2'	1.041	-0.909	-1.134	1.044	2.589	3.794	5.758	1.384	3.288
3	-0.669	-1.092	-1.397	-0.657	0.779	1.171	5.643	1.366	3.269
3'	-0.669	-1.092	-1.397	-0.657	0.779	1.171	5.643	1.366	3.269
4	0.734	1.488	1.219	0.749	1.621	1.123	5.739	3.278	4.474
4'	0.734	1.488	1.219	0.749	1.621	1.123	5.739	3.278	4.474
5	-3.722	-4.206	-3.940	-3.736	-4.599	-4.142	-8.035	-5.979	-7.070
5'	-3.722	-4.206	-3.940	-3.736	-4.599	-4.142	-8.035	-5.979	-7.070
6	-2.319	-1.626	-1.325	-2.330	-3.756	-4.190	-7.939	-4.068	-5.865
6'	-2.319	-1.626	-1.325	-2.330	-3.756	-4.190	-7.939	-4.068	-5.865

Page 917:

Line (or Eq.)	Original	Corrected
Eq. [2]	$W_1 = \sigma_1 \eta_1 + \sigma_2 \eta_2 + \sigma_3 \eta_3$	$W_1 = \sigma_1 \varepsilon_1 + \sigma_2 \varepsilon_2 + \sigma_3 \varepsilon_3$
Line 16	for the deformation \mathbf{B}_1 .	and $\varepsilon_i = \eta_i - 1(i = 1 \sim 3)$.
Line 11 (from the bottom)	(Table IV). We see that plane variant.	We see that the variants are the largest for variants 1 and 1' in all specimens (Table IV). On the other hand, the observed variant is always 1'. This means that an applied stress interacts with the shape strain rather than

with \mathbf{B}_1 in the selection of a habit plane variant.

Line (or Eq.)	Original	Corrected	
Eq. [4]	$\sigma_n = \sigma \cos^2 \chi$	$\sigma_n = \sigma \sin^2 \chi$	
Eq. [5]	$\cos^2 \chi$	$\sin^2 \chi$	

Page 921:

Line (or Eq.)	Original	Corrected	
Fig. 7 (abscissa)	$\cos^2 \chi$	$\sin^2 \chi$	
Fig. 7 (abscissa)	$\cos^2 \chi$	$\sin^2 \chi$	